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Model-based multiple imputation has become an indispensable method in the

educational and behavioral sciences. Mean and covariance structure models

are often fitted to multiply imputed data sets. However, the presence of multiple

random imputations complicates model fit testing, which is an important aspect

of mean and covariance structure modeling. Extending the logic developed by

Yuan and Bentler, Cai, and Cai and Lee, we propose an alternative method for

conducting multiple imputation–based inference for mean and covariance struc-

ture modeling. In addition to computational simplicity, our method naturally

leads to an asymptotically chi-square model fit test statistic. Using simulations,

we show that our new method is well calibrated, and we illustrate it with analyses

of three real data sets. A SAS macro implementing this method is also provided.

Keywords: multiple imputation; plausible values; structural equation modeling;

goodness-of-fit test

Introduction

Model-based multiple imputation is widely accepted as one of the most flex-

ible methods for handling missing data in a variety of applied research settings

(Allison, 2001; Little & Rubin, 1987; Schafer, 1997). The formulas that combine

point estimates and standard errors across multiple imputations have become

familiar sights to educational and behavior scientists. The concept of replacing

unobserved values by random draws from their proper posterior predictive distri-

butions has not only fundamentally changed how methodologists and statisticians

deal with missing observations in data collection and study design but also exerted

far-reaching influence on statistical modeling and computation involving latent

variables. After all, latent variables and missing data are synonymous.

As an inferential framework, multiple model-based imputation is extremely

general. This generality stems from the usefulness of a missing data formulation

popularized by the seminal paper on expectation-maximization (EM) algorithm

by Dempster, Laird, and Rubin (1977). Unlike full likelihood–based methods
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that often require significant amount of tailored development for each new spe-

cialized condition, with the availability of proper multiple imputations, the com-

plete data modeling and estimation problems are often remarkably simple. This is

most naturally illustrated by the multiple imputation methods for the treatment of

survey nonresponse, but it is one of a number of contexts in which imputation is

used as a critical device to obtain statistical adjustments that would otherwise be

too complicated for routine application. We mention below two seemingly unre-

lated examples simply to highlight the fact that even though a bulk of our subse-

quent theoretical and empirical investigations will focus on missing observations

in mean and covariance structure modeling, the approach we took can be equally

palatable to other contexts in which imputations are required, even if no observa-

tion is apparently missing.

First, consider the plausible value methodology (see e.g., Mislevy, Beaton,

Kaplan, & Sheehan, 1992), which is one of the backbones of the statistical frame-

work employed in such large-scale educational assessment systems as the

National Assessment of Educational Progress (NAEP) or Program for Interna-

tional Student Assessment (PISA). These assessments tend to focus on group-

level (e.g., gender, ethnicity, country, etc.) inferences, but the individual students

that make up the groups are usually administered few test items due to the com-

plex study designs that are geared toward obtaining more efficient group-level

inferences. This results in substantial uncertainty in the individual students’ test

scores. The simple aggregation of student scores yields statistically inconsistent

group-level estimates. Glossing over a number of important details, at the end,

the plausible values are multiple imputations based on a regression model that

properly reflects the uncertainty in individual students’ scores so that consistent

group-level inferences can be drawn. Proper analysis of data sets containing

plausible values requires the same tools as in multiple imputation for handling

missing observations.

Next, consider Stuart and Rubin’s (2008) matching method for estimating

causal effects from observational data. In their approach, they proposed that one

may construct a matched control group from multiple sources of control units

when the original control group does not provide enough overlap with the treated

group on observed covariates. Having more than one source of control units may

introduce bias in estimated average treatment effect. To combat this potential

bias, Stuart and Rubin relied on a regression-based multiple imputation

procedure. Again, the analysis of the multiple sets of data requires the same basic

statistical tools for combining multiple imputations.

Rather independently of the multiple imputation literature (though exceptions

do exist, e.g., Rubin & Thayer, 1982), mean and covariance structure modeling

(Browne & Arminger, 1995; Yuan & Bentler, 2007) has become one of the most

widely used statistical techniques in social and behavioral sciences. However,

when mean and covariance structure models must be fitted to multiply imputed

data sets, a number of difficulties arise. First, the standard multiple imputation

Alternative Multiple Imputation Inference

676



inferential procedure of analyzing each imputation data set separately and com-

bining the point estimates and standard errors at the very end is cumbersome at

best. In practice, the researcher usually must fit a series of models to explore spe-

cification, to compare their fit, and to examine their relative substantive interpret-

ability. In each step, a variety of statistical and heuristic indices are examined to

guide the next move. If there are 20 imputation data sets, the researcher must

carry 20 replications in each step of the search for model specification, a daunting

task especially when some of the indices consist of entire matrices of numbers

(e.g., residual correlations). Automated procedures (e.g., PROC MIANALYZE

in SAS) for combining multiple imputation results may only alleviate some of

the burden. Second, even setting the cumbersomeness aside, the standard proce-

dure does not provide an overall model fit statistic, which forms the basis of

model fit assessment in mean and covariance structure modeling. Current

suggestions (e.g., Allison, 2001; Meng & Rubin, 1992) are either not accurate

enough (see e.g., Allison, 2003) or require computations that are cumbersome

and nonstandard, at least insofar as mean and covariance structure modeling is

concerned. Moreover, the performances of those suggestions have not been

evaluated in the context of mean and covariance structure modeling. Indeed,

we view, as a serious drawback of the standard multiple imputation inferential

procedure, the lack of a principled way for computing popular fit indices such

as root mean square error of approximation (RMSEA; Browne & Cudeck,

1993), or incremental indices such as Tucker–Lewis index (TLI; Tucker &

Lewis, 1973). Third, the current multiple imputation procedures are focused

on obtaining corrected final parameter estimates and standard errors and do not

encourage publishing enough intermediate results (e.g., mean vector and

covariance matrix), so that the other researchers can replicate or meta-analyze

the findings more easily. Cai and Lee (2009) also make this point.

In response to the technical difficulties, we propose a new two-stage proce-

dure for conducting multiple imputation inference for mean and covariance

structure modeling. We note that this research is not on how to build proper

imputation models to produce multiple imputations. In the subsequent theoretical

derivations, we also purposively make no distinction between the kinds of

imputations involved, for example, missing observations, plausible values,

adjustments to potential outcomes, and so on. We will treat the imputations as

given and focus on statistical inference with the multiple imputations.

The guiding insight of our new approach is that at least for standard mean and

covariance structure modeling, the combination of multiple imputations can

occur in the beginning, before any structural models are even fitted. The under-

lying statistical theory is a direct extension of the results obtained by Yuan and

Bentler (2000), Cai (2008), and Cai and Lee (2009) for the deterministic EM

algorithm. The new procedure is computationally simple because once the

imputations are combined, the structural equation modeler is back in the familiar

territory of working directly with summary statistics such as the means and

Lee and Cai

677



covariances. We develop an asymptotically chi-square distributed overall model

fit statistic based on Browne’s (1984) residual-based test (Proposition 4) that can

also be used naturally as a basis for additional fit indices.

Sometimes the use of multiple imputations is unavoidable (e.g., dealing with

plausible values), but even when there is a choice, we argue that the flexibility

afforded by multiple imputation can be decidedly advantageous. Full-information

maximum likelihood (FIML; Anderson, 1957; Arbuckle, 1996) is an often recom-

mended alternative estimation strategy for mean and covariance structure model-

ing when some observations are missing. Under Rubin’s (1976) classification

system of the types of missing data, FIML enjoys desirable large sample

optimal properties when data are missing at random and the missing data

mechanism is ignorable. Despite the asymptotic optimality, we show that our

new procedure performs practically as well as the asymptotically optimal

FIML estimator in finite sample sizes. In contrast to FIML, one of the key

benefits of multiple imputation lies in the relative ease of including into the

imputation model variables that are not part of the structural model, but are

related to the missing data mechanism. Therefore, when data are not missing

at random and the missing data mechanism is non-ignorable, which is argu-

ably more realistic, our new procedure can easily reap the benefit of alterna-

tive multiple imputation systems that directly model the missing data

mechanism without requiring significant change to how mean and covariance

structure analysis is conducted in practice.

