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We apply the Supplemented EM algorithm (Meng & Rubin, 1991) to address a

chronic problem with the “two-stage” fitting of covariance structure models in

the presence of ignorable missing data: the lack of an asymptotically chi-square

distributed goodness-of-fit statistic. We show that the Supplemented EM algorithm

provides a convenient computational procedure that leads to such a chi-square

statistic, and we provide a SAS macro implementing this method. Our derivations

are corroborated with results from a small simulation study. We also apply the

proposed method to 2 empirical data sets: (a) confirmatory factor analysis of

Mardia, Kent, & Bibby’s 1979 Open-book Closed-book data and (b) conditional

latent curve modeling of adolescent aggressive behavior as discussed by Curran

(1997).

Fitting covariance structure models (CSM) when some data are missing can be

considerably more complicated than when all cases are complete. Under the

working assumption that the data are missing at random (MAR) and that the

missingness mechanism is ignorable, if we assume multivariate normality of the

manifest variables, three methods of estimation are readily available for structural
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models that can be identified from means and covariances.1 The first method

is known as full-information (or direct) maximum likelihood (FIML; Anderson,

1957; Arbuckle, 1996), in which one maximizes a sum of log-likelihoods for

individual cases instead of the log-likelihood based on complete data sufficient

statistics. The second method uses multiple imputation (MI; Schafer, 1997) to

“fill in” missing data drawn from the posterior predictive distribution of the miss-

ing data given the observed data. Generally, M > 1 complete data sets are pro-

duced and each subsequently analyzed with complete data tools. The M sets of

results are then appropriately combined to arrive at a single set of estimates. The

third method is the so-called EM “two-stage” procedure (hereafter EM2S). In the

first stage one uses the EM algorithm (Dempster, Laird, & Rubin, 1977) to find

the maximum likelihood estimate (MLE) of the mean vector and the covariance

matrix of the manifest variables based on incomplete data. In the second stage,

a structural model is fitted to the EM estimated means and covariances using

conventional CSM software. In the research reported here, we focus on EM2S.

The EM2S estimator is consistent and asymptotically normal (Yuan & Bentler,

2000). Though there may be efficiency difference between EM2S and FIML,

this is usually not a cause for concern unless the fraction of missing data is

extremely large. Empirically, the point estimates produced by EM2S and FIML

are often virtually identical (see, e.g., Allison, 2003).

Numerous authors have pointed out desirable features of the two-stage pro-

cedure in applied research. First, software packages are readily available for

both the EM estimation of means and covariances and estimation of structural

parameters based on complete data sufficient statistics. Second, just as what

Enders and Peugh (2004) pointed out, EM2S makes it easy to include so called

auxiliary variables that are not part of the structural model but nonetheless

are related to the pattern of missingness into the analysis. The usefulness of

this inclusive strategy has been confirmed in a number of studies (e.g., Collins,

Schafer, & Kam, 2001) as the MAR assumption seems better satisfied if auxiliary

variables are present. Though Graham (2003) showed that one can also make

special accommodations for auxiliary variables in FIML estimation, we note that

with EM2S, special accommodations are not necessary. One simply estimates

a larger covariance matrix with more variables. Third, unlike MI, the EM2S

estimator is purely deterministic, that is, no stochastic imputations are generated.

This is important because the patterns of missingness in real data sets are

generally not monotone,2 which necessitates the use of Markov chain Monte

1We deliberately avoid considering such extended CSM models as nonlinear or mixture models

because those models can only be identified from raw data.
2Loosely speaking, monotone missing means that the columns of the data set can be arranged

such that if a case is missing in one of the columns, then all subsequent columns are missing. The

reader should refer to Schafer (1997) for the precise definition of monotone missing data.
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Carlo based methods to generate the imputations. Yet the chains converge

weakly (and asymptotically in time), so there is no finite-time guarantee that

the imputations are indeed drawn from the posterior predictive distribution of

the missing data. Standard convergence diagnostics such as time-series plots or

autocorrelation plots can become cumbersome if the number of variables is large.

In sum, proper use of multiple imputation algorithms based on Markov chains

requires much greater care and experience than a deterministic method such as

EM2S. Finally, we would like to add one more reason for favoring the two-

stage procedure—the availability of a single mean vector and covariance matrix

for reporting in journal publications. In contrast, because the FIML estimator is

based on the raw data, it is difficult to provide enough statistical information in

an article so that the reader can replicate the findings without obtaining the raw

data set.

Despite the advantages, the lack of an asymptotically chi-square distributed

goodness-of-fit (GOF) statistic is a critical flaw of the EM2S estimator. The

naive practice of multiplying the minimum fit function value by the number

of cases .N / minus one does not lead to a chi-square statistic. In fact, Yuan

and Bentler (2000) showed that this naive statistic is distributed as a mixture of

one degree-of-freedom chi-square variates. At an intuitive level, the covariance

matrix analyzed in the second stage contains “less information” due to the

missingness, and a multiplier based on the number of cases tends to inflate

the test statistic. This heuristic observation directly motivated Enders and Peugh

(2004) to consider alternative choices of the multiplier instead of N � 1. Un-

fortunately, their adjustments are based on ad hoc simulation results without

enough analytical justification.

