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Abstract

Multiple-indicators multiple-causes (MIMIC) modeling is often used to test a latent 
group mean difference while assuming the equivalence of factor loadings and intercepts 
over groups. However, this study demonstrated that MIMIC was insensitive to the 
presence of factor loading noninvariance, which implies that factor loading invariance 
should be tested through other measurement invariance testing techniques. MIMIC 
modeling is also used for measurement invariance testing by allowing a direct path 
from a grouping covariate to each observed variable. This simulation study with 
both continuous and categorical variables investigated the performance of MIMIC in 
detecting noninvariant variables under various study conditions and showed that the 
likelihood ratio test of MIMIC with Oort adjustment not only controlled Type I error 
rates below the nominal level but also maintained high power across study conditions.
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With increasing attention to measurement bias across groups, testing measurement 
invariance has become a common practice before using a measure in social science. 
Measurement invariance holds when individuals have identical probabilities to exhibit 
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the observed outcomes given the common factor irrespective of the levels of a variable 
other than the common factor (Barendse, Oort, & Garst, 2010; Mellenbergh, 1989; 
Meredith, 1993; Millsap & Yun-Tein, 2004):

P Y y G P Y yij i ij i( | , ) ( | ).= = =η η 	 (1)

Given the factor score (hi), the conditional probability of the response of the ith 
person on the jth variable (Yij) is independent of a variable G. With the interest in a 
group difference, G often indicates group membership, although G could be any 
variable of interest.

Among numerous methods of measurement invariance testing (Millsap & Everson, 
1993), item response theory (IRT) has long been used to identify the items of 
measurement noninvariance, which is specifically called differential item functioning 
(DIF). Measurement invariance has also been assessed with the techniques under 
structural equation modeling (SEM). Although IRT and SEM approaches to 
measurement invariance testing were developed separately, both methods are closely 
related to each other and, in fact, the parameters of IRT (specifically, the two-parameter 
logistic model) can be easily converted to SEM parameters (Lord & Novick, 1968; 
Takane & de Leeuw, 1987; Wirth & Edwards, 2007). A large volume of literature is 
devoted to the comparison of IRT and SEM with regard to measurement invariance 
testing (e.g., Meade & Lautenschlager, 2004; Raju, Laffitte, & Byrne, 2002; Stark, 
Chernyshenko, & Drasgow, 2006; Willse & Goodman, 2008). Under SEM, along with 
multiple group confirmatory factor analysis (CFA), multiple-indicators multiple-
causes (MIMIC; Joreskog & Goldberger, 1975) modeling has often been employed for 
measurement invariance testing (e.g., Fleishman, Spector, & Altman, 2002; McCarthy, 
Pedersen, & D’Amico, 2009; Muthén, Kao, & Burstein, 1991; Rubio, Berg-Weger, 
Tebb, & Rauch, 2003; Woods, Oltmanns, & Turkheimer, 2009). With the increasing 
interest in measurement invariance and the use of MIMIC modeling to test measurement 
invariance, the purpose of this study is to investigate the behaviors of MIMIC modeling 
with both continuous and categorical data under various simulation conditions.

MIMIC Modeling for Continuous Variables
The MIMIC model, in general, allows causal indicators of factors as well as effect 
indicators. For measurement invariance testing across groups, the MIMIC model 
includes dummy-coded grouping variables (Xi) as causal indicators (Kaplan, 2009; 
Thompson & Green, 2006). For the simplicity of discussion, we employed a single 
causal indicator for two groups (focal and reference groups).

Yij j i ij= +λ η ε ,
	

(2.1)

 
η γ ζi i iX= + , 	

(2.2)
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where the observed score of an individual i for a variable j, Yij is related to the common 
factor, hi with the factor loading of the variable, lj. The unique factor scores or 
residuals are denoted by eij. Equation (2.1) represents the relationship between an 
observed variable and the latent factors. In Equation (2.2), Xi denotes a dummy 
variable indicating group membership, g is the path coefficient of the grouping variable 
on the latent factor, and zi is the disturbance of the latent factor (see Figure 1 without 
a dotted line). Because the expected value of the disturbance of the latent factor equals 
zero, the expected value of the latent factor is expressed as

E E Xi i( ) ( ).η γ= 	 (3)

Therefore, with a dummy-coded grouping variable (Xi) g represents the group 
difference in latent factor means (Thompson & Green, 2006). That is, the latent factor 
mean of the focal group (Xi = 1) is g units higher (or lower) than that of the reference 
group (Xi = 0).

MIMIC Modeling for Ordered-Categorical Variables
When the variable of concern (Yij) is ordered-categorical (e.g., dichotomous or 
polytomous), Yij is construed as the manifestation of the underlying latent variable (Yij

* ) 
that is inherently continuous and multivariate-normally distributed. The latent response 
variate Yij

*  is related to the latent factor (h) in the same way as continuous variables 
are

Y ij j i ij
* ,= +λ η ε

	
(4.1)

 
η γ ζi i iX= + . 	

