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Two general frameworks have been proposed for evaluating statistical power of tests of model

fit in structural equation modeling (SEM). Under the Satorra–Saris (1985) approach, to evaluate

the power of the test of fit of Model A, a Model B, within which A is nested, is specified as

the alternative hypothesis and considered as the true model. We then determine the power of

the test of fit of A when B is true. Under the MacCallum–Browne–Sugawara (1996) approach,

power is evaluated with respect to the test of fit of Model A against an alternative hypothesis

specifying a true degree of model misfit. We then determine the power of the test of fit of A when

a specified degree of misfit is assumed to exist as the alternative hypothesis. In both approaches

the phenomenon of isopower is present, which means that different alternative hypotheses (in

the Satorra–Saris approach) or combinations of alternative hypotheses and other factors (in the

MacCallum–Browne–Sugawara approach) yield the same level of power. We show how these

isopower alternatives can be defined and identified in both frameworks, and we discuss implications

of isopower for understanding the results of power analysis in applications of SEM.

Statistical power analysis is widely used to aid in research planning across a range of research

designs and statistical models and methods. A generic power analysis involves several steps,

beginning with establishment of a null hypothesis, H0, to be tested, where H0 usually specifies

a testable hypothesis about a condition in the population of interest. Typical null hypotheses

specify values of one or more population parameters or functions of parameters. An alternative

hypothesis, H1, is specified and is assumed to be true for purposes of power analysis, with

the difference between H1 and H0 representing effect size, or the degree to which H0 is false.

Given the distribution of a test statistic under H0 and under H1, it is then possible to determine

statistical power, or the probability of rejecting H0 when H1 is true. The outcome of such an

analysis depends on various factors including effect size, sample size, and the ’ level to be
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used in the test of H0. Power analysis provides the investigator with a capability for estimating

the likelihood of detecting an anticipated effect, or an effect of scientific or practical interest. It

also provides for determination of the size of an effect that can be detected with high likelihood

given other design characteristics. Power analysis is also commonly used to determine minimum

sample size .N / necessary to detect a particular effect with a desired level of power.

The phenomenon of isopower involves the existence of different alternative hypotheses

(possibly in combination with changes in other factors) that yield the same level of power for

a test of a given null hypothesis. Implicitly this phenomenon means that the same effect size

might be produced by different H1s. Thus the outcome of a given power analysis might not be

uniquely a function of the particular H1 employed in a computation of statistical power, which

means that the particular H1 might more appropriately be considered as a member of a class

of isopower alternatives, with all H1s in that class yielding the same power. In practice, if

such isopower alternatives exist, the investigator may benefit from identifying at least some of

them so as to gain more information about effects associated with a given level of power. Such

information might better inform research design and interpretation of results. These issues are

discussed further later in this article.

We examine here the issue of isopower in the context of power analysis for tests of structural

equation models. Given a structural equation model and a set of sample data to which the

model can be fit, and assuming the use of maximum likelihood (ML) estimation, the model

of interest is typically tested using the likelihood ratio test. The conventional H0 is that the

model is correct in the population, or that the population covariance matrix, †, is exactly

explained by the model. Equivalently we can specify the null hypothesis as H0: F0 D 0,

where F0 is the population value of the ML discrepancy function used for estimation, and

the alternative hypothesis is H1: F0 > 0. Thus, H0 represents perfect fit in the population

and H1 represents imperfect fit. The null hypothesis is tested using the likelihood ratio test

statistic, T D .N � 1/ OF , where OF is the sample value of the ML discrepancy function. Under

H0 and multivariate normality T is asymptotically distributed as ¦2 with degrees of freedom

d D p.p C 1/=2 � q, where p is the number of measured variables in the model and q is

the effective number of parameters estimated. The H1 in the usual test of H0 is that † is an

arbitrary unstructured covariance matrix. The sample ¦2 is compared with a critical ¦2 and a

significant result indicates rejection of the H0 of perfect model fit in the population, whereas

a nonsignificant result indicates that H0 is statistically plausible.

Investigators evaluating structural equation models are often interested in the statistical

power of the likelihood ratio test just described. However, power analysis for this test cannot

be conducted in exactly this framework because the alternative hypothesis, H1: F0 > 0, is

not sufficiently well defined to allow us to completely specify the distribution of T under

H1. A more specific H1, specifying a particular value of F0, is needed to allow for defining

that distribution. Two different approaches have been developed for establishing useful H1s

for power analysis in this context, one originating in work by Satorra and Saris (1985) and

the other originating with MacCallum, Browne, and Sugawara (1996). These two frameworks

use the same body of statistical theory for determining power, but very different concepts

and procedures for establishing H1. In this article we review each of these approaches briefly

and, for each, we then closely examine the phenomenon of isopower. We show how isopower

alternatives can be defined and discuss the implications of their existence for power analysis

for tests of structural equation models.
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FIGURE 1 Model A representing null hypothesis H0 .

