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In applications of structural equation modeling (SEM), investigators obtain and interpret
parameter estimates that are computed so as to produce optimal model fit. The obtained param-
eter estimates are optimal in the sense that model fit would deteriorate to some degree if any
of those estimates were changed. If a small change of a parameter estimate has large influence
on model fit, such a parameter can be called highly influential, whereas if a substantial per-
turbation of a parameter estimate has negligible influence on model fit, that parameter can be
called uninfluential. This is the idea of parameter influence. This article covers 2 approaches
to quantifying parameter influence. One existing approach determines the direction vector of
parameter perturbation causing maximum deterioration in model fit. In this article, we propose
a new approach for quantifying the influence of individual parameters on model fit. In this new
approach, the influence of individual parameters is quantified as the degree of perturbation
required to produce a prespecified value of change in model fit. Using empirical examples, we
illustrate how these 2 methods can be effectively employed, complementing each other and as
a complement to conventional approaches to interpretation of parameter estimates obtained in
empirical data analyses.

Keywords: model fit, parameter influence, parameter interpretation, sensitivity analysis,
structural equation modeling

The process of changing various aspects of a model or data
to assess subsequent impact on results or inferences is called
sensitivity analysis. Some examples of various perturbation
schemes include case deletion, alteration of the model, and
perturbation of parameter estimates. In certain modeling
contexts, sensitivity analysis can provide a useful way of
evaluating a statistical model and its characteristics by
examining the degree of change in the results of statistical
analysis induced by minor perturbations of various aspects
of the data or the model. For example, when a minor
perturbation of a certain aspect of the model results in major
changes in outputs, there is surely cause for concern about
the model (Cook, 1986).

In the context of structural equation modeling
(SEM), researchers have studied various perturbation
schemes including case weights perturbation, additive or
multiplicative perturbation of components of the manifest
variables, and additive or multiplicative perturbation of
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latent variables. Effects of such perturbations on outcomes
of subsequent statistical analysis have been assessed in
specific modeling contexts such as restricted factor analysis
models (Kwan & Fung, 1998), full information item factor
models (Lee & Xu, 2003a), and linear and nonlinear
structural equation models with continuous or polytomous
manifest variables (Cadigan, 1995; Lee & Lu, 2003; Lee &
Tang, 2004; Lee & Wang, 1996; Lee & Xu, 2003b; Poon,
Wang, & Lee, 1999).

However, the issue of the relation of perturbation of
parameter estimates to changes in model fit, although Lee
and Wang (1996) first proposed a method to investigate this
issue with a few follow-up papers (Poon et al., 1999; Lee
& Tang, 2004; Lee & Xu, 2003b), has drawn relatively lit-
tle attention among applied researchers using SEM. Rather,
recent focus has tended to be on the study of statistical out-
comes resulting from the perturbation of data to identify
influential cases (Pek & MacCallum, 2011; Yuan & Hayashi,
2010; Yuan & Zhang, 2012; Yuan & Zhong, 2008).

In applications of SEM, investigators routinely obtain
and interpret parameter estimates that are computed so
as to produce optimal model fit. The obtained parameter
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estimates are optimal only in the sense that substituting
a nonoptimal solution necessarily deteriorates the fit of
the model. If a small perturbation of the optimal value
of a parameter estimate has a large influence on model
fit, such a parameter can be called highly influential and
estimates of such parameters could be interpreted more
rigorously. On the other hand, if a substantial perturbation of
a parameter estimate has negligible influence on model fit,
that parameter can be called uninfluential. Rigorous inter-
pretations of such parameter estimates might be withheld
because values very different from the optimal estimates
would yield nearly the same level of model fit. Therefore,
systematically designed sensitivity analysis seems warranted
to answer such questions as “To what extent would model
fit deteriorate if parameter estimates were changed from the
optimal solution?” Methods for answering such questions
will create an opportunity for identifying parameters having
higher (lower) impact on model fit that might require more
(less) rigorous interpretation.

In this article we focus on the sensitivity of model fit
with respect to perturbation of parameter estimates in the
context of SEM. We propose and illustrate methods for
identifying single parameters or combinations of parameters
that might have high or low influence on model fit. To that
end, two approaches to perturbation are considered. The
first approach involves perturbing all parameter estimates
simultaneously and the second involves perturbing one
parameter estimate at a time.

The remainder of this article is organized as follows:
First, after a brief review of estimation and inferences for
SEM, the definition of parameter influence is operationalized
for subsequent development of a method for determining
influential parameters. Next, two methods for examining
parameter influence are introduced with illustrative exam-
ples. The first is a vector method and the second is a single
parameter method. The illustrative examples are designed to
demonstrate how the two methods can be used in identify-
ing (un)influential parameters and how the results should
be interpreted. Pros and cons of each method, as well as
practical implications, are also discussed.

ESTIMATION AND INFERENCES FOR
STRUCTURAL EQUATION MODELING

We consider an N × p data matrix Y where N and p rep-
resent the sample size and the number of manifest variables,
respectively. Then the ith row of Y, denoted by y′

i, is assumed
to be a vector of observations drawn from a p-dimensional
multivariate normal distribution with mean vector μ0 and
covariance matrix �0.

In SEM, it is assumed that there exists a q × 1 vec-
tor ϑ0 that resides in the parameter space � (i.e., ϑ0 ∈
� ⊂ Rd) such that μ0 = μ (ϑ0) and �0 = � (ϑ0), where
μ (·) and � (·), respectively, represent a vector-valued and a
matrix-valued function specifying the functional relationship

between the model-implied mean and covariance structure
and the parameter vector ϑ (∈ �). In other words, it is
assumed that there exists a unique vector of parameters
ϑ0 (∈ �) such that the model-implied mean vector μ (ϑ0)

and the model-implied covariance matrix � (ϑ0) can repro-
duce the population mean vector μ0 and the population
covariance matrix �0, respectively.

For the estimation of ϑ0, a specified model is fit to the
sample mean vector ȳ and sample covariance matrix S, pro-
ducing a vector of parameter estimates ϑ̂ that makes the
model-implied mean and covariance structure as similar to
ȳ and S as possible. A number of discrepancy functions have
been proposed to measure this (dis)similarity, including gen-
eralized least squares (GLS) or asymptotically distribution-
free (ADF), and normal theory maximum likelihood (ML)
discrepancy functions.