The remainder of the article is organized as follows. We will begin with some

technical development to clarify the details of the new estimator and the assump-

tions that we are making. We will then use simulation studies to illustrate the per-

formance of the new procedure relative to the FIML estimator and the standard

multiple imputation inferential procedure in the context of missing responses.

We apply the new procedure to the analysis of several well-known real data sets.

We will conclude by noting the limitations of our new approach.

Notation and Existing Methods

A Mean and Covariance Structure Model

Throughout this article, we will assume that we are working with a multivari-

ate normal data matrix Y with N independent rows and n variables. If the ith row

of Y is y0i, then yi follows a n-dimensional multivariate normal distribution with

mean μ and covariance matrix �. Let ω ¼ [μ0,vech(�)0]0, where the operator

vech(�) stacks the nðnþ 1Þ=2 unique elements of a symmetric matrix. Clearly,

the dimension of ω is d ¼ nþ nðnþ 1Þ=2. For these moments, consider a struc-

tural model:

ωðθÞ ¼ μðθÞ
vech½�ðθÞ�

� �
; ð1Þ

Alternative Multiple Imputation Inference

678



where θ 2 Θ is a q-dimensional vector of free parameters in a subset of Rq.

A typical example of a mean and covariance structure model is the extended

factor analytic simultaneous equation model employed in the LISREL frame-

work (Jöreskog & Sörbom, 2001). In LISREL, one may represent the measure-

ment model for the ith case as

yi ¼ τθ þ�θηi þ εi; ð2Þ

where ηi is a p� 1 vector of latent common factors that are orthogonal to the n

unique factors in εi. Let the unique factors have zero means and covariance

matrix �θ. The parameter matrices τθ and �θ contain the measurement intercepts

and factor loadings, respectively. We use the subscript θ to explicitly denote the

dependence of the parameter matrices on the vector of free parameters. The

structural equations are defined as

ηi ¼ αθ þ Bθηi þ ζi; ð3Þ

where ζi is a p� 1 vector of equation disturbance terms that have zero means and

covariance matrix �θ, and is orthogonal to εi by implication. A rearrangement of

Equation 3 leads to ηi ¼ Aθ αθ þ ζi½ �, where Aθ ¼ Ip � Bθ
� ��1

. One has to

assume that the difference between the identity matrix and the regression coeffi-

cient matrix B is invertible. When substituted into Equation 2, the reduced form

equation is

yi ¼ τθ þ�θAθ αθ þ ζi½ � þ εi: ð4Þ

Taking expectations, we see that the model implies a linear mean structure

μðθÞ ¼ EðyiÞ ¼ τθ þ�θAθαθ: ð5Þ

The implied covariance structure model is

�ðθÞ ¼ varðyiÞ ¼ �θAθ�θA0θ�0θ þ�θ: ð6Þ

The joint mean and covariance structure model is obviously

ω θð Þ ¼ μðθÞ
vech½�ðθÞ�

� �
¼ τθ þ�θAθαθ

vech �θAθ�θA0θ�0θ þ�θ
� �� �

: ð7Þ

The exact form of the structural equation model is not essential here. Equation

7 is merely one of the many instantiations of the general mean and covariance

structure model given in Equation 1. Other formulations (e.g., the Bentler-

Weeks model) can be used. For our purposes, the model in Equation 7 is

sufficient.

Estimation and Inference Under Standard Conditions

If there are no missing data in Y or if variables in Y do not involve complexities

such as more than one set of imputations, we can use standard software programs
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such as PROC CALIS in SAS to estimate θ from the sample summary statistics.

Let the sample estimates of the mean vector and the covariance matrix be

μ̂ ¼ 1

N

XN

i¼1

yi; ð8Þ

and

�̂ ¼ 1

N � 1

XN

i¼1

ðyi � μ̂Þðyi � μ̂Þ0; ð9Þ

respectively. We define ω̂ ¼ μ̂0; vech �̂
� �0h i0

.

In practice, estimation is typically accomplished by invoking the multivariate

normality assumption of yi and minimizing the following maximum likelihood

discrepancy function (see e.g., Yuan & Bentler, 2007):

Fðθ; ω̂Þ ¼ trf�̂½�ðθÞ��1g � log j�̂½�ðθÞ��1j � nþ ½μ̂ � μðθÞ�0½�ðθÞ��1½μ̂ � μðθÞ�:
ð10Þ

The minimizer of Fðθ; ω̂Þ is the maximum likelihood estimator of the struc-

tural parameters, and we denote it as

θ̂ ¼ arg min
θ2Θ

Fðθ; ω̂Þ: ð11Þ

Under appropriate conditions, it is consistent, asymptotically normal, and

asymptotically efficient. Furthermore, the statistic

TF ¼ ðN � 1ÞFðθ̂; ω̂Þ; ð12Þ

is distributed in large samples as a central chi-square variable with d � q degrees

of freedom, if the model is specified correctly. The second derivative matrix of

the discrepancy function can be used to construct a large sample covariance

matrix of the estimates.

Conventional Multiple Imputation Estimation and Inference

If missing values are present, or if some or all variables in Y have more than

one copy of imputations, estimation of θ can be carried out in the following man-

ner. First, either the researcher would produce (M > 1) multiply imputed data

sets, denoted as Y1; . . . ;YM , or the M data sets have already been pre-

imputed, for example, in the case of plausible values in surveys. The mean and

covariance structure model is then fitted to each imputation. The point estimates

and standard errors are aggregated at the end.

In brief, consider the mth imputation (or plausible value) Ym, m ¼ 1; . . . ;M .

Based on this complete data set, we can easily compute the sample mean vector

and sample covariance matrix using Equations 8 and 9. Denote the sample mean
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vector and covariance matrix based on the mth imputation as μ̂m and �̂m, respec-

tively. Then for each imputation, we can define a maximum likelihood discre-

pancy function for our mean and covariance structure model Fðθ; ω̂mÞ, where

ω̂m ¼ ½μ̂0m0 ; vechð�̂mÞ0�0. Minimization of Fðθ; ω̂mÞ leads to the parameter esti-

mate based on the mth imputation. Let us denote it as θ̂m. At the same time,

we also obtain a covariance matrix of θ̂m as a by-product. Let us denote it as

Um ¼ varðθ̂mÞ.
Standard multiple imputation formulas can be used to combine the point esti-

mates and variability information (Schafer, 1997). The final point estimate is the

average of the multiple imputation estimates: �θ ¼ M�1
PM

m¼1 θ̂m, and the multi-

ple imputation variance approximation is ð�θÞ ¼ �U þ ð1þM�1ÞV , where

�U ¼ M�1
PM

m¼1 Um is the average of the within-imputation covariance matrices

and V ¼ ðM � 1Þ�1PM
m¼1ðθ̂m � θÞðθ̂m � θÞ0 is the between-imputation compo-

nent. This provides the basis for conducting Wald tests involving the structural

parameters in θ as well as construction of confidence intervals.