ISOPOWER IN THE SATORRA–SARIS FRAMEWORK

Defining H1 in Terms of Parametric Misspecification

Suppose the model in Figure 1 represents a Model A to be tested and that the investigator

wishes to carry out power analysis for the likelihood ratio test of this model. This process

requires specification of an alternative hypothesis, H1. Satorra and Saris (1985) defined an

H1 by specifying an alternative Model B, where A is nested in B. For illustrative purposes

suppose the Model B in Figure 2 represents this H1. An important requirement of this approach

is that the investigator must also specify values of all of the parameters in B. Again, Figure 2

shows such numerical values for purposes of illustration. These values might be based on prior

research or might simply represent plausible values or values of interest to the investigator. For

purposes of power analysis, Model B is assumed to hold exactly in the population. As shall

be seen, power analysis then provides the probability of rejecting A when B, with its specified

parameter values, is true.

Of particular importance are the values of the parameters that differentiate A and B, which

are designated “1 and “2 in Figure 2. The assigned values of these parameters establish a kind

FIGURE 2 Model B representing alternative hypothesis H1 .
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of effect size—the degree to which Model A is misspecified, or in other words, the degree

to which H0 is false. Note that under H0 the parameters “1 and “2 have hypothesized values

of zero, but under H1 they are assigned values of .20. Thus, H1 defines particular parametric

misspecifications of the model being tested, Model A.

Following the approach described by Satorra and Saris (1985) the actual power computation

proceeds as follows. From Model B with its assigned parameter values we compute the implied

covariance matrix, †B. Model A is then fit to †B by ML estimation, with N specified as the N

of interest for the power analysis. This step yields a discrepancy function value, FAjB reflecting

lack of fit of A when B is true. Under this H1 the test statistic, T , follows a noncentral chi-

square distribution with degrees of freedom d D p.p C 1/=2 � q and noncentrality parameter

œAjB D .N � 1/FAjB. Power is then computed in the usual fashion, as illustrated in Figure 3.

The distribution on the left in Figure 3 represents the distribution of T under H0, which is

central chi-square with d D p.p C 1/=2 � q, and the distribution on the right represents the

distribution of T under H1, which is noncentral chi-square with the same degrees of freedom,

and noncentrality parameter œAjB D .N � 1/FAjB. A critical value of chi-square is determined

on the distribution of T under H0, and power is then computed as the area beyond that critical

value under the distribution of T under H1.

In the illustration based on the models in Figures 1 and 2, when we fit A to †B we find

FAjB D :126. If we set N D 100 we find œAjB D 12:50. Both distributions have 5 degrees of

freedom. The power computation under these conditions yields a value of .79, meaning that if

B is true in the population with its assigned parameter values, and if we carry out the likelihood

ratio test of Model A using a random sample of N D 100 and ’ D :05, the probability of

rejecting the misspecified Model A would be .79.

FIGURE 3 Null and alternative distributions of the test statistic for determining statistical power.
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Isopower Under Parametric Misspecification of the Tested Model

Given this framework for specification of H1, the isopower issue then involves the possible

existence of other misspecified models that would yield the same level of power. We show

that there generally exists an infinite number of such alternatives. We consider first how this

phenomenon could occur generically. Note that the distribution of the test statistic under H0 is

fixed, and that the distribution of T under H1, which establishes the degree of misspecification

of A and in turn the value of the noncentrality parameter for the distribution of T under

H1, will determine the level of power. Thus, any alternative model, or H1, that yields the

same noncentral distribution of T will result in the same level of power for the test of H0.

More specifically, because the critical aspect of that distribution under H1 is the noncentrality

parameter, œAjB, and because œAjB D .N � 1/FAjB, then any Model B that yields the same

FAjB when A is fit to †B will result in the same power for the test of Model A. The set of

all such alternative models that have this property defines a class of isopower alternatives. We

consider next several different ways to identify and generate such alternatives.

Case 1: Alternative Values of Parameters for Model B

In the example represented in Figure 2, the parameters labeled “1 and “2 are assigned values

of .20 and the resulting power of the test of exact fit of Model A (in Figure 1) is .79. Saris and

Satorra (1993) pointed out that different values of “1 and “2 could be determined that would

also yield power of .79 for the test of Model A. In fact, an infinite number of pairs of such

values would exist, and Saris and Satorra presented a computational method for determining

an “isopower contour” that represents all such possible values. Following their procedure we

have obtained the isopower contour shown in Figure 4 for our running example. Each point

on the ellipse in Figure 4 represents a pair of values of “1 and “2 that, when combined with

FIGURE 4 Pairs of parameter values .“1; “2/ producing power of .79.
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the fixed values of the other parameters in Model B in Figure 2, would yield power of .79 for

the test of Model A. For example, if we assign “1 D �0:2 and “2 D C0:2, and hold other

parameters at their values shown in Figure 2, then the test of Model A when Model B is true

would have power of .79. Another isopower alternative is obtained by setting “1 D 0:0 and

“2 D �0:28.

As the number of parameters that differentiate Model B from A increases, this isopower

contour would become a hyperellipse in a higher dimensional space, but the general principle

still holds. That is, there are alternative values for the parameters that differentiate B from A

that yield the same level of power for the test of A. (Note that if B is differentiated from A by

only one parameter, “1, and a value is assigned to “1 for purposes of power analysis, then this

type of isopower analysis will yield only one alternative isopower value for “1; that is, there

would be two isopower points rather than an isopower contour.)