Under multivariate normality, we can obtain the ML
estimates for ϑ0 by minimizing the normal theory ML
discrepancy function

FML
[
ȳ, S; μ (ϑ) , � (ϑ)

] = ln |� (ϑ)| − ln |S|

+ tr
[
S�−1 (ϑ)

] − p + [
ȳ − μ (ϑ)

]′
� (ϑ)−1 [

ȳ − μ (ϑ)
]

(1)

or equivalently by maximizing the log-likelihood function

� (ϑ |ȳ, S ) ∝ −N

2

{
ln |� (ϑ)| + tr

[
S�−1 (ϑ)

]

+ [
ȳ − μ (ϑ)

]′
�

(
ϑ−1) [

ȳ − μ (ϑ)
]} (2)

Maximizing Equation 2 or minimizing Equation 1 with
respect to ϑ results in the ML estimates ϑ̂ ∈ �. The ML
estimator of ϑ can be formally defined as

ϑ̂ = arg max
ϑ∈�

� (ϑ |ȳ , S) = arg min
ϑ∈�

FML
[
ȳ, S; μ (ϑ) , � (ϑ)

]
(3)

Under multivariate normality of yi and a correct model
specification, the ML estimator is asymptotically unbiased,
consistent, efficient, and normally distributed with its center
equal to ϑ0 and its dispersion equal to I (ϑ0)

−1, where I (ϑ)
denotes the observed information matrix, the negative of the
second order partial derivative matrix of the log-likelihood
function

I (ϑ) = −∂
2� (ϑ |ȳ , S)
∂ϑ ∂ϑ ′ = N

2

{
∂2FML

[
ȳ, S; μ (ϑ) , � (ϑ)

]
∂ϑ ∂ϑ ′

}
(4)

Further, T = (N − 1)FML

[
ȳ, S; μ

(
ϑ̂

)
, �

(
ϑ̂

)]
forms the

likelihood ratio test statistic for testing the hypothesized
moment structure against the general alternative. Under
multivariate normality and correct model specification, T is
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asymptotically distributed as central chi-square with degrees
of freedom equal to p + p (p + 1)

/
2 − q (see Browne &

Arminger, 1995).

MEASURING PARAMETER INFLUENCE

It should be borne in mind that the ML estimates ϑ̂ defined in
Equation 3 are optimal in the sense that substituting nonopti-

mal values ϑ̃
(
�= ϑ̂

)
necessarily deteriorates the ML discrep-

ancy function value; that is, FML

[
ȳ, S; μ

(
ϑ̃

)
, �

(
ϑ̃

)]
>

FML

[
ȳ, S; μ

(
ϑ̂

)
, �

(
ϑ̂

)]
. If ϑ̃ represents a small perturba-

tion of (a subset of) elements in ϑ̂ and is associated with
a substantial deterioration in the discrepancy function value
the perturbed parameters can be called highly influential and
estimates of those parameters can be interpreted more rigor-
ously. On the other hand, if ϑ̃ produces only a negligibly
small change in the discrepancy function value despite (a
subset of) its elements being substantially different from ϑ̂ ,
it would be safe to withhold the literal interpretation of such
parameter estimates. This is the idea of parameter influence.

In this article we define parameter influence as the degree
of change in model fit as a function of perturbation imposed
on optimal parameter estimates. A primary objective of this
research is to propose methods for examining the parame-
ter influence. To define and measure parameter influence, we
adapt the likelihood displacement (LD) criterion, originally
proposed by Cook (1986) in a general context of sensitivity
analysis, to the study of parameter influence in the context of
SEM. In Cook (1986), LD quantifies influence as the discrep-
ancy between the log-likelihood under the original model
and the log-likelihood under the model in which a minor per-
turbation is imposed. Let � (ϑ) denote the log-likelihood of
the original model indexed by a q × 1 parameter vector ϑ .
The formal definition of LD can then be given as

LD (ω) = 2
[
�
(
ϑ̂

)
− �

(
ϑ̃ω

)]
(5)

where ω represents any well-defined perturbation scheme.
Vectors ϑ̂ and ϑ̃ω represent the q × 1 vectors of the ML esti-
mates under the original model and the perturbed parameter
estimates for a given ω, respectively.

In this article, we focus on perturbations applied to
the ML estimates ϑ̂ in the context of SEM as defined in
Equation 3. And thus, ω represents a q × 1 direction vec-
tor of unit length along which ϑ̂ is to be perturbed and the
consequent impact on model fit is to be examined. Vector
ω is referred to as a perturbation vector. The ML dis-
crepancy function of Equation 1 is employed to define the
influence or change in model fit caused by such perturba-
tions. Therefore, parameter influence is operationalized as
the difference between the ML discrepancy function under
the original model and the ML discrepancy function under

the model in which a minor perturbation is imposed on the
ML estimates. Formally, the parameter influence in SEM can
be defined as

FML (ω) = FML

[
ȳ, S; μ

(
ϑ̃ω

)
, �

(
ϑ̃ω

)]

− FML

[
ȳ, S; μ

(
ϑ̂

)
, �

(
ϑ̂

)] (6)

where ϑ̃ω represents the vector of parameter values
obtained by imposing a minor perturbation on ϑ̂ along the
direction of ω.

With Equation 6, we can systematically investigate
parameter influence in SEM by studying the behavior of
the function FML (ω). In the next sections, two approaches
termed the vector method and the single parameter method
are introduced and illustrated. Although not very well
known, the vector method was originally proposed by Lee
and Wang (1996). The single parameter method proposed
here is a new method for investigating parameter influence.

VECTOR METHOD

The vector method is an approach for determining a direc-
tion vector maximizing (minimizing) the influence on model
fit when the optimal parameter estimates are perturbed in
the direction of the specified vector. In the context of SEM,
the vector approach to the study of parameter influence was
suggested first by Lee and Wang (1996), where the authors
developed a general method for conducting sensitivity anal-
ysis with respect to a minor perturbation introduced either to
the model or data. In their paper, Lee and Wang employed
the general discrepancy function, denoted by G (ϑ), includ-
ing the GLS and ML discrepancy functions as its special
cases, to define the influence of parameters. Specifically, the
measure of influence was defined as G (ω),

G (ω) = G
(

ȳ, S; μ
(
ϑ̃ω

)
, �

(
ϑ̃ω

))

− G
(

ȳ, S; μ
(
ϑ̂

)
, �

(
ϑ̂

)) (7)

with

ϑ̃ω = ϑ̂ + Uω (8)

where ω represents a q × 1 perturbation vector of unit length,
ϑ̂ represents a vector of the optimal solution minimizing
G (ϑ), and U is a q × q diagonal matrix that will be defined
shortly. That is, if G (ω) or the change in model fit is large
for a small perturbation of ϑ̂ in the direction of ω, it can
be concluded that the perturbation scheme ω is influential to
the discrepancy function around the optimal solution. On the
other hand, if a large perturbation of ϑ̂ in the direction of
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ω yields a small G (ω), it can be concluded that the pertur-
bation scheme ω is uninfluential to the discrepancy function
around the optimal solution.