The most thorough treatment of this problem to date is given by Yuan and

Bentler (2000). Indeed, the statistic that we propose in this article can be derived

along the same line as Yuan & Bentler’s T4 statistic. Yet it is our original contri-

bution to point out the connection between the Supplemented EM algorithm with

the GOF problem in EM2S estimation of CSM. Furthermore, despite the gen-

erality of Yuan & Bentler’s estimating equation approach (as they must because

their focus was on nonnormality), we take a rather minimalist, pure likelihood

approach that we believe is more accessible. We argue that after using the EM al-

gorithm to estimate the means and covariances, the Supplemented EM algorithm

requires only a trivial amount of additional computation, for which we supply

a SAS macro that can be obtained free of charge. Tangentially, it is also our

intention to introduce the Supplemented EM algorithm in full generality to inves-

tigators who use the EM algorithm in contexts other than missing data because

the Supplemented EM is applicable whenever the EM is. Other potential appli-

cations will become possible once this link is pointed out (see, e.g., Cai, 2008).

Although the original EM algorithm is well known, the Supplemented EM

algorithm seems to be a relatively obscure subject among researchers in the
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behavioral sciences. Therefore, a review of the key technical aspects of the

Supplemented EM algorithm is provided in the first section. We also walk the

reader through the details of the Supplemented EM with an artificial example.

Next, we address the problem of GOF testing for EM2S. It is shown that the key

to this problem lies in the computation of an asymptotic covariance matrix that

can be readily obtained using the Supplemented EM algorithm. Results from a

small simulation are reported to verify the analytical results, and two example

data sets are analyzed to demonstrate the use of an SAS macro implementing

the proposed method. The article concludes with a discussion about extensions

of the proposed procedure and other uses of the Supplemented EM algorithm.

THE SUPPLEMENTED EM ALGORITHM

In order to discuss the Supplemented EM algorithm, we must first review the

EM algorithm in the classical incomplete data context. The introductory material

is intended to provide a context general enough to accommodate our specific

application.

The EM Algorithm

The essence of the EM algorithm is to transform the intractable incomplete data

estimation problem into iteratively solving a sequence of simple complete data

problems. Suppose the observed data Y can be augmented by the missing data

X to permit the representation of the complete data as Z D .Y; X/. Suppose

further that the task is to find the MLE O¢ of a d -dimensional parameter vector

¢ based on a parametric model for the observed data, whose density is f .Yj¢/.

Let  .XjY; ¢/ be the conditional density of the missing data given the

observed data, so that the complete data density is given by

f .Zj¢/ D f .Yj¢/ .XjY; ¢/:

It then follows that the observed data log-likelihood can be written as

l.¢ jY/ D l.¢ jZ/ � log  .XjY; ¢/; (1)

where l.¢jY/ is the observed data log-likelihood, and l.¢ jZ/ the complete data

log-likelihood.

Dempster et al. (1977) noticed that had the missing data been observed, the

complete data log-likelihood would often become easy to maximize. Suppose a

provisional estimate of ¢ is ¢�, one iteration of the EM algorithm consists of
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(a) the E(xpectation) step, in which the expected complete data log-likelihood

is computed as

Q.¢ j¢�/ D
Z

l.¢ jZ/ .XjY; ¢�/dX; (2)

and (b) the M(aximization) step, in which Q.¢ j¢�/ is maximized to yield an

updated estimate of ¢. The two steps are iterated until convergence.

Once the MLE is obtained, a natural next step is to assess its variability.

It is well known that the negative of the second derivative matrix of l.¢ jY/

evaluated at the MLE is the (observed) information matrix, whose inverse is

the large-sample covariance matrix of the parameter estimates. However, having

incomplete data makes the analytical evaluation of l.¢ jY/ and its derivatives

“difficult or at least tedious” (McLachlan & Krishnan, 1996, p. 111). The EM

algorithm circumvents the difficulty by not computing the derivatives, but this

implies that the EM does not provide a covariance matrix at convergence. Since

its inception, much criticism has been leveled at the EM algorithm regarding this

apparent deficiency. A number of authors have proposed methods for computing

the information matrix (e.g., Louis, 1982; Meilijson, 1989). The most easily

accessible procedure for such a purpose is the Supplemented EM algorithm

(Meng & Rubin, 1991), which is introduced below in three parts. Schafer (1997)

also contains a description of the procedure.

Part One: The Missing Information Principle

First, let

I .¢ jY/ D �@2l.¢ jY/

@¢@¢T
; I .¢ jZ/ D �@2l.¢ jZ/

@¢@¢T
(3)

be the observed data and the complete data information matrix, respectively.