For combining likelihood ratio goodness-of-fit test statistics, we may use the

two statistics D2 and D3 proposed by Li, Meng, Raghunathan, and Rubin (1991)

and Meng and Rubin (1992), respectively. In essence, D2 is based on

M�1
PM

m¼1 Fðθ̂m; ω̂mÞ, the average of the minimum fit-function value in each

of the M imputed data sets, while D3 requires additionally

M�1
PM

m¼1 Fð�θ; ω̂mÞ, the average of the fit-function values evaluated at �θ, and

M�1
PM

m¼1 Fð~ω; ω̂mÞ, where ~ω ¼ M�1
PM

m¼1 ω̂m. Approximations based on the

F-distribution are constructed. The approximate degrees of freedom can vary as a

function of the number of imputations, the model’s degrees of freedom, and the

fraction of missing information.

Conventional FIML Estimator

As mentioned earlier, full-information maximum likelihood (Arbuckle, 1996)

is a popular estimation method for mean and covariance structure models under

ignorable missing data. In normal theory FIML estimation, an individual case’s

contribution to the log likelihood can be defined as

log LðθjyiÞ / �
1

2
log jDi�ðθÞD0ij �

1

2
½Diyi � DiμðθÞ�0½Di�ðθÞD0i�

�1½Diyi � DiμðθÞ�;

ð13Þ
where Di is a selection matrix that depends on the missing data pattern in yi. In gen-

eral, Di consists only of zeros and ones. It has n columns, and as many rows as there

are observed variables yi. It can be obtained by removing rows of an n� n identity

matrix when the corresponding rows in yi are missing. For instance, consider three

observed variables, yi1, yi2, and yi3. If yi2 is missing, then the selection matrix is
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Di ¼
1 0 0

0 0 1

� �
:

This is obtained by removing the second row of a 3� 3 identity matrix. Premul-

tiplication of yi by Di results in the subset of yi that is observed, and DiμðθÞ effec-

tively selects the part of the mean vector for which observation i can contribute

information. Similarly, Di�ðθÞD0i is the subset of �(θ) that corresponds to the

observed portion of yi. When yi contains no missing values, Di is an identity

matrix and Equation 13 becomes the usual multivariate normal log likelihood

function. The estimator is called full-information because it utilizes all available

observations in the data matrix Y. In the next step, the individual log likelihoods

are summed up to obtain the log likelihood of the full sample

log LðθjYÞ /
XN

i¼1

log LðθjyiÞ: ð14Þ

The FIML estimator directly maximizes the log-likelihood function in Equation

14 to obtain the structural model parameter estimates. Let this maximum be

denoted θ
^

. Minus one times the inverse of the second derivative matrix of

log LðθjYÞ, when evaluated at θ
^

provides a large sample covariance matrix of the

parameter estimates. FIML estimation is implemented in major structural equa-

tion modeling software packages.

The FIML estimator also naturally leads to a chi-square distributed fit statistic

based on likelihood ratio comparisons. The above FIML log likelihood can be

used to obtain an unstructured/saturated maximum likelihood estimate of the

mean vector and covariance matrix under missing data. Let the saturated estimate

of the mean vector be denoted μ^ and the saturated covariance matrix be �
^

. The

following statistic

TFIML ¼ �2½log Lðθ
^

jYÞ � log Lðμ^;�
^

jYÞ� ð15Þ

is asymptotically distributed as a central chi-square variable with d � q degrees

of freedom when the structural model is correctly specified.

The New Two-Stage Estimator

The conventional multiple imputation procedure outlined previously is ideal

for such modeling frameworks as linear regression analysis where the focus is

on estimating and testing parameters. For reasons discussed earlier in the

introduction section, it can be ill-suited to the practice of mean and covariance

structure modeling. We shall call our new estimator the Multiple Imputation Two

Stage (MI2S) estimator. As opposed to the standard practice of conducting sep-

arate structural analysis before combining the inferences, in MI2S, we combine

the multiple imputations first and then estimate the structural parameters. By
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adapting a theorem (Proposition 4) proposed by Browne (1984), an asymptoti-

cally chi-square goodness-of-fit test statistic can be constructed.

Stage One: Combining Multiple Imputations

We assume the availability of M properly imputed data sets, Y1; . . . ;YM . By

proper, we mean that the imputations are based on a well-constructed imputation

model that includes key variables properly accounting for the missing data

mechanism. In addition, if the Markov chain Monte Carlo (MCMC) method is

required to produce the imputations, we assume that necessary numerical precau-

tions have been exercised so that the imputations are drawn from an MCMC sam-

pler after a sufficiently long burn-in period and that appropriate subsampling is

taken so that the imputations are approximately uncorrelated. In other contexts,

for example, plausible values, the imputations are already given, and we assume

that they are proper. For the MI2S estimator in this article, we make an additional

assumption that the imputations are produced by a multivariate normal imputa-

tion model (see e.g., Schafer, 1997). We note that this assumption is made when

one uses the popular imputation software program SAS PROC MI.

Consider imputation m. From the complete data set Ym, we can easily compute

estimates of the mean vector μ̂m and the covariance matrix �̂m as per Equations 8

and 9. Writing the estimate of ω from imputation m as ω̂m ¼ ½μ̂0m0 ; vechð�̂mÞ0�0, the

combined estimate of ω across the M imputations is the average

~ω ¼ 1

M

XM
m¼1

ω̂m: ð16Þ

The above equation is nothing more than a direct application of the standard

multiple imputation combination rule to the unstructured/saturated first- and

second-order moments of the complete data.

In essence, Equation 16 is a stochastic counterpart of the deterministic EM

algorithm for handling missing data in the multivariate normal model (Dempster

et al., 1977). EM produces maximum likelihood estimates of the unstructured/

saturated first and second order moments based on the observed data. Here, the

estimation of ω eschews EM in favor of multiple random imputations. We

believe that this is a more flexible method than the EM algorithm. For example,

when multiple sets of plausible values are present, Equation 16 easily produces

the combined estimates of means and covariances, whereas the EM algorithm

would be entirely useless because the data sets containing the plausible values

do not have missingness.

Under multivariate normality of the complete data model, we can obtain the

following estimate of the complete data Fisher information matrix based on

imputation m
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Fðω̂mÞ ¼
�̂�1

m 0

0 1
2

K0nð�̂
�1
m � �̂�1

m ÞKn

 !
; ð17Þ

where Kn is the n2 � nðnþ 1Þ=2 duplication matrix as defined in Schott (1997).

The covariance matrix of ω̂m is equal to N�1½Fðω̂mÞ��1
. Again applying standard

multiple imputation variance formula, we have an estimate of the covariance

matrix of ~ω

varð~ωÞ ¼ N�1 ~� ¼ 1

M

XM
m¼1

1

N
½Fðω̂mÞ��1

" #
þ 1þM�1

M � 1

XM
m¼1

ðω̂m � ~ωÞðω̂m � ~ωÞ0
" #

: ð18Þ

The form of N�1 ~� has a natural interpretation. If there are no missing data, or

equivalently stated, if there is no between-imputation variability due to missing

information, ~� solely depends on the multivariate normal theory Fisher informa-

tion matrix—the first component in square brackets. If there is missing informa-

tion, the between-imputation component captures the added uncertainty due to

missing data—the second set of square brackets. Note that Equations 17 and

18 are based on the multivariate normality assumption. Therefore, ~� is a

model-based estimate of the covariance matrix of ~ω. This point will subsequently

be important because having a model-based covariance matrix for ~ω requires

substantially smaller sample size to achieve stable estimation and inference for

the structural parameters of interest.

A basic tenet of the theory behind multiple imputation is that if the imputations

are proper, and if M is large, ~ω provides a consistent estimate of ω (Rubin, 1996).