It is noteworthy that Lee and Wang (1996) employed a
q × q diagonal matrix, U, whose elements are to be chosen
according to the investigators’ special concerns. For exam-
ple, U can be chosen to be an identity matrix if the same
degree of perturbation to all parameters is to be applied.
Or the diagonal elements of U can be proportional to the
absolute value of the corresponding parameter’s estimated
value to study the influence of a perturbation proportional to
the parameters’ estimated values. In other words, the matrix
U is specified so as to define a degree and type of minor
perturbation of parameter estimates from the optimal solu-
tion, ϑ̂ . Because not all parameter estimates in SEM are on
the same scale, the use of the U matrix allows the user to
choose among different perturbation schemes depending on
the special interests in a given application. As pointed out by
Lee and Wang (1996), different choices of U will produce
different outcomes in subsequent analyses.

Let the Hessian matrix1 of G (ω) evaluated at its opti-

mal solution, ϑ̂ be denoted by H
(
ϑ̂

)
. Then, Lee and Wang

(1996) showed that the eigenvector associated with the

largest eigenvalue of the adjusted Hessian matrix, H̃
(
ϑ̂

)
,

defined as,

H̃
(
ϑ̂

)
= UH

(
ϑ̂

)
U (9)

gives the directional vector of unit length for parameter per-
turbation, denoted by ωmax, that yields the maximum value
in G (ω) or maximum change in model fit. Although not
explicitly discussed in Lee and Wang (1996), the eigenvec-

tor associated with the smallest eigenvalue of H̃
(
ϑ̂

)
gives

the directional vector of unit length for parameter perturba-
tion, denoted by ωmin, that yields minimum change in model
fit. By inserting ωmax or ωmin into Equation 8 in conjunc-
tion with the researcher-specified U matrix, we can obtain
the perturbed parameter estimates that will have maximum
influence, denoted by ϑ̃ωmax , or minimum influence, denoted
by ϑ̃ωmin , on model fit.

Illustration of the Vector Method

To illustrate the vector method, we use the open-book closed-
book (OBCB) test data in Mardia, Kent, and Bibby (1979).2

The data set consists of five observed variables, which

1The symmetric matrix composed of second-order partial derivatives of
a function is called the Hessian matrix.

2This data set has been a canonical example in sensitivity analysis in the
context of factor analysis and SEM since it was first used in Lee and Wang
(1996). The data set received considerable attention later by Cadigan (1995),
Fung and Kwan (1995), Lee and Tang (2004), Kwan and Fung (1998), and
Poon and Poon (2002). See also Tanaka and Odaka (1989a, 1989b).

TABLE 1
Sample Means, Variances, and Covariances for

Measured Variables in Open-Book Closed-Book Example

Observed Variables 1 2 3 4 5

1. Mechanics 305.768 — — — —
2. Vectors 127.223 172.842 — — —
3. Algebra 101.579 85.157 112.886 — —
4. Analysis 106.273 94.673 112.113 220.380 —
5. Statistics 117.405 99.012 121.871 155.536 297.755
Means 38.955 50.591 50.602 46.682 42.307

are test scores of five topics: mechanics, vectors, algebra,
analysis, and statistics. The first two measures are closed-
book tests, and the other measures are open-book test scores.
The sample mean vector ȳ and covariance matrix S are
presented in Table 1. The sample size is 88 (N = 88).

A confirmatory factor analysis (CFA) model with two cor-
related factors and no mean structure was fit to data. The first
factor loaded only on the closed-book tests and the second
factor loaded only on the open-book tests. The two factors
were specified as being correlated. Factor variances were
fixed to a value of 1.0 for model identification.

The model specification is as follows:

y1 = λ11η1 + ζ1

y2 = λ21η1 + ζ3

y3 = λ32η2 + ζ3

y4 = λ42η2 + ζ4

y5 = λ52η2 + ζ5

(10)

where y = (y1, y2, y3, y4, y5)
′ represents a 5 × 1 random vec-

tor for the five test scores, and η1 and η2 are the two common
factors. The model-implied covariance matrix, � (ϑ) is a
function of a vector of ϑ composed of 11 model param-
eters, λ11, λ21, λ32, λ42, λ52,ψ12,φ11,φ22,φ33,φ44,φ55, where
λij represents the factor loading of yj on ηi, ψ12 represents
the correlation between η1 and η2, and φjj represents unique
variance for yj.

The ML estimates ϑ̂ were obtained by minimizing the ML
discrepancy function of Equation 1. The optimal discrep-

ancy function value F̂ML = FML

[
ȳ, S; μ

(
ϑ̂

)
, �

(
ϑ̂

)]
for

the fitted two-factor CFA model was 0.0238 with 4 degrees
of freedom, resulting in the point estimate of root mean
square error of approximation (RMSEA) value being .00.
The parameter estimates ϑ̂ and the associated standard error

estimates S.E.
(
ϑ̂

)
are presented in Table 2.

To apply the vector method and identify the direction of
parameter perturbation for the maximum (minimum) change
in model fit, we calculated the Hessian matrix of Equation 1
and evaluated at ϑ̂ . In this example, we specify U as the
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TABLE 2
Parameter Estimates, Standard Errors, and the Results of

Parameter Influence Analysis for Open-Book Closed-Book Example

Parameter MLE SE ωmax ωmin LB UB

λ11 12.253 1.832 0.048 −0.006 9.764 14.897
λ21 10.383 1.371 0.105 0.008 8.519 12.363
λ32 9.834 0.923 −0.893 −0.072 8.600 11.197
λ42 11.490 1.395 0.287 0.059 9.616 13.550
λ52 12.517 1.658 0.178 0.057 10.285 14.958
ψ12 0.818 0.072 0.256 0.012 0.709 0.907
φ11 155.632 31.499 −0.011 0.013 116.001 204.746
φ22 65.035 17.996 −0.010 −0.026 41.056 91.784
φ33 16.187 7.219 −0.089 0.967 6.320 27.260
φ44 88.352 16.677 0.035 −0.186 67.023 115.419
φ55 141.072 24.739 0.022 −0.130 109.932 181.270

Note. The model is fit to the covariance matrix only. N = 88. MLE =
maximum likelihood estimates; SE = standard error estimates; ωmax = the
eigenvector associated with the largest eigenvalue of the adjusted Hessian
matrix; ωmin = the eigenvector associated with the smallest eigenvalue of
the adjusted Hessian matrix; LB (UB) = the lower (upper) bound of per-
turbation for individual parameters hat yields .001 increase in root mean
square error of approximation.

diagonal matrix whose elements are proportional to the abso-
lute values of the associated parameter estimates to take
into account the difference in scales of parameter estimates.
Specifically, the diagonal elements in the U matrix are set to

be the vector of
√

|ϑ̂ |
2 . Then we calculated the eigenvectors

for the adjusted Hessian matrix defined in Equation 9.
Table 2 provides the results from the vector method. The

two columns ωmax and ωmin, respectively, show the eigenvec-
tors associated with the largest and smallest eigenvalues for
the adjusted Hessian matrix. These eigenvectors are embed-
ded in the 11-dimensional parameter space pointing to the
directions in which the ML discrepancy function changes
the most or the least under the particular choice of U matrix
we made. In other words, each eigenvector indicates the
direction in which the ML parameter estimates shall be per-
turbed simultaneously to produce the maximum or minimum
change in model fit.