Case 2: Equivalent Models

It has been shown that for virtually any structural equation model it is possible to construct

differently parameterized models that will fit any data exactly as well as the original model

(Lee & Hershberger, 1990; MacCallum, Wegener, Uchino, & Fabrigar, 1993; Stelzl, 1986). In

the present context, this phenomenon can be seen to generate alternative models that represent

isopower alternatives. For example, any model that is equivalent to Model B in Figure 2 will

yield the same power when used as an alternative in the test of Model A. Given Model B, one

could implement rules presented by Lee and Hershberger (1990) to generate equivalent models.

For instance, this approach could produce Model B1 in Figure 5. The issue in power analysis

then is to define parameter values in B1 that would yield the same implied covariance matrix

as does B. This could be achieved easily by constructing †B from the parameter values in

Model B (Figure 2), then fitting Model B1 (Figure 5) to that †B. The parameter values in the

resulting solution establish the full alternative hypothesis; those values are shown in Figure 5.

The covariance matrix †B1 implied by Figure 5 is identical to †B implied by Figure 2.

Obviously, when Model A is fit to †B1 and power analysis computations are completed, the

resulting power would be .79, the same as when Model B is used as the alternative hypothesis.

FIGURE 5 Model B1: An isopower alternative produced using equivalent models.
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FIGURE 6 Model B2: An isopower alternative in which Model A is nested.

The full set of models that are equivalent to B would represent isopower alternatives. In many

applications this set would be very large, as shown by MacCallum et al. (1993).

Case 3: Any Alternative Model in Which A Is Nested

Given a particular Model A and alternative Model B, isopower alternatives can also be con-

structed using as the alternative model any model in which A is nested. These alternatives need

not have the same number of parameters as B. For example, consider Model B2 in Figure 6.

Model B2 has only one more parameter than A, whereas Model B had two more parameters

than A. For B2 to serve as an isopower alternative, and holding all of the common parameters

between B2 and A to be the same as they were for B, we would need to find a value for

the single differentiating parameter, “1 in Figure 6, such that the resulting power for testing

A against B2 would again be .79. A procedure for solving this problem is described in the

Appendix. Implementing this procedure in the example here yields the solution “1 = 0.28, as

shown in Figure 6. For a given alternative model in which A is nested, this approach can be

followed to produce isopower alternatives.

Case 4: Any Alternative Model Regardless of Nesting

Case 3 can be extended such that isopower alternatives can be constructed using any alternative

Model B regardless of whether A is nested in B. The only constraint would be that B could not

be nested in A or equivalent to A (in an equivalent-model sense). For any B that meets these

conditions, the procedure described in the Appendix and used under Case 3 in the previous

section can be implemented to yield an isopower alternative. For example, Model B3 in Figure 7

has the same number of parameters as A, so there is no nesting relationship (and no model

equivalence). This model along with the parameter values shown in Figure 7 would generate

an implied covariance matrix †B3, and when A is fit to †B3 the resulting discrepancy function

value, FAjB3, would match FAjB from our original example, thereby providing an isopower

alternative. Again, this procedure can be applied for any alternative model that is not nested

in A.
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FIGURE 7 Model B3: An isopower alternative in which Model A is not nested.

Case 5: Alternative Covariance Matrices That Are Not Model-Derived

From the framework described earlier it can be seen that the key to defining isopower alterna-

tives is that the same discrepancy function value is obtained when A is fit to the covariance

matrices represented by those alternatives. In our running example, any alternative covariance

matrix that, when fitted by A, yields a discrepancy function value that matches FAjB D :126

would be an isopower alternative. The four previous cases we have described for constructing

such alternatives all are model-based, such that different alternative models are constructed

and parameter values are determined so as to define a class of isopower alternatives. We

consider here the possibility of generating isopower alternatives that are not model-based; that

is, constructing isopower alternatives in the form of alternative covariance matrices, all of

which would yield the same discrepancy function value, and in turn the same power, when fit

by the original Model A.

Surprisingly, such alternatives can be produced easily using a procedure described by Cudeck

and Browne (1992) for constructing covariance matrices with a specified lack of model fit. In

the present context, given Model A and essentially any assigned parameter values yielding an

implied covariance matrix †A, the Cudeck–Browne procedure can be implemented to produce

an infinite number of perturbed covariance matrices, †B D †A C �, such that when A is fit to

†B, a desired specified discrepancy function value is obtained. (We note that this procedure can

break down computationally if the user specifies a discrepancy function value that is too large,

representing a very high degree of model misfit. In such situations, though, power analysis

would be of little interest because power for detecting extremely poor fit of Model A would

virtually always be very high.)