Furthermore, when M is large, the limiting distribution of
ffiffiffiffi
N
p
ð~ω � ωÞ is normal,

with zero means, and an asymptotic covariance matrix that can be consistently esti-

mated by ~�. Thus, similar (in spirit) to Cai and Lee’s (2009) two-stage estimator

wherein the first stage is based on the EM algorithm, we can use ~ω directly in

discrepancy function based estimation of the structural parameters in θ.

Stage Two: Estimation and Inference

More formally, for the mean and covariance structure model ωθ, we define

the MI2S estimator of θ as

~θ ¼ arg min
θ2Θ

Fðθ; ~ωÞ; ð19Þ

where Fðθ; ~ωÞ is the maximum likelihood discrepancy function as defined in

Equation 10. Because ~ω is a consistent estimate of ω as M tends to infinity, and

the estimating equations defined by the maximum likelihood discrepancy func-

tion is unbiased, the resulting two-stage estimator ~θ should be consistent and

asymptotically normal, which can be shown using Yuan and Jennrich’s (1998)

asymptotic distribution theory for generalized estimating equations.
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A comparison of Equations 11 and 19 clearly reveals the fact that the multiple

imputation estimate of means and covariances ~ω serves essentially the same role

as sample means and sample covariances (i.e., ω̂) in standard complete data esti-

mation. There is, however, one hidden problem. One would naturally hope that

N � 1 times the minimum discrepancy function value

TM ¼ ðN � 1ÞFð~θ; ~ωÞ ð20Þ

is similarly distributed as a chi-square variable, but as Yuan and Bentler (2000)

noted, in general this is not true. Due to the presence of multiple imputations, the

asymptotic covariance matrix of ~ω is not of a standard form that is assumed in the

maximum likelihood discrepancy function. Equation 18 makes this point amply

clear. While the first part of ~� (the within-imputation variance) comes from stan-

dard multivariate normal theory, the second part (the between-imputation var-

iance) depends on the variability of the imputations, which is a function of the

fraction of missing information. Thus, in general, the discrepancy function

Fðθ; ~ωÞ is not correctly specified (in the sense of Browne, 1984). According to

the theory developed in Yuan and Bentler (2000), when the discrepancy function

is not correctly specified, though the estimator itself may still be consistent and

asymptotically normal, the test statistic TM is at best distributed as a mixture of

single degree of freedom chi-square variates.

A related problem is that the standard errors based on the second derivatives

of Fð~θ; ~ωÞ are also incorrect. They will in general be too small. An intuitive

explanation is as follows. The standard errors are related to sample size. The

larger N is, the smaller the standard errors are. However, when there is missing

information, the sample size associated with ~ω is no longer unequivocally equal

to N . The means and covariances analyzed in the second stage of MI2S are based

on less information than the number of cases N would suggest.

To remedy the situation, we apply Browne’s (1984) Proposition 4 to the con-

text of multiple imputation inference. Proposition 4 contains a residual-based test

statistic that is asymptotically chi-square for any consistent and asymptotically

normal estimator of θ. Let JðθÞ ¼ qωðθÞ
qθ be the d � q Jacobian of the mean and

covariance structure model. Under Browne’s (1984) regularity conditions, JðθÞ
should be of full column rank, so there exists a d � ðd � qÞ matrix JcðθÞ that

is an orthogonal complement of J(θ), such that ½JcðθÞ�0JðθÞ ¼ 0.

Under MI2S estimation, let ωð~θÞ be the model-implied moments. The residual

moments are simply e ¼ ~ω � ωð~θÞ. Furthermore, recall that ~� as defined in

Equation 18 is a d � d symmetric matrix that consistently estimates the limiting

covariance matrix of
ffiffiffiffi
N
p

~ω. Then, given H0 : ω � ωðθÞ ¼ 0 for some θ0 2 Θ
versus H1 : ω � ωðθÞ 6¼ 0 for any θ, the following goodness of fit (GOF)

statistic

TBM ¼ Ne0Γe ð21Þ
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is asymptotically distributed as a central chi-square variable with d � q degrees

of freedom under the null hypothesis, where Γ ¼ ½Jcð~θÞ� ½Jcð~θÞ�0~�½Jcð~θÞ�
	 
�1

½Jcð~θÞ�0. We emphasize that though TBM can be viewed as an application of

Browne’s (1984) Proposition 4, it is not the same as the asymptotically distribu-

tion free (ADF) test statistic to which the article is more famously associated. In

fact, TBM uses a weight matrix that is model-based, as opposed to the sample-

based weight matrix in Browne’s (1984) ADF statistic. As we will demonstrate

using simulations, the statistic works well even when N is as small as 100.

Following a result in Browne and Arminger (1995), the limiting covariance

matrix of the MI2S estimator
ffiffiffiffi
N
p
ð~θÞ can be consistently estimated as

½Jð~θÞ0~��1Jð~θÞ��1
, whose diagonal elements are the squared standard errors for

the structural parameter estimates. Finally, note that because of the chi-

squaredness of TBM and the fact that e0Γe does not explicitly depend on N, we

can compute the familiar RMSEA statistic (Browne & Cudeck, 1993), using e0Γe

as a discrepancy function value. Other fit indices, for example, the TLI, can be

computed similarly, given the availability of combined summary statistics in ~ω.

Simulation Studies

The simulation studies involve a series of comparisons involving the FIML

estimator, the standard multiple imputation inferential procedure, with the newly

developed MI2S estimator in the context of missing observations. For MI2S, the

multiple imputations are generated under the multivariate normal model with the

MCMC method. Specifically, we implement a data augmented Gibbs sampler

described by Schafer (1997). The starting values of the Gibbs sampler are

obtained by running an EM algorithm that produces the maximum likelihood

estimates of the unstructured means and covariances. The burn-in period of the

Gibbs sampler is set to 1,000 iterations. Throughout this section, M ¼ 20 impu-

tations are taken with a thinning interval of 200 iterations between each imputa-

tion. These numerical settings are quite conservative. For structural model

estimation, we use the default sequential quadratic programming solver in

GAUSS (Aptech Systems, Inc., 2003) to optimize the log likelihood or to

minimize the discrepancy function. The code for data generation, EM estimation,

MCMC imputation, FIML estimation, and discrepancy function–based model

fitting are entirely programmed in GAUSS.

Type I Error Rates

We conduct this study to show that the proposed MI2S fit test statistic TBM is

indeed chi-square distributed under the null hypothesis. The data generating pro-

cess is a confirmatory factor analysis (CFA) model with nine manifest variables

and three correlated factors. The generating factor loading matrix is
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�0 ¼
1:0 0:7 0:9 0 0 0 0 0 0

0 0 0 1:0 0:9 0:9 0 0 0

0 0 0 0 0 0 1:0 1:0 1:0

0
@

1
A;

where the underlined values are considered as fixed for the scale identification of

the latent factors. And the factor covariance matrix is

� ¼
0:6
0:4 0:9
0:3 0:2 0:5

0
@

1
A:

The unique factor variances are given by � ¼ diagð:7; :9; :5; :3; :4; :4; :6; :4; :5Þ.
For this model, q ¼ 21 free parameters make up θ. They are the six nonzero free

loadings, the six factor variances and covariances, and the nine unique variances.

Single-group factor analysis models do not have an explicit mean structure, and

the generating μ is taken as a null vector. The covariance structure model of

Equation 6 also simplifies to �ðθÞ ¼ ���0 þ�. The degrees of freedom is

equal to 24.