The overall pattern of the two eigenvectors indicates
that, under the scheme of perturbing all parameters simul-
taneously proportional to the absolute value of the cor-
responding parameter estimates, the perturbation of factor
loadings λ32, λ42, λ52, and factor intercorrelation ϕ12 from
the optimal solution contributes the most to the maximum
change in model fit, whereas the smallest change in model
fit is mostly due to the perturbation of unique variances
φ33,φ44, and φ55 from the optimal parameter estimates.
Recall that the ML solution produced a discrepancy func-
tion value of .0238 and RMSEA of .000. In comparison, the
ML discrepancy function value and the associated RMSEA
for ϑ̃ωmax are .184 and .186, respectively, whereas the ML
discrepancy function value and the associated RMSEA for
ϑ̃ωmin are .0248 and .000, respectively. Therefore, it can be

concluded that a group of parameters λ32, λ42, λ52, and ϕ12,
as a whole, are highly influential, allowing more rigorous
interpretation of their estimated values. These parameters are
the loadings for the three open-book tests and the correlation
between the two factors. It can also be concluded that a group
of parameters φ33,φ44, and φ55, as a whole, are uninfluential
and their estimated values should not be interpreted in the
literal sense because changes in these parameters have little
impact on model fit. These are the unique variances for the
open-book tests.

To reiterate, the vector method allows the researcher to
identify, under the specific perturbation scheme, a group of
parameters that will exhibit more or less impact on model
fit than others by focusing on the overall pattern of the
size of the numerical values in the obtained eigenvectors.
Admittedly, the subjective nature of the interpretation of the
pattern in the eigenvectors must be recognized especially
when the patterns of the eigenvectors do not offer a clear
structure for simple interpretation. In a sense, such difficul-
ties naturally arise due to the multidimensional nature of the
solution (e.g., 11 × 1 perturbation vectors).

SINGLE PARAMETER METHOD

The vector method has two characteristics that should be
noticed. First, as pointed out by Lee and Wang (1996), the
results of the vector method depend on the choice of the U
matrix. In the previous example, if the U matrix were chosen
to be an identity matrix, ωmax, and ωmin, respectively, would
have been pointing to different directions for maximum and
minimum change in model fit. Second, as seen in the previ-
ous empirical example, the nature of the solution provided by
the vector method is multidimensional so that the overall pat-
tern of the eigenvector defines a combination of influential
parameters that will have greater impact on model fit.

In this section we propose an alternative method for
investigating parameter influence that allows for examining
the influence of individual parameters separately. This
method, termed the single parameter method, defines the
influence of individual parameters as the degree of pertur-
bation in the estimate of the selected parameter required to
produce a prespecified value of change in model fit. In other
words, more influential parameters are those that, given
the specified level of change in model fit, require smaller
perturbation from its optimal solution than a less influential
parameter does.

Because the single parameter method evaluates the influ-
ence of individual parameters, scale differences among
parameters are not an issue and the choice of the U matrix
becomes irrelevant. Further, due to the unidimensional
nature of the solution, users of the single parameter method
can directly interpret the results without having to interpret
the overall pattern of the solution given by the vector method.
For example, if a factor correlation with its ML estimate
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equal to .56 can be perturbed to values of .20 or .90, yield-
ing changes in RMSEA of less than .005, then it is clear
that the factor correlation has little influence on model fit
and its estimate .56 cannot (and should not) be interpreted
in a literal sense. This interpretation for the factor correla-
tion is valid regardless of the degree of influence of other
parameters given by either the single parameter or the vector
method.

To reiterate, the single parameter method provides a
mechanism for determining the lower and upper bounds
(e.g., .20 and .90) of the perturbation for individual param-
eters that will produce a prespecified value of change in
model fit (e.g., increase in RMSEA by .005). In the fol-
lowing section, an algorithm is proposed and described for
determining the perturbation bounds for individual param-
eters or the extent to which individual parameters ought to
be perturbed to produce a specified level of deterioration in
model fit.

An Algorithm to Determine the Degree of Perturbation
Given a Prespecified Change in Fit

Let F∗ denote a prespecified value of model fit,
slightly larger than the optimal fit function value

F̂ = FML

[
ȳ, S; μ

(
ϑ̂

)
, �

(
ϑ̂

)]
. And let ϑ1 denote the

jth parameter of interest or the focal parameter for which
the degree of perturbation is to be determined. Also let ϑ2

denote a (q − 1)× 1 vector of all the other parameters but
the jth focal parameter. In this article, we call ϑ2 the vector
of nuisance parameters. Then, we can always rearrange
the q × 1 model parameter ϑ as ϑ = (

ϑ1, ϑ ′
2

)′
. Further,

let κ+ and κ− denote constants representing the degree
of perturbation of the focal parameter ϑ1 from its optimal
solution ϑ̂1 in the positive and negative direction, respec-
tively, to yield the specified value of F∗. Then, the goal
of the algorithm is to determine the constants κ+ and κ−
satisfying

F
[
ȳ, S; μ

(
ϑ̃+

)
,
∑ (

ϑ̃+
)]

= F∗ and F
[
ȳ, S; μ

(
ϑ̃−

)
,
∑ (

ϑ̃−
)]

= F∗

(11)

where ϑ̃+ =
(
ϑ̂1 + κ+, ϑ̃

′
2

)′
, ϑ̃− =

(
ϑ̂1 + κ−, ϑ̃

′
2

)
, and

ϑ̃2 =
(
ϑ̂1, . . . , ϑ̂j−1, ϑ̃j+1, · · · , ϑ̃q

)′
.