(4.2)

The relationship between the observed categorical responses and the latent response 
variates is expressed as follows with the threshold structure:

Y c Y vij jc ij j c= < ≤ +, ,*
( )if ν 1

	 (5)

where njc indicates the threshold of the jth item with C ordered-categorical responses 
(nj0 = -; νj(c + 1) = ; c = 0, 1, . . ., C - 1). When the number of response categories is 
C, C - 1 thresholds are determined. For example, with four possible response 
categories (0, 1, 2, 3), the number of thresholds is three. Any latent response variate 
(Yij

*) that falls between the threshold for a response category (c) and the threshold for 
the next higher response category (c + 1) is manifested as a response category, c. In 
other words, when a response variate meets the threshold for a response category 2 but 
does not exceed the threshold for a response category 3, the observed score will be 2. 
To test measurement invariance and the latent group mean difference, a dummy-coded 
grouping variable Xi is introduced as a causal indicator of the latent factor h as in the 
continuous model (see Equation 4.2). The MIMIC model that incorporates the 
threshold structure with latent response variates is illustrated in Figure 2.
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Measurement Invariance Testing in MIMIC Modeling
To identify a noninvariant variable, a direct path from a grouping variable to an 
observed variable is tested in the model (in Figures 1 and 2 with a dotted line for 
continuous and categorical variables, respectively). The model with the direct path 
from the grouping variable to the measured variable can be rewritten as

Y Xij j i j i ij= + +λ η β ε ,

η γ ζi i iX= + ,	 (6)

where bj is a path coefficient of the grouping variable in relation to the jth observed 
variable (Finch, 2005; Kaplan, 2009). The bj coefficient represents the group effect on 
an observed variable controlling for the effect of the latent factor. Thus, this model 
allows the statistical significance test on the group difference of an observed variable 
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Figure 1. The MIMIC model with a grouping variable as a covariate for continuous data. g 
denotes a grouping variable
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(bj) as well as on the group difference of the latent means (g). Otherwise stated, the 
statistically significant bj coefficient indicates the violation of measurement invariance 
across groups (noninvariance of the intercept) of the jth variable.

Strengths of MIMIC Modeling
MIMIC modeling allows the assessment of measurement invariance and latent mean 
difference across groups by incorporating grouping variables as covariates instead of 
testing separate models for each group as in multiple-group CFA. Thus, MIMIC 
modeling can easily facilitate measurement invariance tests on multiple background 
variables and their interactions (e.g., gender, race, and gender by race) as well as on 
more than two groups per grouping variable of interest (e.g., four different race groups; 
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Figure 2. The MIMIC model with a grouping variable as a covariate for categorical data
Note. g denotes a grouping variable. c is the number of response categories of an item.
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Ainsworth, 2008; Fleishman et al., 2002). Of note is that the covariates (Xi in Equation 
6) of which researchers purport to test invariance across levels can be any types of 
variables (e.g., continuous or categorical), which is another advantage of MIMIC 
modeling over multiple group CFA (Barendse et al., 2010).

MIMIC  Testing Uniform Measurement Noninvariance
MIMIC modeling has a couple of downsides that MIMIC users for measurement 
invariance testing should be aware of. First, MIMIC modeling, developed by Joreskog 
and Goldberger (1975) and disseminated for measurement invariance testing by 
Muthén (e.g., 1989), tests uniform measurement noninvariance (Woods & Grimm, 
2011). That is, factor loadings are assumed to be invariant across groups and are not 
explicitly tested for invariance. In Equation (6), the path coefficient, bj, tests group 
invariance controlling for the latent factor effects (ljhi) assuming the factor loading is 
invariant across groups (i.e., estimating only one set of factor loadings across groups, 
not for each group). Considering that this assumption of factor loading invariance is 
often violated in practice, the equivalence of factor loadings should be tested rather 
than simply assumed as in the current MIMIC modeling. Hence, when there is lack of 
invariance in factor loadings, the performance of MIMIC modeling is of question. 
This study inspected the behaviors of MIMIC modeling under the noninvariance of 
factor loadings in addition to other sources of noninvariance.

It should be noted that MIMIC model with the interaction between the latent factor 
(hi) and the group membership indicator (Xi) allows researchers to test nonuniform 
measurement bias (Barendse et al., 2010; Barendse, Oort, Werner, Ligtvoet, & 
Schermelleh-Engel, 2011; Woods & Grimm, 2011). However, this study limits the 
scope to uniform MIMIC modeling because MIMIC as a test for uniform noninvariance 
is currently used among applied researchers.

Type I Error Inflation in Measurement Invariance Testing With MIMIC
Type I error inflation in measurement invariance testing. Previous simulation studies on 

MIMIC as a measurement invariance test consistently reported high Type I error rates 
over the nominal level (e.g., Finch, 2005). In measurement invariance literature, Type 
I error and false positive are interchangeably used generally indicating the false 
detection of invariant variables as DIF. The proportion of false-positive cases across 
simulation replications is often defined as a Type I error rate or false-positive rate. 
With the Type I error inflation, invariant variables could be overly detected as DIF 
when MIMIC is used for measurement invariance testing, which likely blemishes the 
adequacy of MIMIC as a measurement invariance testing technique.

A number of simulation studies reported high Type I error rates when MIMIC 
modeling was used to detect noninvariant variables. Oort (1998) studied restricted 
factor analysis (RFA), and reported Type I error rates between 0.15 and 0.20. RFA is 
equivalent to MIMIC except that correlation between a factor and a covariate (hi and 
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Xi, respectively, in Equation 6) is specified in RFA instead of a causal effect (Barendse 
et al., 2010). In Finch’s (2005) study using MIMIC modeling, Type I error rates ranged 
from .08 to .22 (mean of .12) depending on the simulation conditions. Navas-Ara and 
Gomez-Benito (2002) reported a Type I error rate of .36. In the study of Wang, Shih, 
and Yang (2009), MIMIC modeling showed the false-positive rates as high as .48.