Complete multivariate normal data having the generating factor analysis

covariance structure are first simulated. To simulate missingness, the complete

data sets are then subject to two kinds of missing data mechanisms: missing

completely at random (MCAR) and missing at random (MAR). For the MCAR

condition, for each row in the simulated data matrix, a fair dice is rolled to decide

whether there should be any missing values. Next, for a case that is chosen to

contain missing observations, the values for the last three indicators are set to

missing. This leaves about 16% of all observations missing. This pattern may

occur in practice when a subset of individuals do not complete the questionnaire

by study design (planned missingness), for example, due to the high cost of

measuring all variables for all individuals.

For the MAR condition, the probability of missingness of the last three man-

ifest variables is set to be linearly related to the mean of the first six manifest

variables, say, Z. Specifically, we divided the distribution of Z into quartiles and

set the missingness probabilities for the four regions to (.50, .20, .075, .025).

Under this MAR condition, cases with lower values of Z have higher probabil-

ities of missingness on the last three variables, leaving about 20% of all cases

contain missing observations. As a benchmark, a condition with no missing data

(NOMIS) is also included.

The three missing data conditions (NOMIS, MCAR, and MAR) are crossed

with three sample sizes: N ¼ 100; 300; 500, resulting in nine simulation condi-

tions. In each condition, 1,000 replications are attempted. For each replication,

both the MI2S estimator and the FIML estimator are used to fit the CFA model.

Non-converged replications are discarded.

Because the fitted model is correctly specified, our hypothesis is that TBM

should be distributed as a central chi-square variable with 24 degrees of freedom
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regardless of the amount or kind of missing data. On the other hand, the naive fit

statistic TM (Equation 20) should not be chi-square distributed under MAR or

MCAR. Under MCAR and MAR, TFIML is also asymptotically chi-square distrib-

uted with the same degrees of freedom as TBM. Under NOMIS, both TFIML and

TM reduce to TF (Equation 12), and all statistics are distributed as central chi-

square variable with 24 degrees of freedom.

Table 1 presents a summary of the results of this simulation study. First, under

NOMIS, both TFIML and TBM are clearly behaving as they should. The means of

the empirical distribution of these two test statistics are very close to 24, which is

the theoretical expected value of a central chi-square variable with 24 degrees of

freedom. The variances are also close to the theoretical value of 48. The empiri-

cal Type I error rates at the .01, .05, and .10 levels closely follow the nominal

alpha level. While TFIML tends to be more liberal at a smaller N , TBM is more con-

servative. The performance of both TFIML and TBM appears to improve as sample

size increases. Next, for the MCAR condition, the naive test statistic TM is obvi-

ously not chi-square distributed. Its means and variances are too large, and the

empirical rejection rates are far above the nominal level. On the other hand, both

TFIML and TBM maintain adequate control over Type I error rates, and their mean–

variance relations much better approximate that of a central chi-square variable

with 24 degrees of freedom. The type I error rates of D2 and D3 are very close to

the nominal alpha level. We observe essentially the same phenomena under the

MAR condition. Our conclusion is that as far as Type I error rates are concerned,

the MI2S statistic TBM performs at least as well as TFIML, D2, and D3 across the

conditions examined. For relatively small sample sizes, TBM may even lead to a

slightly better calibrated test than TFIML, D2, or D3 when the data are MAR.

Power to Detect Model Misspecification

In this simulation, we deliberately mis-specify the fitted model so that we

may investigate the power of the MI2S statistic. The generating model is

essentially the same as the model used in the previous simulation study. The

only difference is that the generating model contains an extra parameter—a

cross-loading for the ninth indicator on the first factor l91 equaling :7. The

fitted model is still a three-factor CFA model, but it omits the cross-

loading as a free parameter. A relatively mild degree of misspecification is

chosen so that the Monte Carlo simulation can show more nuances of the

tests, especially at large N . The reference distribution of TFIML and FBM is

still central chi-square with 24 degrees of freedom. However, because of the

misspecification, the empirical distribution of the test statistics will not be

central chi-square distributed.

The missing data conditions remain the same as in the previous simulation

study (NOMIS, MCAR, and MAR). There are three sample size conditions:

100, 300, and 500. In each of the nine conditions, 1,000 replications are
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TABLE 1

Type I Error Rates

Significance Level

N Converged Statistic M Var Min Max 0.01 0.05 0.10

NOMIS

100 1000 TFIML 24.781 55.356 9.561 52.877 .018 .078 .136

TBM 22.975 41.906 9.969 43.998 .002 .030 .066

300 1000 TFIML 24.650 50.120 6.810 52.452 .004 .046 .124

TBM 23.973 47.337 6.814 52.472 .006 .038 .094

500 1000 TFIML 23.958 51.927 8.304 59.810 .008 .050 .088

TBM 23.607 49.473 8.553 60.703 .008 .044 .078

MCAR

100 1000 TFIML 25.409 50.248 8.299 48.459 .007 .072 .145

TM 29.457 71.189 10.725 58.731 .070 .214 .317

TBM 23.044 40.911 7.811 45.177 .003 .028 .064

D2 .007 .069 .156

D3 .013 .058 .125

300 1000 TFIML 24.100 49.869 8.103 48.459 .013 .066 .111

TM 28.266 72.197 8.670 60.163 .064 .157 .240

TBM 23.694 49.164 7.437 53.040 .013 .055 .095

D2 .014 .063 .109

D3 .016 .059 .110

500 1000 TFIML 24.208 47.453 9.157 55.986 .012 .045 .102

TM 28.324 65.597 11.558 62.001 .047 .154 .249

TBM 24.245 46.042 8.661 56.345 .009 .051 .095

D2 .008 .050 .102

D3 .013 .042 .094

MAR

100 1000 TFIML 25.434 55.990 9.565 54.813 .019 .087 .158

TM 29.509 78.706 9.887 64.771 .089 .207 .300

TBM 23.137 46.512 8.943 50.960 .007 .045 .097

D2 .026 .096 .172

D3 .021 .091 .141

300 1000 TFIML 24.557 46.944 8.864 49.969 .008 .057 .110

TM 28.831 67.573 10.450 59.723 .059 .174 .276

TBM 24.161 45.589 8.568 52.914 .006 .053 .098

D2 .006 .059 .110

D3 .005 .059 .105

500 1000 TFIML 23.997 43.973 8.681 49.240 .008 .042 .096

TM 28.235 61.816 10.305 55.509 .051 .151 .229

TBM 24.055 44.915 8.357 54.484 .005 .051 .097

D2 .004 .052 .096

D3 .009 .048 .093

Note: The entries in the ‘‘Converged’’ column refer to the number of converged replications in each

condition.
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attempted. For each replication, we compare the rejection rates of TBM with

TFIML at the .01, .05, and .10 nominal alpha levels.

Table 2 presents a summary of the simulation results. The trend is quite clear.

The test based on TBM is slightly less powerful than TFIML and D2 and D3, when N

is small. However, considering the mild degree of misspecification, TBM shows

acceptable levels of power, and the difference in power diminishes as N increases

to 300 and 500.

Bias and Variability

To take a closer look at the MI2S estimator, we examine the estimated relative

bias (RB) and root mean square deviation (RMSD) of the estimates from true

generating parameter values. We continue to use the same CFA data generating

model as in the first simulation study. The fitted model is correctly specified, so

in effect, we are examining parameter recovery. For a generic parameter θ, we

define estimated relative bias as

RB ¼ 1

L

XL

l¼1

θ̂l � θ
θ

;

where θ is the true value, L is the number of Monte Carlo replications (1,000 in

this case), θ̂l is the parameter estimate in replication l. We define RMSD as

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1

XL

l¼1

ðθ̂l � θÞ2
vuut :

Table 3 presents the true parameter values, RB, and RMSD for key parameters

(factor loadings and correlations) under MCAR when N is 100. Full results for

other conditions are available upon request, but in summary, FIML, MI2S, and

the standard multiple imputation method are all relatively unbiased in the condi-

tions examined. The maximum absolute value of RB never exceeded 6%.