It is worth noticing that the preceding equation becomes
a straightforward one-dimensional root finding problem
with respect to κ+ or κ− if the ϑ̃2 is a priori known or
fixed at some values such as its optimal solution ϑ̂2 =(
ϑ̂1, . . . , ϑ̂j−1, ϑ̂j+1, · · · , ϑ̂q

)′
. In fact, the problem of finding

κ+ or κ− that yields F∗ with θ̃2 fixed at a priori known val-
ues was successfully addressed by adopting an algorithm

known as the Brent method in the context of studying the
power for tests of model fit in SEM (MacCallum, Lee, &
Browne, 2010). In essence, the Brent algorithm finds a value
approximating the root of a function within a prespecified
level of precision, given an interval containing the root
of the function, by systematically and iteratively search-
ing the interval provided by the user. The Brent algorithm
is described in detail in Press, Flannery, Teukolsky, and
Vetterling (1992).

In the current context of studying parameter influence,
it should be borne in mind that, due to correlations among
parameter estimates, changes in ϑ1 from ϑ̂1 will necessar-
ily induce changes in ϑ̂2. Therefore, ϑ2 must be adjusted to
a new vector of optimal values as perturbation is imposed
on ϑ̂1. One approach to adjusting ϑ2 would be to refit the
posited model with ϑ1 fixed at a perturbed value, and take
the resulting estimates of ϑ2 as the new optimal solution
for ϑ2. In other words, we can make the adjustment for
ϑ2 by maximizing the profile-likelihood of ϑ2 at a given
value of ϑ1. However, when this profile-likelihood-based
approach is embedded in the Brent algorithm that iteratively
finds the root κ+ or κ−, the posited model must be refitted
at every iteration during the root finding processes for the
adjustment of the nuisance parameters. In other words, iter-
ative model refitting processes are to be nested within each
cycle of the iterative root finding processes. In this iteration-
within-iteration approach, the computations involved in the
model refitting processes can quickly become burdensome
as the model gets more complex and can easily domi-
nate the computational cost required for the root finding
process.

In response to the problem of the computational burden
involved in the adjustment of nuisance parameters, we use
an alternative method due to Pawitan (2001, p. 267) for
the adjustment of the nuisance parameter values at each
iteration in the root finding processes. The computational
burden of this alternative approach is minimal because it
does not require model refitting but simply recycles the
results of the ML estimation. In essence, based on the
standard multivariate normal distribution theory, Pawitan
showed that the change in the nuisance parameters asso-
ciated with the change in the focal parameter can be
approximated by

ϑ̃
(t)
2 = ϑ̂2 + I−1

22 I21

(
ϑ̂1 − ϑ̃

(t)
1

)
(12)

where ϑ̃ (t)1 = ϑ̂1 + κ+
(t) or ϑ̃ (t)1 = ϑ̂1 + κ−

(t) represents the per-

turbed value of ϑ1 from its optimal solution ϑ̂1 to the degree
of κ+

(t) or κ−
(t) at the tth iteration of the Brent algorithm. I22

and I21, respectively, indicate the information matrix for the
vector of nuisance parameters ϑ2 and joint information for
the vector of nuisance parameters ϑ2 and the focal parameter
ϑ1 evaluated at ϑ̂ . That is,
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I22 = −
∂2�

(
ϑ̂ |ȳ, S

)
∂ϑ2∂ϑ

′
2

and I21 = −
∂2�

(
ϑ̂ |ȳ, S

)
∂ϑ2∂ϑ1

(13)

Equation 12 shows that the adjustment of ϑ2 at the tth itera-
tion can be very simple if we recycle the results of parameter
estimation: the ML estimates of Equation 3 and information
matrix of Equation 4. Equation 12 also shows that the adjust-
ment is proportional to the degree of perturbation of the
focal parameter from its optimal solution at the tth iteration:(
ϑ̂1 − ϑ̃

(t)
1

)
. Equation 12 provides a linear approximation to

the change of nuisance parameters at the tth iteration as a
function of change in the focal parameter.

Inserting Equation 12 into Equation 11, the target equa-
tions in 11 are again reduced to a one-dimensional root
finding problem with respect to the unknown constants
κ+ and κ− while taking into account correlations among
parameter estimates.

Illustration of the Single Parameter Method

In this section, we illustrate the single parameter method by
computing perturbation bounds for each of the 11 param-
eters specified in the CFA model fitted to the OBCB data
set. In this illustration, F∗ or the desired level of model fit is
specified in terms of the point estimate of RMSEA because
RMSEA has an empirical scale for reference, whereas the
fit function value itself does not (Browne & Cudeck, 1993).
Then the perturbation bounds for individual parameters are
obtained by solving Equation 11 with respect to κ+ and
κ− while taking into account correlations among parameter
estimates using Equation 12.

Given that RMSEA for the two-factor model was .000,
we chose to set the perturbed value of RMSEA at .001. The
corresponding value of F∗ would be .046. We then compute
lower and upper bounds for each parameter that yield F∗ =
.046. The last two columns in Table 2 show these lower
and upper bounds of perturbation for each of the 11 param-
eters. For example, λ11 has lower and upper perturbation
bounds of 9.76 and 14.90, respectively. This implies that λ11

can take any values within the range given by the perturba-
tion bounds, yielding RMSEA less than .001. Perturbation
bounds for other parameters can be interpreted in the same
manner.

Inspection of Table 2 indicates that perturbation bounds
for factor loadings all look reasonable in that the values in
the perturbation bounds are not anomalously wide enough to
call into question substantive interpretations of the parameter
estimates, whereas perturbation bounds for unique variances
are rather wide, questioning whether the estimates can be
interpreted in the literal sense. These results are quite consis-
tent with those obtained from the vector method. The upper
bound of factor correlation indicates that the correlation can

take the value of .91 and still yield RMSEA of .001, suggest-
ing that adequate discriminatory validity for the two method
factors might well be doubted. This result might appear to
conflict with that of the vector method where ψ12 is a mem-
ber of the group of influential parameters. But when it comes
to the influence of an individual parameter ψ12, what can be
concluded from the result of the vector method is that ψ12

will exercise significant influence on model fit only when
perturbed simultaneously with other parameters including
λ32, λ42, and λ52. In this sense, the vector method is not well
suited for studying the influence of individual parameters
separately. Being able to examine the influence of individ-
ual parameters separately is a significant advantage of the
single parameter method. According to the result of the sin-
gle parameter method, ψ12 turns out to have little influence
on model fit when considered in isolation.