Next, let

Ic. O¢ jY/ D
Z

I . O¢ jZ/ .XjY; O¢/dX (4)

be the conditional expectation of the complete data information matrix, and let

Im. O¢ jY/ D
Z

�@2 log  .XjY; O¢/

@¢@¢T
 .XjY; O¢/dX (5)

be the missing information matrix, both evaluated at the MLE. Then after

taking second derivatives on both sides of Equation (1), and integrating over
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 .XjY; O¢/, one arrives at the missing information principle of Orchard and

Woodbury (1972):

I . O¢ jY/ D Ic. O¢ jY/ � Im. O¢ jY/

D
˚

Id � Im. O¢ jY/I �1
c . O¢ jY/

	

Ic. O¢ jY/;
(6)

where Im. O¢ jY/I �1
c . O¢ jY/ is a matrix representation of the fraction of missing

information, and Id is a d � d identity matrix. In other words, the first line

of Equation (6) says that the observed data information is exactly equal to the

complete data information minus the missing information, whereas the second

line says that the observed data information matrix can be obtained by adjusting

the complete data information matrix according to the (matrix) fraction of

missing information.

Part Two: The EM Map

Suppose the parameter space of ¢ is S , a subset of R
d . The EM algorithm

defines a vector-valued mapping, ¢ ! M.¢ /, from S to itself. Let the estimate

of ¢ in the kth iteration be ¢ .k/. Then the EM map can be written as

¢ .kC1/ D M.¢ .k//: (7)

It is clear that O¢ D M. O¢ /, so the MLE is referred to as a fixed point of the EM

map. Suppose further that the mapping is continuous, then in the vicinity of O¢ ,

a Taylor series expansion of M.¢ / yields, to a first approximation,

¢ .kC1/ D M.¢ .k// � M. O¢ / C �. O¢/.¢ .k/ � O¢/ D O¢ C �. O¢/.¢ .k/ � O¢/; (8)

where

�. O¢/ D @M. O¢ /

@¢
(9)

is the .d � d/ Jacobian matrix of M.�/ evaluated at the MLE. If we let Mj .¢ /

be the jth element of M.¢ /, and ¢i be the ith element of ¢, then the .i; j /th

element of �. O¢/ is

O•ij D @Mj . O¢/

@¢i

:

Rearrangement of Equation (8) leads to

¢.kC1/ � O¢ � �. O¢/.¢ .k/ � O¢/;
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which shows that the EM algorithm is linearly convergent and the rate of

convergence is precisely �. O¢/.

An important result in Dempster et al. (1977) connects the rate of convergence

to the fraction of missing information. It can be shown that

�. O¢/ D Im. O¢ jY/I �1
c . O¢ jY/ (10)

holds in the vicinity of the MLE as long as the expected complete-data log-

likelihood is maximized in each M-step. On substituting (10)) into (6) and

inverting, the large-sample covariance matrix of the MLE can be written as

V. O¢ jY/ D I
�1. O¢ jY/ D I

�1
c . O¢ jY/ fId � �. O¢ /g�1 : (11)

Part Three: The Supplemented EM Algorithm

Equation (11) forms the basis of the Supplemented EM algorithm. By construc-

tion, Ic. O¢ jY/ depends only on the the complete data sufficient statistics so it

should be easy to compute. The rate matrix �. O¢/ can be computed using the

code and iteration history of the original EM, as shown later.

Assuming the original EM converged in K iterations, and the iteration history

has been saved as ¢.0/; : : : ; ¢.K/. Let

¢
.k/

.i/
D .O¢1; : : : ; O¢i�1; ¢

.k/
i ; O¢iC1; : : : ; O¢d /; (12)

where ¢
.k/
i is the ith element of ¢.k/ . In other words, ¢

.k/

.i/ is equal to O¢ except

that its ith element is replaced by its value at the kth iteration. From the basic

definition of the derivative, we have

O•ij D @Mj . O¢/

@¢i

D lim
¢i !O¢i

Mj .O¢1; : : : ; O¢i�1; ¢i ; O¢iC1; : : : ; O¢d / � Mj . O¢/

¢i � O¢i

D lim
k!1

Mj .¢
.k/

.i/ / � O¢j

¢
.k/
i � O¢i

D lim
k!1

•
.k/
ij ;

where the forward difference

•
.k/
ij D

Mj .¢
.k/

.i/ / � O¢j

¢
.k/
i � O¢i

(13)
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is the .i; j /th element of a d � d matrix �.k/ such that limk!1 �.k/ D �. O¢/,

element by element.

Equation (13) suggests that the sequence of �.k/’s can be obtained by the

following supplemental cycles after the convergence of the original EM. Because

these additional cycles are run after the main EM, Meng and Rubin (1991) called

the procedure Supplemented EM.