Though MI2S is slightly more variable when N is small, presumably because

of the additional random imputation variability, its RMSDs are different from

those of the FIML and the standard multiple imputation estimators only in the

third decimal place when N is large.

Applications to Real Data

In this section, we illustrate the performance of the MI2S estimator with appli-

cations to three real data sets. We wrote a SAS macro fully implementing the

MI2S estimator and used it to obtain the results reported here. The macro and

data sets are freely available from http://lcai.bol.ucla.edu/. Its usage is documen-

ted in Appendix A. The first two applications highlight the fact that the MI2S

estimator can provide an asymptotically chi-square distributed fit test statistic,
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TABLE 2

Power to Detect Model Misspecification

Significance Level

N Converged Statistic M Var Min Max 0.01 0.05 0.10

NOMIS

100 992 TFIML 32.738 165.096 11.711 225.052 .132 .294 .420

TBM 28.456 52.715 11.323 54.125 .036 .126 .238

300 1000 TFIML 47.108 145.751 21.846 86.621 .608 .800 .872

TBM 41.329 89.796 20.091 74.779 .418 .686 .802

500 1000 TFIML 62.331 193.208 28.528 111.770 .936 .986 .996

TBM 53.420 108.027 28.012 86.632 .842 .960 .986

MCAR

100 1000 TFIML 31.262 78.324 11.113 60.166 .111 .264 .369

TM 36.509 112.548 13.636 73.336 .249 .443 .590

TBM 26.774 48.786 11.082 51.608 .025 .086 .168

D2 .085 .231 .347

D3 .118 .261 .375

300 1000 TFIML 42.267 130.214 14.534 85.742 .439 .688 .794

TM 50.682 193.870 15.669 106.162 .690 .857 .918

TBM 37.523 91.982 13.273 79.797 .250 .501 .657

D2 .360 .596 .718

D3 .469 .700 .810

500 1000 TFIML 53.551 164.487 18.168 134.664 .789 .923 .951

TM 65.483 253.279 21.067 166.018 .938 .978 .986

TBM 47.709 111.301 17.901 108.624 .658 .860 .929

D2 .711 .868 .928

D3 .831 .939 .965

MAR

100 1000 TFIML 31.456 80.279 10.786 64.347 .099 .253 .384

TM 36.751 118.558 10.992 74.062 .253 .492 .604

TBM 27.115 53.851 8.508 60.846 .028 .115 .196

D2 .086 .227 .337

D3 .132 .288 .397

300 1000 TFIML 42.298 142.001 17.718 81.384 .445 .667 .766

TM 51.275 208.942 20.686 94.843 .696 .850 .911

TBM 37.856 90.996 16.693 72.636 .282 .531 .672

D2 .378 .618 .711

D3 .497 .706 .794

500 1000 TFIML 52.935 174.141 23.530 92.953 .761 .912 .955

TM 66.107 285.771 24.479 128.708 .936 .986 .993

TBM 47.633 112.088 18.441 81.747 .640 .854 .928

D2 .683 .865 .935

D3 .810 .936 .972

Note: The entries in the ‘‘Converged’’ column refer to the number of converged replications in each

condition.
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missing information adjusted standard error estimates, as well as additional

model fit indices such as RMSEA (with confidence interval) and TLI. The third

application shows that the MI2S estimator can conveniently handle mean and

covariance structure modeling for data sets containing multiple sets of plausi-

ble values. When we have to create multiple imputations using MCMC sam-

pling, we generally use a burn-in period of 1,000 iterations and subsampling

intervals of 200.

CFA

We first apply the MI2S procedure to the well-known Open-Book Closed-

Book data set in Mardia, Kent, and Bibby (1979). The original data set contains

test scores on five subject areas obtained from 88 examinees, that is, n ¼ 5 and

N ¼ 88. The tests of the first two subjects are open-book, and the rest are closed-

book exams.

The model specification is as follows. The factor loading matrix is

�0 ¼ l11 l21 0 0 0

0 0 l32 l42 l52

� �
;

reflecting the testing mode (open-book vs. closed-book), and the factors are

correlated

� ¼ 1:0
�21 1:0

� �
:

The unique factor covariance matrix is given by � ¼ diagðf11; . . . ;f55Þ. The

degrees of freedom is equal to 4. For this complete data set, it is known that a

TABLE 3

Bias and Variability of Parameter Estimates Under MCAR ( N ¼ 100)

True
FIML MI2S MI

Value RB (%) RMSD RB (%) RMSD RB (%) RMSD

l21 0.7 3.35 0.204 3.41 0.208 3.49 0.206

l31 0.9 3.40 0.238 3.68 0.248 3.62 0.240

l52 0.9 0.30 0.107 0.27 0.108 0.28 0.107

l62 0.9 0.61 0.107 0.60 0.108 0.60 0.108

l83 1.0 3.26 0.258 4.45 0.301 4.65 0.274

l93 1.0 2.63 0.249 4.06 0.298 4.35 0.332

�11 0.6 0.85 0.197 0.68 0.198 0.79 0.197

�21 0.4 �1.11 0.111 �1.45 0.112 �1.46 0.112

�31 0.3 �3.07 0.106 �2.32 0.113 �2.47 0.107

�22 0.9 �0.68 0.173 �0.65 0.174 �0.66 0.173

�32 0.2 0.13 0.097 0.66 0.105 0.39 0.098

�33 0.5 2.62 0.179 5.32 0.208 5.64 0.188
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two-factor CFA model fits very well, yielding a chi-square of 2:07 under maxi-

mum likelihood estimation.

To illustrate the newly proposed MI2S estimator, we artificially created MAR

data by applying the same procedure used in Cai and Lee (2009), wherein the

scores on the last three variables were set to missing if the sum of the first two

was less than 80, resulting in 28 cases with missing values. Next, based on 20

imputations ðM ¼ 20Þ, the combined estimate of means, variances, and covar-

iances, ~ω, was obtained by Equation 16. The two-factor CFA model was then

fitted using the MI2S estimator.

The empirical results mirror the simulation study. More specifically, with 4

degrees of freedom, the MI2S test statistic TBM is 6:67; p ¼ :15, whereas the

naive statistic TM is 10:89; p ¼ :03. Having analyzed the complete data set, we

know that the model should fit well. In this case, the difference between TBM and

TM is large enough to lead to a possibly erroneous decision on the fit of the

hypothesized CFA model. RMSEA and TLI for this model are, based on our

MI2S estimator, equal to .086 and .808, respectively. A 90% confidence interval

of RMSEA is [.000, .199].

For the purpose of comparison, we fitted the model using the FIML estimator

and obtained TFIML ¼ 6:64; p ¼ :16, a result in close agreement with the MI2S

estimator. We also computed D2 and D3 statistics and the associated p values for

this model. The p value associated with D2 is Fð4; 91:35Þ ¼ 1:75; p ¼ :15 and

the p value associated with D3 is Fð4; 302:82Þ ¼ 1:42; p ¼ :23.