Influence Mappings for Single Parameters

Recall that, when computing perturbation intervals for sin-
gle parameters, nuisance parameters are adjusted using
Equation 12 without refitting the model each time a
focal parameter value changes in the processes of solving
Equation 11. To evaluate the quality of the approximate
adjustment, we created a plot termed influence mapping for
single parameters (IMSP) for each of the focal parameters,
depicting the change of the ML discrepancy function value
in the vicinity of the optimal estimate of the focal parameter.
Two types of IMSP are created. In one type of IMSP, termed
IMSP-A, the nuisance parameter values are adjusted so as to
maximize the profile-likelihood by refitting the model at each
change in the focal parameter values. In the other type of
IMSP, termed IMSP-B, the nuisance parameters are adjusted
using Equation 12 without refitting the model.

To save space, we present IMSP for four selected focal
parameters from the OBCB example: two factor loadings
(λ21, λ32), a factor correlation (ψ12), and a unique vari-
ance (φ33). Four panels in Figure 1 present IMSPs for the
four parameters. In Figure 1, the horizontal axis represents
the amount of perturbation of the focal parameter, from its
optimal solution and the vertical axis represents the associ-
ated change in the ML discrepancy function value. In each
of the four panels, the solid and dotted U-curves represent
IMSP-A and IMSP-B for the focal parameter, respectively.
Perturbation bounds yielding .001 increase in RMSEA are
also marked in each panel. As can be seen, IMSP-A and
IMSP-B for the four parameters are virtually identical in a
small neighborhood of the optimal solution of each of the
focal parameters, although a slight discrepancy begins to
occur as the degree of perturbation gets larger. The absolute
magnitudes of discrepancies between IMSP-A and IMSP-B,
however, remain very small in the vicinity of the optimal
solution. And thus, considering the minimal level of compu-
tation, the use of Equation 12 for the adjustment of nuisance
parameter looks promising.
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FIGURE 1 Influence mappings for single parameters. (a) IMSP for λ11. (b) IMSP for λ32. (c) IMSP for ψ12. (d) IMSP for φ33.

Note. In each of the four panels, the solid and dotted curves represent IMSP-A and IMSP-B, respectively. IMSP-A is obtained by refitting the model at every
perturbed value of the focal parameter, whereas IMSP-B is obtained by adjusting the nuisance parameters using Equation 12 without refitting the model. The
lower bound (LB) and upper bound (UB) of perturbation to yield root mean square error of approximation increase by .001 are marked on IMSP-B for each
parameter. MLE = maximum likelihood estimates.

TWO ILLUSTRATIVE EXAMPLES

As examples of how the results of parameter influence stud-
ies of a given model can be effectively employed in real
data analysis, we consider parameter estimates in CFA mod-
els fitted to a multitrait–multimethod (MTMM) data matrix.
It is common practice under CFA approaches for investigat-
ing construct validity that sizable and statistically significant
factor loadings are considered as supportive evidence for
convergent validity of the purported psychological constructs
and that factor correlations offer indications of discriminant
validity of those psychological constructs. In the following

sections, we present the results of two parameter influence
studies obtained from two MTMM data matrices. In both
examples, the U matrix employed in the vector method was
set to be a diagonal matrix with elements that are propor-
tional to the absolute values of the corresponding parameter
estimates to take into account the scale differences among
parameter estimates.

Kenny and Kashy (1992) Data Set

As the first example, we present the results of parame-
ter influence studies obtained from analyzing the parameter
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TABLE 3
Parameter Estimates, Standard Errors, and the Results of

Parameter Influence Analysis for Kenny and Kashy (1992) Example

Parameter MLE SE ωmax ωmin LB UB

λ11 1.350 0.266 −0.007 0.001 1.254 1.449
λ41 1.225 0.248 0.005 −0.003 1.135 1.317
λ71 0.597 0.170 −0.006 −0.003 0.534 0.659
λ22 0.599 0.286 0.001 −0.011 0.496 0.703
λ52 1.120 0.495 0.001 0.005 0.954 1.310
λ82 0.338 0.215 −0.018 −0.012 0.260 0.419
λ33 0.841 0.185 0.095 −0.004 0.773 0.909
λ63 0.902 0.209 0.032 0.000 0.825 0.979
λ93 0.730 0.162 −0.174 0.000 0.671 0.790
ψ12 0.476 0.196 0.014 −0.016 0.403 0.547
ψ13 0.020 0.171 −0.001 −0.999 −0.043 0.082
ψ23 0.353 0.260 0.016 −0.033 0.257 0.446
φ88 1.818 0.310 −0.693 0.001 1.707 1.936
φ99 0.931 0.236 −0.447 −0.001 0.845 1.018
φ21 0.520 0.296 0.010 0.004 0.412 0.630
φ31 0.172 0.192 −0.004 0.023 0.102 0.243
φ32 0.522 0.231 0.052 0.007 0.439 0.608
φ54 0.316 0.366 0.000 0.006 0.180 0.449
φ64 0.224 0.223 0.003 0.008 0.143 0.307
φ65 0.196 0.278 −0.001 0.006 0.095 0.299
φ87 0.444 0.207 0.053 0.004 0.370 0.522
φ97 0.239 0.164 −0.021 0.007 0.180 0.301
φ98 0.674 0.198 0.511 0.001 0.603 0.749

Note. The model is fit to the covariance matrix only. N = 80. In the inter-
est of saving space, the results for seven unique variances (φ11, · · · ,φ77) are
omitted. MLE = maximum likelihood estimates; SE = standard error esti-
mates; ωmax = the eigenvector associated with the largest eigenvalue of the
adjusted Hessian matrix; ωmin = the eigenvector associated with the small-
est eigenvalue of the adjusted Hessian matrix; LB (UB) = the lower (upper)
bound of perturbation for individual parameters hat yields .001 increase in
root mean square error of approximation.

estimates given in Table 3 of Kenny and Kashy (1992).
Original data were collected to measure three traits: admin-
istrative ability, ability to give feedback to subordinates,
and consideration when dealing with others. Each trait was
assessed by three methods—ratings by supervisors, self,
and subordinates—producing a 9 × 9 MTMM correlation
matrix. We reproduced the results in Table 3 of Kenny and
Kashy by fitting a CFA model with three correlated trait fac-
tors and correlated uniqueness. Trait factor variances were
fixed at unity for identification purposes. The model yields
χ2 (15, N = 80) = 18.698 and RMSEA = .056, which is
virtually identical within rounding errors with the original
result in Kenny and Kashy.

The second and third columns in our Table 3 present
the ML parameter estimates and the associated standard
error estimates, respectively. As can been seen, all of the
trait factor loadings (i.e., λ11, λ41, λ71, λ22, λ52, λ33, λ63,
λ93) are in general large and significant except λ82, which
is relatively small and only marginally significant. These
results can be viewed in support of convergent validity of
the three traits. Small to moderate factor correlations among

trait factors (ψ12, ψ13, ψ23) are indicative of adequate dis-
criminant validity among the three traits. There are nonzero
and statistically significant covariances among unique fac-
tors (i.e., φ21, φ32, φ87, φ98), reflecting the existence of
nontrivial method effects. Overall, according to conven-
tional standards, the results in Table 3 provide evidence that
the indicators are strongly related to their purported latent
construct (convergent validity), adjusting for the effects
of assessment method. Adequate discriminant validity is
evidenced by small to modest correlations among trait
factors.