Approaches to Type I error inflation of MIMIC. With the report of Type I error inflation, 
a body of literature contributed to explain and control for the Type I error inflation. 
Navas-Ara and Gomez-Benito (2002) used scale purification with categorical items 
comparing six different DIF detection techniques (e.g., RFA, IRT-based indices) and 
reported the improvement of Type I error rates (.07). The scale purification is an 
iterative process in which biased items detected in the initial analysis are eliminated, 
and the bias detection procedure is repeated with unbiased items to identify remaining 
bias until no item is detected as noninvariance. When Wang et al. (2009) applied scale 
purification procedures to MIMIC modeling, MIMIC with scale purification yielded 
lower Type I error rates (less than .10 for most study conditions) compared with 
standard MIMIC although the Type I error rate of MIMIC with scale purification was 
still high (e.g., 0.24) in the conditions of the 40% DIF contamination. In case of the 
likelihood ratio (LR) test, Stark et al. (2006) suggested the Bonferroni correction of 
critical values, pointing out the chi-square statistic inflation in a misspecified baseline 
model and subsequently Type I error rate elevation. On the other hand, Oort (1992, 
1998) developed a formula to adjust the critical value to control the chi-square inflation 
in the use of modification indices. When the adjustment was applied to the iterative 
procedures using modification indices, the Type I error rates were reported under the 
nominal level.

Oort adjustment to control the Type I error inflation. For a statistical strategy to control 
the Type I error inflation, we adopted Oort adjustment in the LR test. Oort (1992, 
1998) developed a formula originally to adjust a modification index (MI) taking into 
account practically inevitable model misspecification errors that likely render 
unreliable chi-square distribution. We applied the Oort adjustment formula in the LR 
test considering that the MI is comparable with the chi-square difference with one 
degree of freedom in the LR test because the MI is an approximation of the change in 
chi-square when a constrained parameter in the original model is freely estimated 
(Brown, 2006). In the LR test with two nested models, a model in which a variable or 
a set of parameters (e.g., factor loadings of all variables) are freely estimated is 
compared with a baseline model with invariance constraints. The statistical significance 
of the chi-square fit difference between two rival models indicates the lack of 
invariance on the tested variable or the tested set of parameters (e.g., the violation of 
factor loading invariance or weak invariance).

However, as Oort (1992, 1998) stated, chi-square difference is possibly inflated 
with unavoidable model misspecification errors, which in turn leads to Type I error 
inflation in the LR tests. Accordingly, Oort adjusted a chi-square critical value by 
incorporating the chi-square and degrees of freedom of a baseline model:
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′ =
+ −

∗K
K df

K( )
χ2

0

0 1
,	 (7)

where K′ is the adjusted critical value, K is the original critical value chosen from the 
chi-square distribution given the degree-of-freedom difference between models, c0

2  is 
the chi-square value of a baseline model, and df0 is the corresponding degrees of 
freedom. From the speculations that the inflation of chi-square difference between the 
full-invariance MIMIC model (i.e., baseline model) and the relaxed model testing DIF 
(i.e., augmented model) plausibly results in Type I error inflation, this simulation 
study reevaluated the Oort adjustment in the LR test using MIMIC modeling. The 
Oort adjustment was compared with the Bonferroni correction. Stark et al. (2006) 
suggested Bonferroni correction to lower the inflated Type I error rates in the LR tests. 
French and Finch (2008) applied the Bonferroni correction in their simulation study 
locating invariant reference variables in multiple-group CFA.

To sum up, cognizant of the limitations of MIMIC as a uniform measurement 
invariance test, we explored the overall performance of MIMIC in detecting DIF with 
a focus on statistical strategies to control the Type I error inflation under a variety of 
research situations, including different data types and different locations of 
noninvariance through Monte Carlo simulations.

Method
Simulation Conditions

Simulation conditions included data type (continuous, dichotomous, or polytomous), 
location of noninvariance (factor loading, intercept, or both for continuous data and 
factor loading, threshold, or both for categorical data), magnitude of noninvariance 
(small or large), number of noninvariant items (one or two out of six), and sample size 
(200, 400, 1,000, and 2,000). The total 144 (3 × 3 × 2 × 2 × 4) conditions were included 
in the simulation. In addition, full invariance conditions (data type by sample size) 
were simulated to establish a baseline of the study. For each condition, 500 replications 
were generated.

Data type. The performance of MIMIC modeling for continuous variables was 
compared with that for categorical variables. Dichotomous variables have a single 
threshold with two response categories, whereas polytomous variables in this study 
take five ordered response categories that yield four thresholds.

Location of noninvariance. The location of noninvariance varies to factor loadings only, 
intercepts/thresholds only, or both. In the previous studies on MIMIC modeling in testing 
uniform measurement bias, the source of noninvariance was not considered as a simulation 
condition. However, this study purported to examine the behaviors of MIMIC with 
different sources of noninvariance in the model, including factor loading noninvariance.