We also calculated adjusted standard error estimates for the structural para-

meter estimates. The results are presented in Table 4. The entries in the

‘‘Adjusted’’ column show the standard error estimates produced by MI2S estima-

tor and the entries in the ‘‘Unadjusted’’ column show the naive standard error

estimates obtained by treating the combined estimate of the means and the cov-

ariance matrix as if it comes from complete data. Notice that the unadjusted stan-

dard error estimates are in general smaller than the MI2S standard error

estimates. It is an artifact caused by neglecting the fraction of missing informa-

tion in the combined estimates. In contrast, the MI2S standard errors are properly

inflated, accounting for the missing information. For the purpose of comparisons,

the standard error estimates from the standard MI estimator and FIML estimator

are presented in the columns of ‘‘Standard’’ and ‘‘FIML,’’ respectively. It can be

seen that these standard error estimates are not only properly inflated adjusting

for the missing information but also very close to those from the MI2S estimator.

Conditional Latent Curve Analysis

In the second application, the data from a symposium at the 1997 meeting of the

Society for Research on Child Development (Curran, 1997) were analyzed. The

data set contains four repeated measures of N ¼ 405 participants from the National

Longitudinal Survey of Labor Marketing Experience in Youth on their aggressive
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behavior. A number of time-invariant covariates, including gender and mother’s

age, are also available. The data set exhibits substantial attrition of respondents.

Roughly half of the cases have missing observations in the aggressive behavior

variable on one or more measurement occasions beyond baseline. To handle the

missingness, we created M ¼ 20 imputations and utilized the MI2S estimator.

The goal is to fit a linear latent curve model (Bollen & Curran, 2006) to the

repeated measurements of aggressive behavior. We included gender and mother’s

age as time-invariant covariates, making n ¼ 6. We freely estimated the covar-

iance matrix of the intercept and slope factors. The time-specific residual variances

were allowed to be heteroskedastic. This model has 9 degrees of freedom.

The MI2S test statistic and the FIML test statistic come out to be very similar,

that is, TBM ¼ 16:23; p ¼ :06 and TFIML ¼ 16:56; p ¼ :06, respectively. In con-

trast, the naive statistic TM is 21:07; p ¼ :01. Once again, the difference between

TM and TBM is large enough to lead to qualitatively different conclusions about

model fit. The p value associated with D2 is Fð9; 199:21Þ ¼ 1:68; p ¼ :10 and

the p value associated with D3 is Fð9; 1926:62Þ ¼ 1:58; p ¼ :12. The RMSEA

and TLI based on MI2S estimator are equal to .044 and .893, respectively, with

a 90% confidence interval of RMSEA being [.000, .078]. Though not reported

here due to space constraints, unadjusted standard error estimates for the struc-

tural parameter estimates are all erroneously smaller than the adjusted standard

error estimates produced by the MI2S estimator.

TABLE 4

Standard Errors of Structural Parameter Estimates for the Open-Book Closed-Book Data

SE

Estimate Adjusted Unadjusted Standard FIML

l11 11.84 1.88 1.76 1.93 1.88

l21 10.63 1.43 1.29 1.49 1.42

l32 10.81 1.21 0.90 1.23 1.32

l42 14.36 1.94 1.48 2.04 2.16

l52 14.82 2.48 1.70 2.59 2.41

�21 0.91 0.08 0.06 0.08 0.09

f11 162.20 31.70 29.07 34.54 33.13

f22 57.95 19.76 15.27 22.63 20.12

f33 8.51 6.58 4.87 6.34 6.26

f44 77.93 16.36 14.74 16.61 17.33

f55 131.38 28.79 22.39 27.78 24.86

Note: The entries in the ‘‘Adjusted’’ column show missing information adjusted standard error

estimates produced by MI2S estimator, whereas the entries in the ‘‘Unadjusted’’ column show the

incorrect standard error estimates when the combined estimate ~ω (see Equation 16) is treated as if it

comes from complete data. The entries in the ‘‘Standard’’ and ‘‘FIML’’ columns show the standard

error estimates produced by the standard MI estimator and the FIML estimator, respectively.
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Analysis Involving Plausible Values: PISA

As the third application, the MI2S estimator is applied in the mean and

covariance structure modeling of a data set containing multiple sets of plausible

values: PISA. Conducted triennially by the Organization for Economic

Co-operation and Development (OECD), PISA is a system of international

assessments that measures 15-year-olds’ literacy in reading, mathematics, and

science. The PISA data also include numerous items on student characteristics,

student family background, and student perceptions, just to name a few. More

information about PISA can be found at http://www.pisa.oecd.org/.

A distinctive characteristic of the PISA data set is that student performance on

literacy scales and subscales are reported as M ¼ 5 sets of plausible values for

each of the scales or subscales. In other words, instead of reporting a single scale

score, PISA uses multiple imputation to represent the unknown values of stu-

dents’ literacy. As such, the MI2S estimator can be effectively employed. Indeed,

it can be even simpler than the case of missing data because we do not have to

generate the imputations ourselves.

In this particular application, we use data from the assessment conducted in

2006, focusing on the United States school sample. PISA 2006 uses a two-stage

sampling design in which schools are first sampled and then students are sampled

in the participating schools. Therefore, it is required to use sampling weights or to

model the clustered data structure explicitly (or maybe both) for sound statistical

analyses.1 However, for a simple illustration of the MI2S estimator under the pres-

ence of multiple sets of plausible values, we ignored the sampling weights.

First, purely for the sake of illustration, we developed a hypothetical structural

equation model in which a student’s science literacy (SCI) is regressed on his or

her mathematics literacy (MATH) and the value of science (VoSCI) that he or

she holds. Figure 1 presents a conceptual path diagram of our structural equation

model. MATH is an observed variable consisting of five sets of plausible values.

SCI is a latent variable, measured by three subscale variables: explaining phe-

nomena scientifically (EPS), using scientific evidence (USE), and identifying

scientific issues (ISI). EPS is a scaling indicator with a fixed factor loading of

1.0. Each of the science subscale variables contains five sets of plausible values.

VoSCI is a latent variable, measured by two manifest variables: the general value

of science (GSCI) and perceptions of the personal value of science (PSCI). GSCI

is the scaling indicator for VoSCI. Neither GSCI nor PSCI contains plausible val-

ues. We freely estimated the covariance of a student’s mathematics literacy

(MATH) and his/her value of science (VosCI). To aid interpretation, we standar-

dized all observed variables. The analysis sample includes cases with complete

data for all variables ðN ¼ 5531Þ.
Next, we combined the M ¼ 5 data sets containing plausible values and

produced a single estimate of means and covariance matrix using Equation 16.

We then applied the MI2S estimator to assess the plausibleness of the postulated
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model. The overall model fit statistic, TBM; came out to be 114.87 on 7 degrees of

freedom, p < :001. We can also compute RMSEA and TLI for this model, which

are equal to .053 and .947, respectively, with a 90% confidence interval of

RMSEA being [.045, .062]. Furthermore, we obtained the structural parameter

estimates and the associated standard error estimates (see Table 2). We also com-

puted D2 and D3 statistics and the associated p values. The p value associated

with D2 is Fð7; 104:95Þ ¼ 15:80; p < :001 and the p value associated with D3

is Fð7; 553:98Þ ¼ 14:70; p < :001. Taken together, the results indicate that the

MI2S estimator is equally applicable to the case of plausible values.

Discussions

In this article, we proposed a new two-stage estimator and inferential tools

(MI2S) for mean and covariance structure modeling under the presence of mul-

tiple imputations. While standard multiple imputation theory dictates that one

should fit a mean and covariance structure model M times (once to each

EPS USE ISI GSCI PSCI

SCI VoSCIMATH

ψ23

1.0 λ21 λ31 1.0 λ52

β1 β2

FIGURE 1. A conceptual path diagram for the hypothetical structural equation model for

PISA data. Only the key structural parameters are shown.

TABLE 5.