The results of parameter influence studies are also consis-
tent with and supportive of such conclusions. The results of
the vector method, shown in Table 3, indicate that, accord-
ing to ωmax, a unique factor covariance φ98 is a member
in the group of influential parameters (i.e., φ88, φ99, φ98,)
offering supportive evidence for the existence of a nontriv-
ial method factor based on conventional standards. In ωmin,
the factor correlation between the first and the third traits
(ψ13) stood out as the least influential parameter, imply-
ing that changes in ψ13 will have little influence on model
fit. Examination of the perturbation bounds of ψ13, how-
ever, revealed that the absolute magnitude of the lower and
upper perturbation bounds is not too large to threaten the dis-
criminant validity of the first and the third traits. The upper
bounds of the other two correlations among trait factors (ψ12,
ψ23) also have moderate size of values, providing supportive
evidence for adequate discriminant validity among the trait
factors. The last two columns show the lower and upper per-
turbation bounds for all individual parameters, which are not
unreasonably wide, given a specified value of model deteri-
oration in terms of RMSEA perturbed by .001. Specifically,
the lower bounds of all factor loadings have reasonably large
values, even for statistically nonsignificant λ82, and thus sup-
port the adequate convergent validity of the purported trait
factors.

Figure 2 presents IMSP-A (solid line) and IMSP-B (dot-
ted line) for four selected parameters (λ63, λ93, ψ12, and
ψ13) with perturbation bounds of each parameter marked
on IMSP-B. It is noteworthy that IMSP-A and IMSP-B
are virtually identical in the neighborhood of the ML esti-
mate of each parameter for the selected parameters (and all
others not presented here), highlighting the quality of the
approximation used in the single parameter method.

This example demonstrates how the results of param-
eter influence analysis can be combined with con-
ventional statistical standards in establishing conver-
gent and discriminant validity for measures of psy-
chological constructs. In this example, construct valid-
ity (convergent and discriminant) of the purported con-
structs is evidenced by the results of parameter influ-
ence studies (i.e., sensible perturbation bounds) as well
as by the conventional statistical standards (i.e., statistical
significance).



PARAMETER INFLUENCE IN SEM 111

0.80 0.85 0.90 0.95 1.00
λ63

0.2370

0.2375

0.2380

0.2385

0.2390

0.2395

FML

LB = 0.83 MLE = 0.9 UB = 0.98

(a)

0.65 0.70 0.75 0.80
λ93

0.2370

0.2375

0.2380

0.2385

0.2390

0.2395

FML

LB = 0.67 MLE = 0.73 UB = 0.79

(b)

0.40 0.45 0.50 0.55
ψ21

0.2370

0.2375

0.2380

0.2385

0.2390

0.2395

0.2400

FML

LB = 0.4 MLE = 0.48 UB = 0.55

(c)

−0.05 0.00 0.05 0.10
ψ31

0.2370

0.2375

0.2380

0.2385

0.2390

0.2395

FML

LB = −0.04 MLE = 0.02 UB = 0.08

(d)

ε = 0.057^ ε = 0.057^
ε = 0.057^ ε = 0.057^

ε = 0.057^
ε = 0.057^

ε = 0.057^ε = 0.057^

FIGURE 2 Influence mappings for single parameters. (a) IMSP for λ63. (b) IMSP for λ93. (c) IMSP for ψ12. (d) IMSP for ψ13.

Note. In each of the four panels, the solid and dotted curves represent IMSP-A and IMSP-B, respectively. IMSP-A is obtained by refitting the model at every
perturbed value of the focal parameter, whereas IMSP-B is obtained by adjusting the nuisance parameters using Equation 12 without refitting the model. The
lower bound (LB) and upper bound (UB) of perturbation to yield root mean square error of approximation increase by .001 are marked on IMSP-B for each
parameter. MLE = maximum likelihood estimates.

Lance et al. (2002) Data Set

As the second example, we conducted parameter influence
analysis on the results given in Table 3 in Lance, Noble,
and Scullen (2002). Original data were collected to mea-
sure three traits: receptiveness to individual and cultural
differences, consideration for the feelings and needs of oth-
ers, and adaptability in varying environment. Each trait
was assessed by three methods—situational interview, in-
basket, and biodata—producing a 9 × 9 MTMM correlation
matrix.

The results are reproduced in Table 4. Parameter estimates
are slightly different from the original published results due
to the fact that the model is fitted to the correlation matrix
provided by Table 1 in Lance et al. (2002), rather than to the
original raw data matrix. However, the exact reproduction of
the original parameter estimates is not critical because the
main objective of this illustration is to demonstrate the effec-
tiveness of the parameter influence studies in interpreting the
parameter estimates in a given (well-fitting) model.

Table 4 shows parameter estimates obtained by fitting a
CFA model with three correlated trait factors and correlated
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TABLE 4
Parameter Estimates, Standard Errors, and the Results of

Parameter Influence Analysis for Lance et al. (2002) Example

Parameter MLE SE ωmax ωmin LB UB

λ11 0.302 0.096 0.002 −0.053 0.043 0.571
λ41 0.718 0.144 0.003 0.048 0.392 1.098
λ71 0.219 0.094 −0.001 −0.216 −0.037 0.486
λ22 0.427 0.092 −0.006 −0.026 0.171 0.689
λ52 0.616 0.106 −0.009 0.015 0.338 0.914
λ82 0.309 0.092 0.034 −0.193 0.054 0.568
λ33 0.478 0.095 −0.006 −0.014 0.217 0.745
λ63 0.581 0.102 −0.005 0.030 0.311 0.869
λ93 0.137 0.095 −0.003 −0.922 −0.129 0.400
ψ12 0.739 0.162 0.006 −0.071 0.327 1.000
ψ13 0.736 0.164 0.003 −0.076 0.315 1.000
ψ23 0.911 0.144 −0.077 −0.040 0.537 1.000
φ88 0.902 0.102 0.628 0.018 0.665 1.243
φ99 0.981 0.105 0.658 0.018 0.739 1.338
φ21 0.169 0.073 0.000 0.093 −0.018 0.380
φ31 0.239 0.073 −0.003 0.052 0.054 0.458
φ32 0.171 0.075 −0.005 0.096 −0.026 0.387
φ87 0.230 0.074 −0.029 0.054 0.044 0.451
φ97 0.216 0.075 −0.011 0.061 0.027 0.437
φ98 0.380 0.078 −0.402 0.050 0.188 0.627