In our running example, Model A with parameter values shown in Figure 8 yields the

implied †A shown in Table 1. To generate isopower alternative covariance matrices, we wish

to construct perturbed covariance matrices such that when fit by A they will yield a discrepancy

function value of .126, as mentioned earlier. The Cudeck–Browne procedure could in theory be

used to construct an infinite number of covariance matrices with this property. Table 1 shows

two such matrices. Each represents an isopower alternative in the sense that, if either matrix is

defined as an alternative hypothesis representing the true state of the population of interest, and

if Model A is tested using the likelihood ratio test, the power of that test will be .79. These alter-
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FIGURE 8 Model A with arbitrary specified parameter values.

natives and their difference from †A can be viewed as providing a sense of the degree of general

disturbance or perturbation of †A that is associated with a given level of statistical power.

Summary of Isopower Under the Parametric Misspecification Approach

The conventional view of the Satorra–Saris (1985) approach to power analysis is that a

Model A is tested under the assumption that a fully specified alternative Model B holds

in the population. Under this framework one can determine the power for the test of A, and

interpretation is generally stated in terms of the power for detecting particular misspecifications

in A, represented by the parameters and their values in B that differentiate B from A. Given

TABLE 1

Implied Covariance Matrix, †A and Two Perturbed Covariance Matrices

Generated by Cudeck and Browne (1992) Procedure

Variables y1 y2 y3 x1 x2

†A y1 0.82
y2 0.18 0.82
y3 �0.60 �0.60 1.00

x1 0.60 0.30 �0.54 1.00
x2 0.30 0.60 �0.54 0.50 1.00

†A C �1 y1 0.82
y2 0.07 0.82

y3 �0.53 �0.53 0.92
x1 0.60 0.30 �0.50 1.00
x2 0.32 0.60 �0.62 0.50 1.00

†A C �2 y1 0.82

y2 0.28 0.82
y3 �0.66 �0.66 1.07
x1 0.60 0.41 �0.51 1.00

x2 0.39 0.60 �0.60 0.50 1.00

Note. Perturbed covariance matrices were obtained setting the desired minimum
discrepancy function value, F at 0.126.
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the developments presented in this article, the particular alternative Model B constructed in

this sort of power analysis can be recognized to be a single member of an infinitely large

class of isopower alternatives. These alternatives need not have a nesting relationship with

A, nor even be based on a particular parametric misspecification of A. Recognition of the

existence of this class, and possibly exploring some of its particular members, can serve to

further illuminate the level and kind of misspecification of A that is associated with a given

level of power.

ISOPOWER IN THE MACCALLUM–BROWNE–SUGAWARA FRAMEWORK

Defining H1 in Terms of Overall Model Fit

Whereas the Satorra–Saris (1985) approach to power analysis is based on defining an alternative

to Model A in terms of specific parametric misspecifications of A, MacCallum et al. (1996)

instead defined the alternative hypothesis in terms of overall misfit of Model A. Given a

Model A to be tested, the null hypothesis of perfect fit can be stated in terms of the population

discrepancy function value, F0, as H0: F0.A/ D 0. As noted earlier, under H0 the test statistic

T D .N � 1/ OF will follow a central chi-square distribution with degrees of freedom d D

p.p C 1/=2 � q.

To define an alternative hypothesis for purposes of power analysis for this test, MacCallum

et al. (1996) suggested specifying A to have a particular degree of misfit in the population, rather

than to be misspecified by omission of particular parameters that have specified values. To this

end MacCallum et al. employed the root mean squared error of approximation (RMSEA) fit

index (Browne & Cudeck, 1993; Steiger & Lind, 1980), defined in the population as © D
q

F0

d
.

From this definition we can see that the null hypothesis of perfect fit of Model A could also be

expressed as H0: ©A D 0. More generally, we designate the hypothesized value of © under H0

as ©0, so that under the test of perfect fit, ©0 D 0. Power analysis then requires that one choose

an alternative value of RMSEA, designated ©1, that represents the misfit of Model A under

the alternative hypothesis, H1. Under that alternative we can then compute the noncentrality

parameter for the distribution of T under H1 as œ1 D .N �1/F1 D .N �1/d©2
1. This framework

defines the two distributions shown in Figure 3, and power can be computed in the usual way.

The result yields the power of the test of the null hypothesis H0: ©A D 0 when the alternative

hypothesis H1: ©A D ©1 is in fact true.

For example, suppose we wish to test the null hypothesis of exact fit, H0: ©A D 0, for

a Model A that has 20 degrees of freedom. And suppose we set ©1 D :05, implying an

alternative hypothesis H1: ©A D :05. Letting N D 200, the distribution of T under this

H1 would be noncentral chi-square with 20 degrees of freedom and noncentrality parameter

œ1 D .N � 1/d©2
1 D .199/.20/.:05/2 D 9:95. Power can then be computed, corresponding to

Figure 3, and found to be 0.40. That is, if we test the null hypothesis that RMSEA is zero

when the true value of RMSEA is .05, for a model with 20 degrees of freedom, N D 200,

and ’ D :05, the probability that we will reject the null hypothesis is .40. (MacCallum et al.,

1996, provided SAS code for such computations, and Preacher and Coffman, 2006, provide an

online calculator.)
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MacCallum et al. (1996) generalized this approach to allow for power analysis where the

null hypothesis specifies something other than exact fit. For example, Browne and Cudeck

(1993) proposed a test of close fit, where the null hypothesis is that H0: © � :05. One might

wish to investigate the power of the test of this H0 when actual model fit is not close, such as

© D :10. This generalization is straightforward. We simply choose null and alternative values

of RMSEA, designated ©0 and ©1 . We then determine the power for testing H0: © � ©0 when

the alternative H1: © D ©1 is true. Under H0 the distribution of T is noncentral chi-square with

d D p.pC1/=2�q and noncentrality parameter œ0 D .N �1/d©2
0. Under H1 the distribution of

T is noncentral chi-square with the same degrees of freedom and with noncentrality parameter

œ1 D .N � 1/d©2
1. Power is then computed as in Figure 3, with the only difference being that

the distribution under H0 is noncentral rather than central chi-square.