Structural Parameter Estimates and Standard Errors for the PISA Data

Estimate SE

l21 1.01 .005

l31 0.99 .006

l52 0.77 .031

b1 0.07 .009

b2 0.81 .008

�23 0.29 .014

Note: The standard errors are missing information adjusted standard error estimates produced by

MI2S estimator.
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imputation) and combine the results at the very end, the MI2S estimator permits

us to combine the multiple imputations at the beginning of data analysis. It pro-

duces a single estimate of the means and covariance matrix by averaging the

unstructured means and covariance matrices across multiple imputations. Adjust-

ment for the between-imputation variation is also carried out at the beginning,

yielding a proper asymptotic covariance matrix of the estimated means and covar-

iances. Using Browne’s (1984) results, this asymptotic covariance matrix can be

used to obtain an asymptotically chi-square distributed model fit statistic, TBM, and

the standard error estimates associated with the structural parameter estimates.

Our simulation studies and empirical data analysis show that the MI2S estima-

tor performs as well as the existing FIML estimator under MCAR and MAR con-

ditions not only in terms of Type I error rates and statistical power of overall

model fit statistics but also in terms of bias and variability of parameter estimates.

The MI2S estimator is potentially more flexible than FIML. For example,

handling plausible values is natural in the MI2S estimator, whereas FIML esti-

mator will not be of much help because there is technically no missingness in the

data sets. In addition, inclusion of missing-data-relevant covariates is very

straightforward because MI2S is within a multiple imputation framework. In

contrast, though it is possible to include missing data relevant covariates for the

FIML estimator (Collins, Schafer, & Kam, 2001; Graham, 2003), significantly

more efforts are required if the missing data mechanism needs to be explicitly

modeled. Moreover, as the number of missing-data-relevant covariates increases,

model estimation and identification becomes increasingly problematic for FIML

(Savalei & Bentler, 2009, p. 494).

Compared with the standard multiple imputation procedures, the MI2S esti-

mator is computationally more efficient (i.e., a single model-fitting vs. multiple

model-fittings) and produces a chi-square distributed test statistic TBM that can

form the basis of mean and covariance structure model fit evaluations. Using

TBM, it becomes straightforward to conduct tests of close fit (Browne & Cudeck,

1993) and obtain various fit indices such as RMSEA and TLI. On the other hand,

using the standard multiple imputation procedure, it is not clear how to combine

multiple sets of various fit indexes obtained from the multiple model-fittings

because imputation generates a slightly different saturated model.

Our research is not without limitations. First, the derivations are exclusively

based on multivariate normal theory. The multivariate normality assumption

implies that in higher order moments, interactions or nonlinearities among vari-

ables are not modeled in the imputation process. Therefore, if such complex asso-

ciations are to be a crucial part of the analysis, biased consequences may be

obtained due to the inconsistencies between the model used in the imputations

and the model used in subsequent analyses of the imputed data sets. This remains

an inherent issue for multiple imputation based estimators, MI2S included.

When the variables are clearly not normal (e.g., categorical variables or design

variables), a different imputation approach can be employed based on log-linear
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models or general location models (Schafer, 1997) or sequential generalized regres-

sion models (Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001). More

research should be conducted in the future to explore the possible existence of

non-normal versions of two-stage estimators that work under multiple imputation.

Second, our simulation studies only examined a small set of conditions. In

particular, a closer examination of Table 1 reveals that, as sample size increases,

Type I error rates of TFIML tend to approach the nominal level from above,

whereas the opposite trend holds for TBM. Such tendencies may explain why

TBM can be a less powerful statistic than TFIML, particularly when N is small.

Before reaching a general conclusion, however, further research is warranted.

Future simulation studies should also examine the robustness of MI2S under a

wider variety of missing data conditions and types of structural models.

Third, we only implemented the proposed methods in SAS because of its

widespread use in both academic and nonacademic settings. Though our macro

is freely available, it is nevertheless restricted to a single software environment.

We will explore the possibility of implementing the method in free statistical

software such as R.

Appendix A

Usage of the SAS Macro MI2S

We use the conditional latent curve model as an example to describe the usage of

the SAS macro. Suppose a SAS data set called srcd is present in the work library,

and it contains the following six variables: anti1–anti4, gen, and momage. The

first four anti variables are the repeated measures of aggressive behavior, and gen

and momage are the gender and mother’s age variables at baseline.

First, the SAS macro definitions should be included using the % include

statement.

Next, multiple imputation of missing data should be performed. For instance,

we use the following PROC MI statements:

proc mi data¼srcd seed¼10 nimpute¼20 out¼outmi20 noprint;
mcmc chain¼single nbiter¼1000 niter¼200 initial¼em

prior¼jeffreys;
var anti1 anti2 anti3 anti4 gen momage;

run;
PROC MI will create a data set with 20 imputations. The imputed data sets are

stored in the outmi20, with the SAS default index variable _Imputation_ indicating

the imputation numbers. This data set should be fed into the SAS macro as input

data. Note that in the case of preexisting imputations (e.g., plausible values), the

imputation step can be skipped. However, in that case, one must know the name

of the index variable for the imputation numbers and sort the data by that index

variable using PROC SORT.
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Next, one must define the structural model to be fitted to the MI2S estimated

means and covariances using one of the programming statements acceptable to

PROC CALIS. The model definition must be a quoted SAS macro string and

in this example we use the LINEQS-style statements:

%let mymodel¼%str(
lineqs

anti1 ¼ 0. * intercept þ 1f1 þ 0f2 þ e1,
anti2 ¼ 0. * intercept þ 1f1 þ 1f2 þ e2,
anti3 ¼ 0. * intercept þ 1f1 þ 2f2 þ e3,
anti4 ¼ 0. * intercept þ 1f1 þ 3f2 þ e4,
f1 ¼ al1 intercept þ gamma1 gen þ gamma2 momage þ d1,
f2 ¼ al2 intercept þ gamma3 gen þ gamma4 momage þ d2,
gen ¼ al3 intercept þ d3,
momage ¼ al4 intercept þ d4;

std
e1-e4 ¼ th1 th2 th3 th4,

d1-d4 ¼ ph11 ph22 ph33 ph44;
cov

d1 d2 ¼ ph12,
d3 d4 ¼ ph34;

);
Finally, the macro MI2S is invoked.

%MI2S(indata¼outmi20,var¼antil1anti2anti3anti4genmomage,
nvar¼6, nobs¼405, nimp¼20, impidx¼_imputation_, calismodel¼

&mymodel);
The indata and var options tell the macro the multiply imputed data set name and

the names of the variables. The nvar and nobs options give the dimensions of the

analysis in terms of the number of manifest variables and the number of observa-

tions. The nimp and impidx options tell the macro the number of imputations per-

formed and the name of imputation index variable. These options should be

specified in accordance with the number of imputations and index variable name

specified previously. In this particular example, nimp¼20 and impidx¼_Imputa-

tion_. Consider another example. When a data set consists of five sets of plausi-

ble values indexed by _PV_, then nimp ¼ 5 and impidx ¼ _PV_.

Finally, the quoted macro string &mymodel is passed on to the macro to

define the structural model. The macro produces the following output:

Goodness-of-fit Test for MI2S Estimator

T_BM df p value

16.2345 9.0000 .0621

Point Estimate of RMSEA

0.0445
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The value of TMB, the degrees of freedom, the p value, and RMSEA point

estimate are printed. The macro also prints MI2S structural parameter estimates

along with adjusted standard errors.
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Note

1. For more information about the sampling design of PISA 2006 and its proper

statistical handing, see OECD’s PISA 2006 Technical Report (OECD, 2009b)

and PISA 2006 Data Analysis Manual (OECD, 2009a).
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