Set i D 1, and retrieve the output of the original EM at the kth iteration, that

is, ¢ .k/:

1. Compute ¢
.k/

.i/ as in Equation (12) and set it as a new starting value;

2. Run one iteration of the original EM started from ¢
.k/

.i/
to obtain M.¢

.k/

.i/
/;

3. Compute •
.k/
ij for j D 1; : : : ; d and this completes the ith row of �.k/;

4. Increase i by 1 and go back to step 1 or stop if i > d .

This completes the kth cycle of the Supplemented EM, and the result is �.k/ .

Next, we move on to the output of the original EM at the .k C 1/th iteration,

that is, ¢ .kC1/, and restart the process to compute �.kC1/ , and so on and so

forth until the �’s stabilize. Note that with a matrix-oriented programming

language such as GAUSS or SAS/IML, the ith row of �.k/ can be computed as

an element-by-element division between ŒM.¢
.k/

.i/ / � O¢�T and .¢
.k/
i � O¢i /.

Our strategy for monitoring the convergence of the Supplemented EM al-

gorithm is to start it at ¢.1/ and run it for K� � K cycles, where K� is de-

termined if the maximum element-wise difference between �.K��1/ and �.K�/

is sufficiently small. Meng and Rubin (1991) noted that the Supplemented EM

algorithm amounts to numerically differentiating the EM Map, so the stopping

criterion should be less stringent than the original EM. They proposed that one

use the square root of the original EM’s stopping criterion. In our experience,

that suggestion has performed well.

An Illustrative Example of Supplemented EM at Work

We use an artificial bivariate data set with partial missing observations to better

explicate the details of the Supplemented EM. The data can be found in Table 1.

The two variables are denoted as Z1 and Z2. The task is to compute the MLE

TABLE 1

Artificial Bivariate Data Set

Z1 4.5 �2.2 9.7 28.0 — �19.8 6.1 — �3.3 �17.8

Z2 — 2.7 5.5 13.5 �7.2 �10.0 �6.2 �0.8 �13.2 —
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of the mean vector, along with its standard error. To do this, we first use the

EM algorithm for multivariate normal missing data problems to compute the

estimates of the means .Z1; Z2/T , the variances S11 and S22, and the covariance

S21, based on the observed incomplete data. Let the MLEs be ordered as O¢ D
.Z1; Z2; S11; S21; S22/

T . Details on implementing this particular EM algorithm

are discussed in the next section, but for now let us assume that such an algorithm

is available.

Table 2 shows a sequence of estimates from the iteration history of the EM

algorithm, up to Cycle 15. One can see that the means are started from zeros,

and the starting covariance matrix is an identity matrix. The vector of MLEs is

found to be O¢ D .0:266; �2:778; 184:552; 86:993; 69:243/T . At this point, one

would reason that the standard errors of the means could simply be obtained

by dividing the estimated variances by sample size (10 in this case) and taking

square root. However, as it is empirically demonstrated, this is incorrect and

will lead to standard errors that are too small. The problem with this line of

reasoning is that it ignores the fact that the amount of information the data

set actually contains is less than what the sample size would imply due to the

missing observations. The standard errors need to be adjusted, and we use the

Supplemented EM for such a purpose.

We start the Supplemented EM from the iteration history, beginning with

estimates from Cycle 1. First, we take the MLEs O¢ and replace the first element

by its value from Cycle 1, resulting in ¢
.1/

.1/ D .0:520; �2:778; 184:552; 86:993;

69:243/T . Next, we run one cycle of EM, with ¢
.1/

.1/ as its starting value. The

result is M.¢
.1/

.1// D .0:317; �2:801; 184:406; 87:098; 69:401/T . Using Equation

(13), we can compute the .1; 1/th element of �.1/ as

•
.1/

11 D
M1.¢

.1/

.1/
/ � O¢1

¢
.1/
1 � O¢1

D 0:317 � 0:266

0:520 � 0:266
D :200:

TABLE 2

A Possible Sequence of EM Iteration History

Cycle

Start 1 2 3 � � � 13 14 15

Z1 0 0.520 0.073 0.145 0.266 0.266 0.266

Z2 0 �1.570 �2.435 �2.646 �2.777 �2.777 �2.778

S11 1 165.946 188.382 187.018 � � � 184.553 184.552 184.552

S21 0 63.731 82.501 85.389 86.993 86.993 86.993

S22 1 56.230 66.324 68.089 69.242 69.243 69.243
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By the same token, the .1; 2/th element is

•
.1/
12 D

M2.¢
.1/

.1// � O¢2

¢
.1/

1 � O¢1

D �2:801 C 2:778

0:520 � 0:266
D �0:094:

We continue until all five elements in the first row of �.1/ are computed.