Magnitude of noninvariance. The magnitude of noninvariance was manipulated with 
a small or large difference. For the factor loading noninvariance, 0.2 and 0.4 were 
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subtracted from the factor loadings of the reference group for small and large effect 
sizes, respectively. In terms of intercept or threshold noninvariance, approximately 0.3 
for small difference and 0.6 for large difference were added to the intercepts or 
thresholds of the reference group.

Number of noninvariant items. Concerning the number of noninvariant items, two 
conditions of noninvariance contamination were simulated: only one noninvariant 
variable (about 17% contamination) and two noninvariant variables (about 33% 
contamination) out of six variables. The noninvariance contamination was less than 
50% because it is more likely that the majority of variables are invariant across groups. 
Y5 was simulated as a noninvariant variable, and Y2 was added as a noninvariant item 
for the two-DIF conditions. This study also included the condition in which all six 
variables were invariant across groups to establish basal Type I error rates.

Sample size and group size. Two balanced groups with size 100, 200, 500, and 1,000 
each were examined in this study. Although in many research settings two groups may 
be disproportionate (e.g., 90% Caucasian and 10% African American), studies in 
which two group sizes are roughly equal are not uncommon (e.g., boys and girls, 
primary school students and secondary school students, etc.). Woods (2009) studied an 
optimal sample size for MIMIC modeling in the detection of DIF and found that the 
focal group sample size smaller than 100 (e.g., 25, 50, or 100) yielded very low power 
in detecting the DIF items. Thus, this study included the minimum sample size as low 
as 100 per group.

Data Generation
In generating three types of data (continuous, dichotomous, and polytomous variables) 
for two groups (reference and focal groups), we used Mplus 5.2 (Muthén & Muthén, 
2008). Six variables (Y1-Y6) loaded on a single factor under the unidimensionality 
assumption.

The parameter values used for the reference group data generation are presented 
below. The parameters of intercepts (t) were specified for continuous variables, 
whereas a set of thresholds (n) were specified for dichotomous and polytomous 
variables. The same values of intercept (t) were used for the thresholds (t) of 
dichotomous variables.

Y l t or n

Y1 .9 -0.15
Y2 .7 0.25
Y3 .6 0.15
Y4 .8 -0.25
Y5 .7 -0.10
Y6 .6 0.10
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For the polytomous data with five response categories, a set of thresholds were 
added as follows:

Y n1 n2 n3 n4

Y1 -0.05 0.35 0.75 1.05
Y2 -0.80 -0.40 0.00 0.40
Y3 -0.55 -0.05 0.45 0.85
Y4 0.05 0.50 0.85 1.15
Y5 -0.50 -0.10 0.25 0.65
Y6 0.15 0.40 0.70 1.25

The factor mean and variance of the reference group were 0.0 and 1.0, respectively. 
The corresponding parameters of the focal group were assigned as 0.5 and 1.0, 
respectively. The residual variances were homogeneous across groups as 0.3. The 
parameter values, the magnitude of DIF, and sample size were selected with the 
reference to the previous simulation studies on the similar research conditions (Kim & 
Yoon, 2011; Meade & Lautenschlager, 2004; Muthén & Asparouhov, 2002; Stark 
et al., 2006; Yoon, 2008; Yoon & Millsap, 2007).

Fitted Models
To test measurement invariance, two models under the nested condition were 
constructed according to Equation (2) (or Equation 4) and Equation (6) for the LR test. 
The MIMIC model with a direct path from the grouping indicator to each variable (for 
continuous data, an augmented model with bj as shown in Equation 6 and Figure 1 
with the dotted path) is compared with the model in which the corresponding path 
parameter (bj) was constrained at zero assuming invariance (a baseline model as 
presented in Equation 2, i.e., a model without the dotted path in Figure 1). The 
statistical significance of the chi-square difference given degrees of freedom between 
two models (in this study, df = 1) indicates the direct effect of group membership on 
the tested variable in favor of the augmented model. In other words, the tested variable 
is considered noninvariant over groups. In the LR test, two critical value adjustment 
strategies were employed and compared with no adjustment conditions. For the 
Bonferroni correction, critical p value .008 (= .05/6) was adopted because six LR tests 
were performed for each replication. For Oort adjustment, an adjusted chi-square 
critical value was computed for each simulation replication with Equation (7).

For model identification, the factor variance was fixed at 1. This identification 
strategy allows freely estimating the factor loadings of all observed variables instead 
of constraining one of the factor loadings at 1. For model estimation, we used 
maximum likelihood for continuous data and weighted least squares with robust mean 
and variance with theta parameterization for categorical data that are the defaults of 
the Mplus program, respectively.
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Data Analytic Procedures

Sensitivity of model fit indices under measurement noninvariance. To investigate the 
behaviors of MIMIC modeling under measurement noninvariance, we evaluated a 
model fit of the baseline model, which is a misspecified MIMC model with one or two 
items of noninvariance. The purpose of this investigation is to examine the sensitivity 
of model fit indices to the violation of the strict invariance assumption of MIMIC 
modeling expressed in Equation (2) (or Equation 4). The presence of noninvariance 
across groups should lead to the lack of fit of the MIMIC model. We examined a chi-
square fit statistic and the following goodness-of-fit indices: (a) the weighted root 
mean square residual (WRMR) for categorical items and the standardized root mean 
square residual (SRMR) for continuous items; (b) comparative fit index (CFI); and (c) 
the root mean square error of approximation (RMSEA). Recommended cutoff values 
of these goodness-of-fit indices for a good model fit are CFI ≥ .95, RMSEA ≤ .05, 
SRMR ≤ .05, and WRMR ≤ 1.00 (Browne & Cudeck, 1993; Hu & Bentler, 1999; Yu, 
2002) in addition to statistically nonsignificant chi-square (p ≥ .05). We examined the 
sensitivity of each fit statistic to the model misspecification due to measurement 
noninvariance. The sensitivity of a fit index was defined as the proportion of the 
replications in which the fit index did not meet the cutoff of a good fit. In other words, 
each fit index off the given range was considered as a correct indication of model 
misfit under the presence of noninvariant variables.