Note. The model is fit to the covariance matrix only. N = 180.
In the interest of saving space, the results for seven unique variances
(φ11, · · · ,φ77) are omitted. MLE = maximum likelihood estimates; SE =
standard error estimates; ωmax = the eigenvector associated with the largest
eigenvalue of the adjusted Hessian matrix; ωmin = the eigenvector asso-
ciated with the smallest eigenvalue of the adjusted Hessian matrix; LB
(UB) = the lower (upper) bound of perturbation for individual parameters
that yields .001 increase in root mean square error of approximation.

uniqueness to the 9 × 9 MTMM correlation matrix.3 This
model fits the data very well, χ2 (18, N = 180) = 10.349
with RMSEA = .000. According to conventional practice,
the estimated factor loadings suggest that there is convergent
validity in assessing the three traits: All but one estimated
factor loading (i.e., λ93) are statistically significant, and some
of these are large by conventional standards. The estimated
factor correlation of .91 between the second and third traits
(ψ23), however, indicates that these two trait factors are
strongly intercorrelated, implying poor discriminant validity.
The correlations of .74 between the first and second traits
(ψ12) and between the first and third traits (ψ13) can be a
source of argument regarding whether or not the associated
traits have adequate discriminant validity. Clearly neither
statistical significance nor the size of coefficient provides a
clear-cut standard to resolve the interpretation of results.

In this situation, results from parameter influence analy-
sis can provide an effective and principled way to determine
whether the two associated traits having the correlation of

3Readers who are interested in the characteristics of the original data
set are referred to Lance et al. (2002). The model we fitted had corre-
lated uniqueness only for two methods (situational interview and biodata),
rendering the degrees of freedom equal to 18.

.74 have adequate discriminant validity. Specifically, the
upper bounds of the three factor correlations indicate that the
factor correlations can each take the value of 1.00 and still
yield the model’s RMSEA being less than .001. Figures 3a
and 3b present the IMSP for ψ12 and ψ13 with lower and
upper perturbation bounds yielding RMSEA of .001 marked
on IMSP-B (dotted lines).4 It can be seen that the upper per-
turbation bounds of 1.00 for ψ12 and ψ13 yield an RMSEA
of .000. These results provide strong evidence of poor
discriminant validity among the three traits.

In addition, the results of parameter influence studies on
the factor loadings also call into question the convergent
validity of the purported traits. That is, lower bounds of
most factor loadings approach or include zero, and yet yield
RMSEA of .001. Figures 3c and 3d present the IMSP for two
selected factor loadings, λ82 and λ93, with lower and upper
perturbation bounds yielding an RMSEA of .001 marked on
IMSP-B (dotted lines). It can be seen that the lower pertur-
bation bound for λ82 is small and close to zero and the lower
pertubation bound for λ93 is negative. The result of the vector
method also indicates that, according to ωmin, the factor load-
ings λ71, λ82, and λ93 are, as a group, uninfluential on model
fit. These results provide critical and converging information
when determining the quality of measurements.

In this example, construct validity of the purported psy-
chological constructs was not supported by the results of
parameter influence analysis (i.e., unfavorable perturbation
bounds), despite being evidenced by conventional statisti-
cal standards (i.e., statistical significance). This particular
example clearly demonstrates that researchers could bene-
fit from considering results of parameter influence studies,
in addition to conventional statistical standards, to arrive at
appropriate interpretations of optimal parameter estimates
even if they are embedded in a well-fitting model.

DISCUSSION

In this article, we have described and illustrated two methods
for examining parameter influence in the context of SEM.
First, we illustrated that the vector method, originally pro-
posed by Lee and Wang (1996), can be useful in finding a
direction of simultaneous perturbation of all parameters and
identifying a group of influential parameters. We also illus-
trated that the vector method could be extended in such a
way that a group of least influential parameters is identified
by examining the eigenvector associated with the small-
est eigenvalue for the adjusted Hessian matrix. Next, we
proposed the single parameter method and demonstrated
that this new method can be effectively employed to mea-
sure the influence of individual parameters separately. Using

4This example shows again that IMSP-A (solid curves) and IMSP-B are
virtually identical in the vicinity of the optimal parameter estimates.
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FIGURE 3 Influence mappings for single parameters. (a) IMSP for ψ12. (b) IMSP for ψ13. (c) IMSP for λ82. (d) IMSP for λ93.

Note. In each of the four panels, the solid and dotted U curves represent IMSP-A and IMSP-B, respectively. IMSP-A is obtained by refitting the model at every
perturbed value of the focal parameter, whereas IMSP-B is obtained by adjusting the nusiance parameters using Equation 12 without refitting the model. The
lower bound (LB) and upper bound (UB) of perturbation to yield root mean square error of approximation increase by .001 are marked on IMSP-B for each
parameter. MLE = maximum likelihood estimates.

empirical data sets, we illustrated that parameters with wide
perturbation bounds containing theoretically unreasonable
values and yet exercising little negative impact on model fit
should not be interpreted or used in the literal sense even if
the corresponding parameter estimates are statistically sig-
nificant. We also showed that the two methods complement
each other in the analysis of parameter influence.

Although not explicitly discussed in detail in the body of
the article, the perturbation bounds for individual parame-
ters can be regarded as an alternative metric for quantifying
uncertainties involved in parameter estimation. Uncertainties

of estimated parameters have conventionally been quan-
tified via estimating standard errors associated with the
parameter estimates. The standard error estimates provide
a measure of sampling error over the repeated sampling in
terms of the expected distance between estimates and the
corresponding true parameter values. On the other hand,
perturbation bounds of individual parameters can be con-
sidered as an alternative measure of parameter uncertainty
in that they quantify a different aspect of uncertainty in the
estimated parameters. That is, parameter influence measures
uncertainties of the optimal parameter estimates in a given
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sample with respect to sensitivity to the change in model fit.
As shown in the illustrative examples, the results of parame-
ter influence studies, as an alternative measure of parameter
uncertainty and in conjunction with the conventional mea-
sure of sampling variability, can provide important adjunct
information regarding whether or not parameter estimates
can be interpreted in a rigorous or literal sense when they
are embedded in a well-fitting model.

We suggest that routine use of results of parameter influ-
ence analyses could be highly informative in applications of
SEM. In this regard, we, the authors, consider developing
a user-friendly computational mechanism (e.g., SAS-macro
or R-package) that will automate the analysis of parameter
influence in SEM.
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