For the second row of �.1/, we follow the aforementioned routine. We

go back to the MLE and now replace its second element by its value from

Cycle 1, resulting in a new starting value ¢
.1/

.2/ D (0.266, �1.570, 184.552,

86.993, 69.243)T . Again, we run one cycle of the original EM to get M.¢
.1/

.2// D
(�0.037, �2.536, 185.852, 85.767, 67.902)T . The .2; 1/th element of �.1/ is

therefore

•
.1/

21 D
M1.¢

.1/

.2// � O¢1

¢
.1/
2 � O¢2

D �0:037 � 0:266

�1:570 C 2:778
D �0:251;

and other elements in the second row of �.1/ are similarly computed. When the

entire �.1/ is assembled, we have

�.1/ D

0

B

B

B

B

@

0:200 �0:094 �0:574 0:412 0:624

�0:251 0:200 1:077 �1:015 �1:111

0:000 0:004 0:200 �0:098 �0:048

�0:004 �0:007 �0:361 0:221 �0:010

0:005 0:000 0:242 �0:052 0:200

1

C

C

C

C

A

:

This completes the first cycle of the Supplemented EM, and we move on to

the next cycle in the EM iteration history to compute �.2/, and so on and so

forth.

The sequence of �.k/’s eventually converges element by element to the

Jacobian matrix of the EM Map M.�/. For our data set, the converged � is

�. O¢/ D

0

B

B

B

B

@

0:200 �0:094 �0:614 0:408 0:615

�0:251 0:200 0:772 �1:076 �1:304

0:000 0:004 0:200 �0:088 �0:038

�0:004 �0:007 �0:417 0:220 �0:013

0:004 0:000 0:209 �0:043 0:200

1

C

C

C

C

A

:

Given the MLEs of the means and covariance matrix, standard normal theory

results (e.g., Rao, 1973) can be used to establish the complete data covariance

matrix of O¢ , which is equal to the inverse of the conditional expectation of the
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complete data information matrix

I
�1
c . O¢ jY/ D

0

B

B

B

B

@

18:455 8:699 0:000 0:000 0:000

8:699 6:924 0:000 0:000 0:000

0:000 0:000 6811:882 3210:954 1513:565

0:000 0:000 3210:954 2034:674 1204:733

0:000 0:000 1513:565 1204:733 958:916

1

C

C

C

C

A

:

Plugging �. O¢ / into Equation (11), the observed data covariance matrix of O¢ is

V. O¢ jY/ D

0

B

B

B

B

@

20:432 8:439 �6:785 �0:327 2:274

8:439 7:731 2:619 �6:219 �6:144

�6:784 2:619 7232:400 3214:923 1483:815

�0:327 �6:219 3214:935 2183:355 1326:649

2:274 �6:144 1483:817 1326:642 1118:056

1

C

C

C

C

A

:

The diagonal elements of V. O¢ jY/ are, without exception, larger than the corre-

sponding elements in I �1
c . O¢ jY/. The adjustment effect of �. O¢/ is evident.

Finally, we are ready to compute the standard errors of the means. Table 3

shows three methods for computing these standard errors. The first one, under

the heading “complete data covariance,” is simply the square root of the first two

diagonal elements of I �1
c . O¢ jY/. The second one uses the Supplemented EM

adjustment. Purely for the sake of comparison, we have explicitly calculated the

second derivative matrices of the log-likelihoods for each individual case. Note

that in general latent variable modeling problems, the attempt at calculating

such a second derivative matrix would not only be difficult but also would

defeat the purpose of using the EM algorithm in the first place. Nevertheless,

the inverse of this Hessian times �1 is the observed data covariance matrix that

the Supplemented EM is trying to approximate. The square root of its diagonal

elements are shown in the last column of the table. One can see that (a) the

complete data standard errors are appreciably smaller than the other two sets of

standard errors, and (b) the quality of the Supplemented EM approximation is

excellent in this case.

TABLE 3

Estimated Standard Errors of the Means

SE

Estimate

Complete Data

Covariance

Supplemented

EM Approx.

Inverse of

Hessian

Z1 0.266 4.30 4.52 4.52

Z2 �2.778 2.63 2.78 2.77
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APPLICATION OF SUPPLEMENTED EM TO EM2S

TESTING OF CSM

Equipped with the theory developed in the previous section, we are now ready

to tackle the problem of GOF testing for the EM2S estimator. We first formalize

the EM2S estimator. A chi-square GOF statistic is then derived, followed by

some simulation results.

The EM2S Estimator

Consider a multivariate normal data matrix Z with N independent rows and

p variables. If the ith row of Z is zT
i , then zi follows a p dimensional mul-

tivariate normal distribution with mean � and covariance matrix �. Let ¢ D
Œ�T ; vech.�/T �T , where the operator vech.�/ stacks the unique elements of a

symmetric matrix. Clearly, the dimension of ¢ is d D p C p.p C 1/=2. Let the

MLEs of the mean vector and the covariance matrix be O� and O�, respectively,

then O¢ D Œ O�T ; vech. O�/T �T . For these moments, consider a structural model:

¢.™/ D
�

�.™/

vechŒ�.™/�

�

; (14)

where ™ 2 ‚ is a q-dimensional parameter vector in a subset of R
q . If there are

no missing data in Z, we can use standard CSM software such as SAS PROC

CALIS to estimate ™ from sample moments. If missing values are present in Z,

estimation of ™ can be carried out in two stages.