For example, for the test of Model A earlier in this section, if we set ©0 D :05, ©1 D :10, and

N D 200, and we conduct the analysis just described, we find power is .84. This means that if

we test the null hypothesis that the RMSEA for Model A is � .05, when the actual RMSEA

is .10, the likelihood that we will reject H0 is .84. This approach provides estimates of the

likelihood of detecting a degree of misfit, regardless of its source, whereas the Satorra–Saris

approach focuses on detection of particular model misspecifications.

Isopower Under Overall Misfit of the Tested Model

As just described, for any selected values of ©0 and ©1, and holding d , N , and ’ constant,

we can determine the power of the test of H0: © � ©0 when the alternative H1: © D ©1 is

true. Given the outcome of such a power analysis, one way to frame the isopower question

in this context would be as follows: Do there exist other pairs of values of ©0 and ©1 that

would yield the same power? (Note that from this perspective we are allowing both H0

and H1 to change to identify isopower alternatives, which represents an important difference

from our approach under the Satorra–Saris power analysis framework; we return to this point

shortly.)

It is relatively straightforward to identify these isopower alternatives. Given the targeted

level of power, and given the choice of any ©0, and holding d , N , and ’ fixed, the value of

©1 can be computed by a method described in the Appendix. To identify a range of isopower

alternatives, then, we can choose values of ©0 across a specified range, and for each selected

©0 we can compute the corresponding ©1 that would yield the desired power. Recall that for

Model A, with d D 20, N D 200, and ’ D :05, if we set ©0 D :05 and ©1 D :10, then power

is .84. The curve in Figure 9 illustrates isopower alternatives for this problem, with each point

on the curve representing a different pair of values of ©0 and ©1 that yield the same power of

.84. For example, if we set ©0 D 0:08 and ©1 D 0:126, then power is again .84. Note that we

can obtain such a contour for any desired level of power. Figure 10 shows isopower curves

for selected power levels of .50, .70, and .90. Such information can be useful in indicating the

degree of difference between ©0 and ©1 that can be detected with a given probability in testing

a model with specified degrees of freedom and using a selected N . For example, the curve for

power of .90 shows different pairs of ©0 and ©1 that would yield that power; e.g., ©0 D 0:05 vs.

©1 D 0:105, or ©0 D 0:10 vs. ©1 D 0:150. Based on such information, an investigator might,

for example, recognize a need to adjust design features (e.g., sample size) or expectations.

Regardless, the mere existence of an infinite number of isopower alternative pairs of ©0 and ©1
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FIGURE 9 Isopower curve showing pairs of root mean squared error of approximation .©0; ©1/ for power of

.84, given N D 200, d D 20, ’ D :05.

FIGURE 10 Isopower curves showing pairs of root mean squared error of approximation .©0 ; ©1/ for the

same level of power, given N D 200, d D 20, ’ D :05.
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supports the need to interpret any given power calculation as a result associated with only one

member of this class.

We noted earlier that the approach just described allows both ©0 and ©1 to vary, implying

that both H0 and H1 vary. In our consideration of isopower alternatives under the Satorra–Saris

approach we held H0 fixed. In the present context of power analysis based on overall model

fit, if we hold H0 fixed (meaning ©0 is held fixed) there is only one value of ©1 that yields a

given level of power, unless we also allow one of the other design factors (d , N , ’) to vary.

The most interesting approach would be to hold ©0 fixed and to allow both ©1 and N to vary.

This approach would allow the determination of various combinations of ©1 and N that would

yield the same power as the original test of H0: ©A � ©0 versus the alternative hypothesis H1:

©A D ©1 where N was specified.

Again recall that in our running example for the test of Model A, if we specify ©0 D :05,

©1 D :10, N D 200, d D 20, and ’ D :05 the resulting power is .84. If we hold fixed ©0, d ,

and ’, we can identify other combinations of ©1 and N that yield this same level of power. A

method for computing these alternative combinations is described in the Appendix. Application

of this method in this example yields the contour for d D 20 shown in Figure 11. For instance,

holding ©0 D :05, setting ©1 D 0:083 and N D 400 also yields power of .84. (For illustrative

purposes Figure 11 also shows isopower contours for other selected levels of d.) Again, such

information serves both to clarify the nature and existence of isopower alternatives and also to

assist the investigator in identifying other conditions under which a false H0 will be rejected

at a given level of probability. More general information can be obtained by simply specifying

a particular level of power of interest, along with values of ©0, d , and ’, and then computing

pairs of values of ©1 and N that yield the specified power. Table 2 shows an example of