Power and Type I error rates. We examined power and Type I error rates to explore 
the performance of MIMIC modeling in detecting noninvariant variables. In this study, 
the power rate is defined as the proportion of the cases in which the LR test detected 
the noninvariant item or items correctly over 500 replications. Note that for two-DIF 
conditions, only when both noninvariant variables were correctly identified as 
noninvariance, the case was counted for power. For the Type I error rate, the proportion 
of the cases in which the LR test falsely detected an invariant item as DIF was 
computed across all invariant items over 500 replications.

Raw bias. In addition to power and Type I error rates, this study examined the raw 
bias of two-parameter estimates of MIMIC modeling. The parameter estimates of 
interest are the estimate of latent group mean difference (g, a direct path from the 
group indicator to the latent factor) and the DIF estimate (bY5, a direct path from the 
group indicator to the DIF item, Y5). The bias was investigated only for the correctly 
specified models (i.e., the augmented model of the LR test in which the effect of group 
membership X on the noninvariant variable Y5 was freely estimated for difference in 
the one-DIF conditions).

The raw bias of each simulation condition, B(qc) was calculated as

B Rc rc
r

R

c( ) ( )θ θ θ= −−
=∑1

1

 ,	 (8)

where q rc  denotes the parameter estimate for replication r in condition c, qc is the 
population parameter for q in condition c, and R denotes the total number of replications 
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(i.e., 500 in this study). For the g estimates, the population parameter (qc) was 0.5, 
which was the difference of factor means between reference and focal groups 
(reference group factor mean = 0.0; focal group factor mean = 0.5). For the b estimates 
of Y5, the magnitude of DIF of the intercept/threshold was considered as the population 
parameter because bj represents the group difference in the intercept or threshold of 
the jth variable (0.3 and 0.6 for small and large DIF, respectively).

Results
Simulation Baseline Check

We established the basal Type I error rate by examining the conditions without 
noninvariance. When all six variables were invariant across groups, the Type I error 
rate was evaluated at the critical p value of .05. The examined Type I error rates were 
simply .05, equal to the predetermined significance level across all simulation 
conditions (i.e., four levels of sample size conditions by three types of data; .04 only 
for polytomous data with sample size 100 per group). The simulation baseline check 
supported the adequacy of the simulation.

The Sensitivity of Model Fit Index to Noninvariance
This study examined a set of commonly reported fit indices of MIMIC modeling when 
noninvariance was present (Table 1). First of all, when factor loadings were 
noninvariant across groups, none of the studied fit indices could detect the model 
misspecification. In other words, the fit indices consistently and falsely supported a 
good fit of the factor loading–noninvariant MIMIC model. The sensitivity was 
virtually zero for most simulation conditions. Thus, in the report of each fit index 
below, the conditions of factor loading noninvariance were not included. Because the 
results of one-DIF conditions were similar to those of two DIFs, we reported the 
results of two-DIF scenarios only.

Chi-square fit statistic. Chi-square fit statistics showed high sensitivity to the model 
misspecification due to measurement noninvariance irrespective of simulation 
conditions. Even for small sample size conditions, chi-square was usually below the 
critical value rejecting the null hypothesis of a good model fit. The average p value of 
chi-square goodness-of-fit testing was .00 for most conditions.

Comparative fit index. CFI detected the noninvariance only when the magnitude of 
DIF was large. When DIF was small, CFI was not able to capture the noninvariance 
between groups with a sensitivity of near zero regardless of sample size. For CFI, the 
DIF size appeared to be a critical factor in detecting the model misspecification of 
measurement noninvariance. CFI was more sensitive to the noninvariance in 
continuous and polytomous data than in dichotomous data. The average CFI was .92 
for most large DIF conditions, whereas the average CFI was .97 for most small DIF 
conditions regardless of sample size. Hence, a more liberal cutoff of a good fit (i.e., 
CFI >.90) possibly fails to detect a model misfit with noninvariance between groups.
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Root mean square error of approximation. RMSEA on average of 500 replications 
ranged from .07 to .15, which exceeded the cutoff of a good fit, indicating model 
misspecification. That is, across all simulation conditions, RMSEA was quite sensitive 
to the presence of noninvariance between groups.

Standardized root mean square residual. The average SRMR for small noninvariance 
was .03, indicating a good fit failing to detect the model misspecification due to 
noninvariance. On the other hand, SRMR was greater than .05 on average when 
noninvariance was large. Thus, SRMR with the cutoff of .05 could inform researchers 
of model misspecification due to measurement noninvariance only when the DIF was 
large. As observed in CFI, SRMR appeared to be an adequate indicator of model misfit 
only for large DIF.