In the first stage, the EM algorithm is used to obtain the MLEs of � and

�. With no loss of generality, suppose zi can be partitioned as zi D .yT
i ; xT

i /T ,

where yi and xi are the observed and missing part of zi , respectively. Let �

and � be partitioned accordingly into missing and observed parts, that is, � D
.�T

i;y ; �T
i;x/T , and

� D
�

�i;yy �T
i;xy

�i;xy �i;xx

�

:

Given a provisional estimate of ¢ , say, ¢.k/ D Œ.�.k//T ; vech.�.k//T �T , the

conditional distribution of xi is multivariate normal with mean vector

�
.k/

i;xjy
D �

.k/
i;x C �

.k/
i;xy .�

.k/
i;yy /�1.yi � �

.k/
i;y /;

and covariance matrix

�
.k/

i;xjy
D �

.k/
i;xx � �

.k/
i;xy.�

.k/
i;yy/�1.�

.k/
i;xy/T :
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In the E-step, the missing values are replaced by their conditional means, that

is,

z
.k/
i D

 

yi

�
.k/

i;xjy

!

;

and the matrix of sums-of-squares and cross products is formed as

C.k/ D
N
X

iD1

(

z
.k/
i .z

.k/
i /T C

 

0 0

0 �
.k/

i;xjy

!)

:

In the M-step, the updated mean vector is computed as �.kC1/ D N �1
PN

iD1 z
.k/
i ,

and the updated estimate of covariance matrix is

�.kC1/ D N �1C.k/ � �.kC1/.�.kC1//T :

Suppose convergence is achieved at iteration K, the aforementioned EM algo-

rithm produces the MLE O¢ as well as the iteration history f¢.0/; : : : ; ¢.K/g.

In the second stage, the structural model (14) is fit to the MLE O¢ D Œ O�T ;

vech. O�/T �T by minimizing the following discrepancy function:

F.™I O¢/ D trf O�Œ�.™/��1g � log j O�Œ�.™/��1j � p

C Œ O� � �.™/�T Œ�.™/��1Œ O� � �.™/�:

(15)

We denote the EM2S estimator that minimizes F.™I O¢/ over ‚ as O™, and at

the minimum, the following GOF statistic is printed by all conventional CSM

software:

TF D .N � 1/F. O™I O¢/: (16)

GOF Testing

The naive GOF statistic TF is not asymptotically chi-square distributed. It is

distributed as a mixture of one degree-of-freedom chi-square variates (Yuan &

Bentler, 2000). It turns out that the key to finding a chi-square GOF statistic lies

in the asymptotic covariance matrix of the means and covariances. Once this

asymptotic covariance matrix is obtained, Browne’s (1984) residual-based statis-

tic may be used, which is asymptotically chi-square distributed for a consistent

and asymptotically normal estimator of ™, such as EM2S. Let

J.™/ D @¢.™/

@™
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be the d � q Jacobian of the structural model. Assuming Browne’s (1984) regu-

larity conditions, J.™/ is of full column rank, so there exists a d �.d �q/ matrix

Jc.™/ that is an orthogonal complement of J.™/, such that ŒJc.™/�T J.™/ D 0.

Let ¢. O™/ be the model-implied moments. The residual moments are simply

e D O¢ �¢. O™/: Furthermore, let „ D V. O¢ jY/ be the d �d asymptotic covariance

matrix of
p

N O¢ . Then for H0 W ¢ � ¢.™/ D 0 for some ™0 2 ‚ vs. H1 W
¢ � ¢.™/ ¤ 0 for any ™, the following GOF statistic

TB D N eT �e (17)

is asymptotically distributed as a central chi-square variable with d � q degrees

of freedom under the null hypothesis, where

� D ŒJc. O™/�fŒJc. O™/�T „ŒJc. O™/�g�1ŒJc. O™/�T :

The EM2S estimator provides consistent estimates of every matrix in Equa-

tion (17) except „, but it should be clear by now that the easiest method

for computing „ is the Supplemented EM algorithm, as long as the iteration

history f¢.0/; : : : ; ¢.K/g is saved. The covariance matrix „ is a rate adjusted

complete data covariance matrix I �1
c . O¢ jY/ fId � �. O¢/g�1

, as in Equation (11),

where Ic. O¢ jY/ takes an extremely simple form in this case due to multivariate

normality:

Ic. O¢ jY/ D
 

O��1
0

0 1
2
DT

p . O��1 ˝ O��1
/Dp

!

;

where Dp is the duplication matrix as defined in Schott (1997).