FIGURE 11 Isopower curve showing pairs of ©1 and N yielding the same level of power D .84.
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TABLE 2

Pairs of ©1 and N That Produce Power of .84, Holding df and ’ Level Fixed

N

d 100 150 200 250 300 400 500

5 .188 .159 .143 .132 .124 .114 .106

10 .153 .131 .118 .110 .104 .096 .091
15 .136 .118 .107 .100 .095 .088 .084
20 .126 .110 .100 .094 .089 .083 .079

25 .119 .104 .095 .090 .086 .080 .076
30 .114 .100 .092 .086 .083 .078 .074
50 .102 .090 .083 .079 .076 .072 .069

75 .093 .083 .077 .074 .071 .068 .066
100 .088 .079 .074 .071 .069 .065 .064

Note. ©1 was computed setting targeted power at .84, ’ D :05.

such information, illustrating how an investigator can be informed about the level of difference

between ©0 and ©1 that can be detected at a given N , or the level of N needed to detect various

differences between ©0 and ©1.

Summary of Isopower Under the Overall Model Fit Approach

Typical use of the MacCallum et al. (1996) approach to power analysis for tests of model fit is

based on testing a given Model A with known degrees of freedom. The investigator specifies

H0: ©A � ©0 and H1: ©A D ©1 , along with N , d , and ’, and computes power as illustrated

earlier. The result is then interpreted as the likelihood of rejecting the null hypothesis H0:

©A � ©0 when the alternative hypothesis H1: ©A D ©1 is actually true. The framework presented

earlier shows that the result of such a power analysis in effect selects a single set of conditions

from an infinitely large class of conditions that would produce exactly the same outcome.

Members of this class can be defined by different combinations of ©0 and ©1, holding other

elements fixed, or by different combinations of ©1 and N , again holding other elements fixed.

The existence of this class of isopower alternatives impacts interpretation of any particular

power analysis, and examination of members of this class can help to inform the investigator

about the degree of levels of misfit that are likely to be detected.

DISCUSSION

We have examined the issue of isopower in the context of two different approaches for power

analysis in structural equation modeling (SEM). The two approaches use the same underlying

statistical distribution theory for determining power (as illustrated in Figure 3), but involve

different approaches to defining an alternative hypothesis. The Satorra–Saris (1985) approach

defines H1 in terms of an alternative model assumed to be true in the population, where that

alternative model defines particular parametric misspecifications of the model being tested. By

contrast, the MacCallum–Browne–Sugawara (1996) approach defines H1 in terms of a specified
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degree of misfit of the model being tested. It is informative to recognize the relationship between

the nature of classes of isopower alternatives in the two approaches, as described earlier in

this article. Under the Satorra–Saris approach, all members of an isopower class of alternatives

yield a constant degree of lack of fit of the tested model in the population. That is, all such

isopower alternatives represent alternative models or conditions where, when a tested Model A

is fit to the covariance matrix implied by H1, the same discrepancy function value, FAjB, is

always obtained. Thus, although the parameter values or actual parameterization of the model

defined under H1 varies, the fit of Model A to the covariance matrix implied under H1 does

not vary. This condition, in turn, then yields the same power for the test of Model A across all

such alternatives. Translating this scenario into more familiar lack-of-fit terminology, all such

isopower alternatives would yield the same value of common fit measures computed directly

from the discrepancy function value, such as the RMSEA index, when fit by Model A.

By contrast, our construction of isopower alternatives under the MacCallum–Browne–

Sugawara approach to power analysis allowed for lack of fit of Model A under H1 to vary, as

represented by the alternative value of RMSEA, designated ©1 earlier in this article. Allowing

©1 to vary requires that some other factor in the power analysis scenario must also vary

for the resulting level of power to be constant. In our study of this problem we showed

isopower alternatives obtained by allowing both ©1 and ©0 to vary (see Figures 9 and 10),

and also by allowing both ©1 and N to vary (see Figure 11). In summary, our study of the

isopower phenomenon under the two general approaches to power analysis in SEM yields two

rather different kinds of classes of isopower alternatives. Within the Satorra–Saris approach,

all members of such a class represent the same degree of misspecification of a tested Model A,

whereas under the MacCallum–Browne–Sugawara approach, members of such a class represent

different degrees of lack of fit of Model A coupled with variation in one other quantity in the

power analysis computation.

Regardless of which approach is being used, a general principle that applies to all power

analysis is relevant here: All power analysis is conditional by nature. The investigator specifies

a null hypothesis to be tested, then specifies an alternative hypothesis that is assumed to be

true in the population, along with other design and testing features, then computes statistical

power for those specified conditions. The result is interpreted as the probability of rejecting

H0 if H1 is true, and assuming all other specified conditions hold. This article has focused on

the fact that different conditions can and will result in the same value for power. In the present

context of SEM, we have shown that there can be an infinite number of such combinations

of conditions that yield the same power, and also that some computational methods can be

applied for identifying many members of this often infinitely large class of alternatives.