Weighted root mean square residual. With the cutoff of 1.00 (Yu, 2002) WRMR 
showed model misfits for large DIF or large sample size conditions. On average, 
WRMR ranged from 0.53 (small DIF in intercept with sample size 100 per group) to 
3.51.

Overall, when the magnitude of DIF was large, all examined model fit indices 
performed reasonably, indicating model misfits due to the presence of noninvariance 
in intercepts/thresholds. However, CFI and SRMR were not sensitive to small DIF 
showing a good fit regardless of sample size and data types.

Power and Type I Error Rates in Measurement Invariance Testing
The power rates. The power and Type I error rates of measurement invariance testing 

are presented in Tables 2 and 3. As observed in model fit evaluation, factor loading 
noninvariance was not detected reasonably in most simulation conditions. When a 
single variable was noninvariant across groups, the power rates improved with large 
sample and large DIF (Table 2). However, overall power rates were considerably low 
especially with two DIFs (e.g., near zero in most two-DIF conditions as presented in 
Table 3). On the contrary, for intercept/threshold noninvariance and noninvariance in 
both, the power rates were simply 1.00 unless sample size and DIF magnitude were 
small.

Comparing Bonferroni correction and Oort adjustment with no adjustment, we did 
not find any prominent difference in terms of power. Bonferroni correction degraded 
power slightly as expected. The performance of Oort adjustment with respect to power 
is worthy of further note because Oort adjustment in some cases improved and in other 
cases lowered the power rates slightly. For example, comparing one-DIF conditions 
(Table 2) to two-DIF conditions (Table 3), we observed relatively lower power rates 
for two-DIF conditions when Oort adjustment was applied. The lower power rates of 
Oort adjustment with multiple DIFs will be discussed later. Comparing three data 
types, MIMIC detected the noninvariance of continuous variables best followed by 
polytomous and dichotomous data.

The Type I error rates. As reported in previous studies, the Type I error rates were 
substantial throughout simulation conditions under no adjustment conditions. The 
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Type I error rates inflated as sample size and the degree of noninvariance increased. In 
combination of large sample size and large degree of noninvariance, the Type I error 
rates reached near 100% before critical value adjustment. When Bonferroni correction 
was applied, the Type I error rates slightly decreased, but they were still unacceptably 
high. Interestingly, Oort adjustment controlled the Type I error rates about the nominal 
level (i.e., .05) across conditions. The range of Type I error rates was .00 through .07 
for one-DIF conditions, .00 through .09 for two-DIF conditions.

When factor loadings were noninvariant across groups, the Type I error rates were 
not inflated as much as for noninvariance in intercepts/thresholds. With no critical 
value adjustment, the Type I error rates were below 10% in most conditions (the 
highest was 21% with two DIFs). However, these low Type I error rates do not support 
MIMIC modeling for factor loading noninvariance tests given the low (near zero) 
power.

Raw Bias
First, the raw bias in the parameter estimates of the latent group mean difference (g) 
was examined (see Table 4). Irrespective of simulation conditions, the raw bias of g 
was noticeably small ranging from -.001 to .007. Given that the simulated latent 
group mean difference is .500, the estimates, on average, fall between .499 and .507, 
which is close to the population parameter. Even in the conditions of factor loading 
noninvariance, the raw bias of g was near zero.

When the intercepts were noninvariant across groups, the population parameter bY5 
equals the size of simulated intercept or threshold noninvariance (.3 and .6 for small 
and large DIF, respectively). For continuous data, the estimates of bY5 were very close 
to the parameter, which yielded negligible raw bias (.000 in most conditions). For 
categorical data, raw bias was about -.04 for small DIF and -.08 for large DIF 
regardless of sample size.

For factor loading noninvariance conditions, MIMIC modeling does not estimate 
factor loading noninvariance explicitly. However, because the parameter bY5 (i.e., 
intercept noninvariance) equals zero, we reasoned that the raw bias of bY5 reflected the 
impact of factor loading noninvariance in the model. Entering the parameters in 
Equation (6), we could derive the effect of factor loading noninvariance mathematically: 
One group intercept is higher by the magnitude of the difference in lh (i.e., .2h for 
small factor loading noninvariance; .4h for large factor loading noninvariance). Then, 
the bY5 estimate will be negatively biased (i.e., -.2h and -.4h) to yield the equal 
intercepts across groups. In this study, the raw bias was estimated as -.05 and -.10 for 
small and large DIF conditions, respectively. As presented in Table 4, raw bias of bY5 
was close to the calculated effect of factor loading noninvariance.

When the noninvariance was present in both factor loading and intercept, the raw 
bias was calculated by subtracting the intercept/threshold noninvariance (.3 and .6 for 
large and small DIF, respectively) from the bY5 estimates. Then, the computed raw bias 
will be the sum of the raw bias of intercept/threshold noninvariance and the effect of 
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Table 4. The Raw Bias of Parameter Estimates in Correctly Specified MIMIC Models: Latent 
Group Mean Difference (g) and Intercept DIF (b)

Dichotomous Polytomous Continuous

g b g b g b

Both Small 100 .000 -.056 .000 -.140 -.001 -.049
200 .007 -.052 .005 -.140 .003 -.050
500 .003 -.053 .003 -.138 .004 -.048

1,000 .005 -.049 .004 -.141 .003 -.050
Large 100 .001 -.224 .000 -.400 -.001 -.099