Standard Errors for Structural Parameter Estimates

It follows from results in Browne and Arminger (1995), particularly a Lemma

in Section 2.2, that the limiting covariance matrix of
p

N . O™ � ™0/ is

‡ D
˚

J.™0/T „�1J.™0/
	�1

: (18)

This can be consistently estimated by evaluating J at O™. The diagonal elements

of ‡ are the squared asymptotic standard errors for the structural parameters.

Simulation One: Type I Error

To support our claim that TB is indeed asymptotically chi-square distributed

under the null hypothesis, a small simulation was conducted. A confirmatory
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factor analysis model with six manifest variables and two correlated factors was

used in the simulation. The covariance structure may be written as

�.™/ D ƒˆƒT C ‰: (19)

The generating loading matrix is

ƒT D
�

0:8 0:8 0:8 0 0 0

0 0 0 0:7 0:7 0:7

�

;

and ˆ is set to a correlation matrix with ¥21 D 0:2. The unique variances are

given by ‰ D diag.§11; : : : ; §66/, where all the diagonal elements are equal

to 0.5. The number of free parameters q is equal to 13. The generating mean

vector is a null vector, and because the confirmatory factor model does not have

an explicit mean structure, the means are treated as nuisance parameters fixed

to their MLEs during estimation.

Multivariate normal data were simulated from the covariance structure in

Equation (19) under two kinds of missing data mechanisms: missing completely

at random (MCAR) and MAR. For the MCAR condition, the following pro-

cedure was used. First, for each observation, a fair coin was flipped to decide

whether there should be any missing values. Next, for the cases with missing

values, two uniform integers between 1 and 6, inclusive, were generated and

the values of the manifest variables indexed by the two integers were set to

missing. This produces about 16% missing observations. For MAR, there are two

conditions for the proportion of missing observations. The first three manifest

variables were set to missing if the mean of the last three manifest variables

were less than either �0:67 (MAR1) or �1 (MAR2), leaving either about 25

% or 15% of all cases with missing observations, respectively. In addition, a

condition with no missing data (NOMIS) is also included as a benchmark.

The four missing data conditions (NOMIS, MCAR, MAR1, MAR2) were

crossed with three sample sizes: N D 100; 300; 500, resulting in 12 sim-

ulation conditions. In each condition, 500 replications were attempted. For

each replication, the EM2S estimator was used to fit the confirmatory factor

analysis model. The stopping criterion for the EM was 1 � 10�10. For the

Supplemented EM algorithm, the stopping criterion was 1 � 10�5. A BFGS

solver was used to optimize the log-likelihood in the second-stage structural

model fitting. Nonconverged replications were discarded. The code for data

generation, first-stage EM estimation, and second-stage model fitting were all

programmed in GAUSS (Version 6.08, Aptech Systems, Inc., 2003).

Two GOF statistics were calculated in each converged replication, TF from

Equation (16) and TB from Equation (17). The reference distribution for both

statistics is a central chi-square distribution with eight degrees of freedom.
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The results are summarized in Table 4. We tabulate observed Type I error

rates at three significance levels: .01, .05, and .10. It is evident that TF is not

distributed as a chi-square variable when there are missing data. The rejection

rates are much too high. On the other hand, TB maintains good Type I error

rate control under missing or no missing data conditions. The distribution of TB

clearly approaches that of a chi-square variable as N increases.

TABLE 4

Simulation One: Type I Error

Significance Level

N Converged Statistic M SD Min Max 0.01 0.05 0.10

NOMIS

100 500 TF 8.26 3.98 0.63 23.91 .010 .056 .136

TB 7.91 3.77 0.61 20.84 .006 .040 .090

300 500 TF 8.01 4.15 0.98 26.32 .016 .052 .114

TB 8.01 3.92 1.20 22.84 .008 .058 .104

500 500 TF 8.19 4.09 1.13 24.22 .014 .056 .112

TB 8.07 4.00 1.12 25.49 .010 .052 .106

MCAR

100 480 TF 12.94 6.73 1.46 41.56 .135 .312 .427

TB 8.09 4.02 0.80 23.15 .008 .051 .106

300 488 TF 12.02 6.00 1.72 36.67 .105 .240 .352

TB 8.06 3.97 1.20 25.15 .014 .043 .105

500 490 TF 11.81 5.93 1.46 38.27 .098 .233 .331

TB 7.98 3.95 1.00 26.03 .010 .050 .104

MAR1

100 495 TF 11.97 6.46 0.92 38.90 .103 .259 .386

TB 7.79 3.77 0.64 20.85 .006 .040 .075

300 500 TF 11.38 5.76 1.32 39.85 .068 .210 .310

TB 7.92 3.98 1.03 28.33 .010 .052 .084

500 500 TF 11.38 5.84 2.09 36.93 .082 .194 .308

TB 7.99 4.00 1.55 25.66 .012 .054 .090

MAR2

100 498 TF 10.28 5.28 1.10 31.36 .060 .165 .261

TB 7.88 3.72 0.92 20.29 .002 .040 .092

300 500 TF 9.75 4.93 1.39 32.20 .030 .124 .206

TB 7.92 3.95 1.21 27.60 .008 .044 .094

500 500 TF 9.81 4.93 1.71 28.94 .040 .128 .198

TB 8.02 3.98 1.33 26.18 .012 .054 .104

Note. The entries in the Converged column refer to the number of converged replications in

each condition.
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Simulation Two: Power