In considering implications of this issue for practice, one should recognize the somewhat

arbitrary nature of at least some of the conditions and quantities specified in a given power

analysis in SEM. The tested model is typically a highly restricted model with development

and specification that often involves some uncertainty and exploration. A specified alternative

hypothesis also might represent an arbitrary comparison point established for purposes of

power analysis. Under the Satorra–Saris approach, such an alternative involves specification

of parameter values that are clearly subject to uncertainty. Under the MacCallum–Browne–

Sugawara approach the specification of a degree of misfit, represented by ©1, merely represents

an alternative of interest to the researcher rather than a true condition. Rather than consider

the set of conditions constructed for a particular power analysis to be rigidly defined and
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unchangeable, it is sensible and informative to consider the effect of changing those conditions.

This concept raises two possibilities. One is to alter the conditions and examine effects on

power, showing how power varies with alterations in various quantities. This idea has been

examined earlier in papers including those by Satorra and Saris (1985) and MacCallum et al.

(1996). A second approach is to hold power constant and to examine alternative sets of

conditions that yield the same power, as investigated in this article. Identification of such

isopower alternatives can provide the investigator with further information and insight about

the nature and degree of misspecification or misfit that can be detected at a given level of

power.

These developments on the issue of isopower have two general implications for investigators

using SEM. First, the mere existence of these isopower alternatives should be taken into

account when interpreting and reporting the outcome of any power analysis in SEM. More

specifically, we suggest that an investigator state that an obtained result for a power computation

is not isomorphic with the particular set of conditions specified in the power analysis, and that

different sets of conditions likely exist, probably in infinite number, that would yield the

same result. We do not view this point as a criticism of power analysis in SEM, but rather

as an important aspect of understanding and interpreting a result. From this perspective, the

developments in this article can be viewed simply in terms of contributing to the understanding

and full interpretation of power analysis in SEM, and not implying a need for further analysis

and computation in practice. In fact, it is not our intention to urge routine application of analyses

to produce isopower alternatives in empirical applications, but moreso to provide further insight

so as to inform interpretation of power analysis in SEM.

Nevertheless, there could well be circumstances where it might be of use to investigators to

identify and examine some members of a class of isopower alternatives. So a second implication

of this work is that such analyses are feasible and can be informative. As illustrated earlier,

for at least some cases this process is not computationally difficult, and the examination of

some isopower alternatives might assist the investigator in reaching a richer understanding

of power analysis results.1 As noted earlier, such an examination provides the investigator

with a tool for explicitly incorporating into a power analysis the uncertainty associated with

specifying conditions for that analysis. For example, in the Satorra–Saris approach, given

specification of a tested Model A and alternative Model B as described earlier, the investigator

can examine alternative values of the distinguishing parameters representing different degrees of

misspecification that could be detected with equal power (Case 1 earlier in this article). Or, still

within the context of the Satorra–Saris approach, the investigator could examine the degree

of misspecification associated with completely different distinguishing parameters (distinct

alternative models) that could be detected with equal power (Cases 2, 3, and 4 earlier). In the

MacCallum–Browne–Sugawara approach, given the somewhat arbitrary nature of specification

of ©0 and ©1 , the investigator could examine different degrees of hypothesized and true fit that

yield the same level of power (as in Figure 10). Such an extension of a typical power analysis

in SEM could more explicitly take into account the conditional and sometimes arbitrary nature

of a particular power analysis and provide richer information about the kind and degree of

misspecification that can be detected at a given level of power.

1Software code written to obtain some of the results in this article can be obtained on request from the second

author, Taehun Lee, by e-mailing taehun@email.unc.edu.
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Thus, although the formal developments in this article were not originally intended for

routine computational application in practice, such analyses are feasible and could well be

useful to some investigators. Regardless of whether such analyses are conducted in practice,

we believe that an awareness and understanding of the phenomenon of isopower can enhance

the understanding and interpretation of power analysis results in SEM.
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APPENDIX

Obtaining Parameter Values for Model B so as to Yield a Specified Power

for Test of Model A

Given a Model A nested in a Model B, the problem is to find parameter values for Model B such

that a power analysis for a test of fit of Model A (null hypothesis) versus Model B (alternative

hypothesis) yields a specified level of power. Equivalently, we wish to find parameter values

for Model B such that the test of fit of A when B is true yields a specified value of the

discrepancy function, F . Let ”A be a parameter vector for Model A, and ”B be a parameter

vector for Model B. The covariance matrix implied by Model A is †.”A/ and the covariance

matrix implied by Model B is †.”
B
/. When ”

B0
, a specific value of ”

B
, is given, a discrepancy

function value, F0 D F Œ†.”A/; †.”B0/� can be obtained by fitting model A to †.”B0/. But

here our purpose is, given a specified Model A and Model B, to generate Q”B, a specific value

of ”B that produces a desired discrepancy function value, F �.
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To find such a Q”B, an iterative procedure is employed. Letting ”0
B

D Œ Q”B1; ”0
B2

� represent

an initial value of Q”B D Œ Q”B1; Q”B2�, the idea is to seek a scaling constant ›n such that