200 .007 -.219 .005 -.395 .003 -.100
500 .003 -.220 .003 -.394 .004 -.098

1,000 .005 -.217 .004 -.398 .003 -.100
Intercept Small 100 .001 -.041 .000 -.039 -.001 .000

200 .007 -.038 .005 -.036 .003 .000
500 .003 -.040 .003 -.035 .004 .002

1,000 .005 -.035 .004 -.038 .003 .000
Large 100 .001 -.082 .000 -.081 -.001 .000

200 .007 -.080 .005 -.075 .003 .000
500 .003 -.083 .003 -.072 .004 .002

1,000 .005 -.075 .004 -.076 .003 .000
Factor 

loading
Small 100 .000 -.055 .000 -.051 -.001 -.049

200 .007 -.047 .005 -.051 .003 -.050
500 .003 -.052 .003 -.048 .004 -.048

1,000 .005 -.055 .004 -.053 .003 -.050
Large 100 .001 -.131 .000 -.119 -.001 -.099

200 .007 -.122 .005 -.123 .003 -.100
500 .003 -.129 .003 -.118 .004 -.098

1,000 .005 -.134 .004 -.122 .003 -.100

Note. MIMIC = multiple indicators multiple causes; LR = likelihood ratio; DIF = differential item function-
ing. “Both,” “intercept,” and “factor loading” are the location of noninvariance. “Small” and “large” are the 
magnitude of noninvariance. The sample size per group includes 100, 200, 500, and 1,000.

factor loading noninvariance. Therefore, we expected that the magnitude of raw bias 
in this case was close to the raw bias of factor loading noninvariance conditions if the 
raw bias of intercept/threshold noninvariance was near zero as observed in continuous 
data (Table 4). Overall, MIMIC modeling with categorical data exhibited larger bias 
(e.g., near -.40 for large DIF in polytomous data) when both factor loading and 
intercept were noninvariant.

Discussion
The Sensitivity of Model Fit Index of the Baseline MIMIC Model

When noninvariance are present in a model, researchers expect to observe lack of fit 
of the model that alerts researchers to check model misspecification, including 



Kim et al.	 487

measurement noninvariance. Although a model misfit does not inform researchers of 
the source of lack of fit, a misspecified model with measurement noninvariance (i.e., 
running an invariance-imposed model when a certain type of invariance is violated) 
should not show a good model fit. It is also important to know which model fit index 
is sensitive to the presence of measurement noninvariance.

This study observed the insensitivity of model fit indices to the violation of factor 
loading invariance assumption of the MIMIC model. All examined model fit indices, 
including chi-square p, CFI, RMSEA, and SRMR/WRMR supported a good fit failing 
to detect the factor loading noninvariance. This finding implies that the good fit of a 
MIMIC model (in Equations 2 and 4) that inherently assumes full invariance may not 
guarantee the equivalence of factor loadings over groups and underscores the 
importance of explicit tests of measurement invariance using either nonuniform 
MIMIC/RFA or multiple group CFA.

Among the fit indices investigated in this study, chi-square p and RMSEA showed 
the highest sensitivity to the model misspecification with the measurement 
noninvariance in intercepts/thresholds. CFI and SRMR were not sensitive to the model 
misspecification because of the presence of small-size DIF. In practice, because 
researchers assessing measurement invariance do not know the magnitude of DIF, it is 
recommended to refer to RMSEA and WRMR (for categorical data) in addition to chi-
square fit statistic. However, when small noninvariance is not of great concern in a 
study, all fit statistics examined in this study appeared to provide correct information 
of model lack of fit. The final recommendation about fit indices of the MIMIC model 
is to use a more conservative cutoff, which means CFI >.95, RMSEA and SRMR <.05 
rather than .90 and .08, respectively, if measurement invariance is of interest.

The Power and Type I Error Rates
The previous simulation studies consistently presented high Type I error rates in 
detecting noninvariant variables with MIMIC modeling (Finch, 2005; Navas-Ara & 
Gomez-Benito, 2002; Oort, 1998; Wang et al., 2009). So did this simulation study 
before the Oort adjustment was applied to the chi-square critical values. We observed 
enormously large chi-square differences in the LR tests not only for the noninvariant 
variables but also for the invariant variables, especially when sample size and DIF size 
were large. The inflated chi-square differences presumably lead to the more frequent 
rejections of the null hypothesis even when the null hypothesis is true, which results 
in Type I error inflation. This was demonstrated in the no-adjustment conditions of 
this study.

The chi-square inflation in the LR test using MIMIC modeling may be explained 
with the misspecification of the baseline model. When the model includes any 
noninvariant variable and is analyzed with the assumption of invariance across groups, 
which is inherently done in the baseline MIMIC model, the chi-square fit statistic 
likely inflates because of the model misspecification error. However, this speculation 
requires further research for confirmation.

Bonferroni correction is one option of critical value adjustment to control Type I 
error inflation. In this study, each replication went through six LR tests that might 
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inflate Type I error. However, the major cause of Type I error inflation appeared 
beyond the experimentwise Type I error inflation. As Oort noted (1992, 1998), the 
inflation more likely originated from the oversensitivity of chi-square fit statistic to 
model misspecification errors, which becomes more evident with large sample size 
and large DIF. Therefore, Bonferroni correction will not be an appropriate remedy in 
this case although it could lower Type I error rates. As the results showed, after the 
Bonferroni adjustment, the Type I error rates were still considerably high throughout 
all conditions. Another concern of Bonferroni correction is in the power reduction. 
Adopting more conservative critical p value reduced the power to identify the 
noninvariance. However, this power shrinkage was less obvious when sample size and 
the degree of noninvariance were large. To sum up, Bonferroni correction appears not 
to be an optimal method to suppress the inflated Type I error rates in measurement 
invariance testing with MIMIC model.

Oort correction does not merely lower the critical value but takes into account the 
magnitude of baseline chi-square value given degrees of freedom. Therefore, instead 
of evaluating the model fit with one fixed critical value such as 3.84 (c2 with one 
degree of freedom at a = .05), the critical chi-square value was tailored for each model 
depending on the degree of inflation of chi-square. The results of this simulation study 
showed that the Oort adjustment worked remarkably well when the Type I error 
inflation was severe. For example, in the large sample and large intercept DIF condition 
of continuous variables the Type I error rate dropped from .95 to .00 after the Oort 
adjustment. Because Oort adjustment tailored the critical chi-square value for each 
baseline model, it did not lessen the power to detect the noninvariance much when 
there was only one noninvariant variable.

However, Oort adjustment attenuated power when two variables were noninvariant: 
the deterioration of power was notable compared with the one-noninvariant-variable 
cases. Given that only one variable was relaxed at a time in the LR test, even when the 
less restricted model correctly specified one of the DIF items, another noninvariant 
variable existed in the model. That is, when the baseline model had two noninvariant 
variables, the less restricted model in which one of DIF was relaxed for inequality 
over groups still had one noninvariant variable. That is, both models (baseline model 
with two DIF variables and augmented model with one DIF variable) in the LR test are 
incorrectly specified. As explained by Yuan and Bentler (2004), the LR tests between 
a misspecified baseline model and a misspecified unconstrained model did not yield 
the same power in detecting DIF items as the LR tests did with only one DIF item. 
This understanding on the power degradation with more than one noninvariance calls 
for the iterative procedure of the LR test. Because the Type I error rates were 
considerably low throughout conditions with Oort adjustment, the detected variable in 
the first LR test was more likely to be one of the DIF variables. Hence, if this detected 
item is free to be estimated across groups and if this unconstrained model is used as a 
baseline for the following LR test, the same high performance of MIMIC is expected 
as we observed in the one-DIF conditions. We can expect decent results from the 
iterative LR tests when the detected variables are likely to be noninvariant variables 
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(i.e., when the Type I error rate is low). Therefore, the statistical approach to control 
for the Type I error rates (e.g., Oort adjustment) will play a critical role in the LR tests 
using MIMIC modeling.

Raw Bias
Regarding raw bias, overall parameter estimates were fairly accurate if the model was 
correctly specified (i.e., Y5 was specified as DIF). Importantly, the estimates of latent 
group mean difference (g) were unbiased even with the factor loading noninvariance. 
Irrespective of data type, sample size, and DIF size, the parameter estimates were very 
close to the population parameter, which is very encouraging to the users of MIMIC 
modeling for latent group mean difference testing. However, special attention is needed 
for the parameter estimates of bY5. We observed that the estimates of bY5 included 
noninvariance of all sorts (i.e., not only intercept noninvariance but also factor loading 
noninvariance if present). Because the current MIMIC modeling is not capable of 
separating intercept noninvariance from factor loading noninvariance, the estimate of 
bY5 should not be interpreted as the estimate of intercept noninvariance only.

If factor loading noninvariance was confounded with intercept noninvariance and 
manifested as bY5, why were the power rates so low in the factor-loading-noninvariance-
only conditions? When the factor loading noninvariance was converted to bY5, the 
magnitude of the converted bY5 in this study was -.05 and -.10 for small (.20) and 
large (.40) factor loading noninvariance, respectively. Given that the magnitude of 
small intercept noninvariance was .30 in this study, the converted factor loading 
noninvariance was very small in size, which is less likely to be detected in the 
measurement invariance testing.

In summary, whereas the performance of MIMIC modeling with Oort adjustment 
was decent (i.e., high power and about nominal-level Type I error) in the identification 
of intercept noninvariance, MIMIC modeling showed poor performance in detecting 
factor loading noninvariance. Therefore, the researchers interested in measurement 
invariance testing should be aware of the downsides of the current MIMIC modeling 
for uniform noninvariance.

Conclusion
Measurement invariance testing is important to establish the validity of a measure 
across subpopulations of interest. The detection of noninvariant variables is essential 
to improve test quality and, furthermore, to understand the meaning of noninvariance 
over groups, and to avoid flawed conclusions based on measurement bias in the use of 
a test. From the findings of this study, we make two suggestions to the researchers 
conducting measurement invariance testing. First, the MIMIC model for uniform 
noninvariance did not detect the factor loading noninvariance properly. Thus, the 
current MIMIC model should be used only when the factor loading invariance is 
achieved. In practice, it is recommended to use MIMIC modeling for nonuniform bias 
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or multiple group CFA for measurement invariance testing. Second, for the LR tests, 
when the chi-square difference between two models is likely to inflate (e.g., the 
baseline model is possibly contaminated with noninvariant variables in measurement 
invariance testing), and subsequently Type I error is inclined to inflate, we strongly 
recommend Oort adjustment to control Type I error inflation in the LR tests.
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