F Œ†.”
A
/; †. Q”

B1
; ›n”

0
B2

/� D F � where F.�; �/ is the maximum likelihood discrepancy function,

and where ”B2 indicates any one element of parameters of Model B. In the case where Model A

is nested within Model B, ”B2 can be chosen as any one of the parameters additionally

specified for Model B. Then Q”B1 is fixed at particular values of parameters in Model B

during iteration. Again, in the case where Model A is nested within Model B, Q”B1 contains

the same parameters as Model A. The index n represents iteration number. If we consider

y D F Œ†.”A/; †. Q”B1; ›n”
0
B2

/� � F � to be a function of ›n, then this is a straightforward

one-dimensional root finding problem. That is, the problem is to find a value of the scaling

factor › such that y D 0. In our examples, Brent’s method was used to find the appropriate

scaling constant. The Brent method is described in detail in section 9.3 of Press, Teukolsky,

Vetterling, and Flannery (1992).

It should be noted that y D F Œ†.”A/; †. Q”B1; ›n”0
B2

/� � F � is a nonlinear equation and

therefore, it is possible that there are no roots. In addition, in the case where ”B2 consists of

more than two elements, there exists another source of problem of finding roots. Now Q”B2 is a

vector of parameters and ›n”
0
B2

represents a straight line in the parameter space with direction

given by the fixed ”0
B2

, and hence the elements of this vector do not change independently.

Therefore, possibly some choices of ”0
B2

will not permit finding a root. In our experience this

algorithm has performed very well and has not failed as long as the value of F � is not set

extremely high and the specified parameter values are in a realistic range.

The same procedure can be applied to the situation where Model A and Model B do not

have a nesting relationship with each other. Then, the choice of separation of ”B into ”B1 and

”
B2

can be made arbitrarily. Again, we have found the algorithm to work well in this context

as long as Models A and B are not radically different with respect to parametric structure.

Obtaining Pairs of Null and Alternative RMSEA Values to Yield a Specified

Level of Power

To compute statistical power in SEM, a total of five pieces of information are needed. That is,

the statistical power ( ) in SEM is a function of five arguments: significance level (’), sample

size (n), degree of freedom (df ), noncentrality parameter under the null distribution (œ0) and

noncentrality parameter under the alternative distribution (œ1), and critical value.

Let ¦2
c be the critical value under the null hypothesis, given ’ level, then

  D f .n; d; œ0; œ1; ¦2
c/

and equivalently,

  D f .n; d; ©0; ©1; ¦2
c/

as œ0 D .n � 1/.d/.©0/2 and œ1 D .n � 1/.d/.©1/2.

Therefore, given the target level of power ( ), if any four arguments’ values are provided,

any one remaining argument’s value that produces the desired level of power ( ) can be
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obtained. For example, given the desired power,  , if a researcher provides the information on

n, d, ©0, and ¦2
c , then, by finding the root of the equation

f .n; d; ©0; ©1; ¦2
c/ �   D 0

the value of ©1 can be obtained.

More specifically, to get the pairs of ©0 and ©1 producing same level of power, say .80, the

following steps are needed.

1. Hold d, n, and ’ fixed and choose a value of ©0.

2. Compute noncentrality parameter, œ0, of the chi-square distribution under H0.

3. Obtain critical value ¦2
c such that the probability that the chi-square distributed random

variable has value greater than ¦2
c equals ’ under H0. That is, Pr.¦2 > ¦2

c jH0/ D ’.

4. Compute the noncentrality parameter œ1 of the chi-square distribution under H1, which

produces the targeted level of power by solving the equation Pr.¦2 > ¦2
c jH1/ D  .

5. Simple algebraic manipulation of œ1 D .n � 1/.d/.©1/2 gives ©1 value of interest.

With different choice of ©0 in Step 1, holding d, n, and ’ fixed, a different value of ©1 that

produces the targeted level of power would be obtained. The pairs of ©0 and ©1 computed in

this way constitute the isopower alternatives.

Obtaining Pairs of Alternative RMSEA and Sample Size to Yield a Specified

Level of Power

The underlying principle of getting pairs of N and ©1 producing the same power is the same

as that of obtaining pairs of ©0 and ©1 producing the same level of power as described in the

previous section. More specifically,

1. Hold d, ©0, and ’ fixed and choose a value of n.

2. Compute noncentrality parameter, œ0, of the chi-square distribution under H0.

3. Obtain critical value ¦2
c such that the probability that the chi-square distributed random

variable has value greater than ¦2
c equals ’ under H0. That is, Pr.¦2 > ¦2

c jH0/ D ’.

4. Compute the noncentrality parameter œ1 of the chi-square distribution under H1, which

produces the targeted level of power by solving the equation Pr.¦2 > ¦2
c jH1/ D  .

5. Simple algebraic manipulation of œ1 D .n � 1/.d/.©1/2 gives ©1 value of interest.

With a different choice of n in Step 1, holding d, ©0, and ’ fixed, a different value of ©1 that

produces the targeted level of power would be obtained. The pairs of n and ©1 computed in

this way constitute isopower alternatives.