Although having properly maintained Type I error rates is obligatory, the pro-

posed TB statistic would not be useful if it had no power to detect model

misspecification. To investigate this issue, we conducted another simulation,

using exactly the same generating confirmatory factor model, sample size, and

missing data conditions as in the first simulation. The difference is that the

two factors in the fitted model are constrained to be orthogonal. With the factor

correlation set to .2 in the generating model, the fitted model contains a relatively

small amount of misspecification.

Results are summarized in in Table 5. The reference distribution for both

TF and TB is a central chi-square with nine degrees of freedom. The power

estimates are in the last three columns of the table. Generally speaking, TB is

markedly less powerful than TF when some data are missing, but this advantage

of TF is mostly due to the elevated Type I error rates. In the NOMIS condition,

the power of TB is also less than TF but not appreciably so, especially when

N is large. Though TF may dominate TB ’s power curve, the lack of a well-

defined null distribution makes its usefulness for applied research less clear. On

the other hand, for about 5% less power in the NOMIS condition, one can now

have a GOF statistic (TB ) with a known distribution. We believe that the balance

clearly favors TB .

EXAMPLES

We use two examples to illustrate the foregoing theoretical and simulation

results. The computations were carried out using an SAS macro that we wrote.

The interested reader may download a free copy from Li Cai’s Web site at

http://lcai.bol.ucla.edu/programs.html. The usage of the macro is documented in

the Appendix.

Confirmatory Factor Model

Following Yuan and Bentler (2000), we first apply TB to Mardia, Kent, and

Bibby’s (1979) Open-book Closed-book data set (pp. 3–4). This data set contains

test scores on p D 5 subject areas from N D 88 examinees. For the original

complete data set, a correlated two-factor solution fits well. The factor pattern

is

ƒT D
�

œ11 œ21 0 0 0

0 0 œ32 œ42 œ52

�

:

This model has 11 free parameters, so there are four degrees of freedom. For

the complete data, TF D 2:07 and TB D 1:84. To create data that are MAR, we
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TABLE 5

Simulation Two: Power

Significance Level

N Converged Statistic M SD Min Max 0.01 0.05 0.10

NOMIS

100 500 TF 11.77 5.58 0.97 34.70 .052 .182 .260

TB 10.37 4.34 0.96 26.50 .018 .080 .168

300 500 TF 16.70 7.52 2.87 47.89 .208 .416 .540

TB 15.62 6.55 2.85 39.37 .164 .366 .482

500 500 TF 20.66 8.12 3.75 48.05 .410 .636 .746

TB 19.65 7.37 3.72 44.56 .360 .592 .724

MCAR

100 480 TF 16.49 7.76 1.76 50.18 .206 .435 .529

TB 10.47 4.34 1.26 25.55 .019 .081 .152

300 484 TF 20.67 8.59 3.63 60.53 .409 .626 .725

TB 15.05 5.92 2.90 41.83 .120 .347 .492

500 481 TF 25.34 9.74 4.69 67.98 .599 .796 .879

TB 19.28 7.21 3.38 50.00 .343 .590 .690

MAR1

100 483 TF 17.70 8.98 2.81 63.87 .286 .441 .561

TB 9.72 4.17 2.00 25.34 .006 .060 .126

300 496 TF 21.43 10.97 2.03 67.95 .407 .619 .690

TB 12.11 5.60 1.56 38.36 .067 .165 .260

500 495 TF 27.07 12.43 5.63 77.64 .600 .784 .846

TB 14.72 6.24 3.23 40.17 .127 .317 .446

MAR2

100 486 TF 14.60 7.12 3.07 40.89 .148 .298 .430

TB 9.87 4.12 2.20 24.38 .006 .064 .138

300 500 TF 18.76 8.57 3.18 61.14 .322 .510 .638

TB 12.91 5.29 2.21 32.45 .072 .200 .328

500 500 TF 23.39 10.10 3.83 65.94 .508 .710 .808

TB 15.76 6.17 2.96 39.80 .166 .372 .540

Note. The entries in the “Converged” column refer to the number of converged replications in

each condition.

used a method similar to Yuan & Bentler’s (2000) method II (p. 180), wherein

the scores on the last three subjects were set to missing if the sum of the first

two was less than 80. As a result, 28 cases have missing values.

For this data set with missing observations, TF D 11:92, p D 0:02, and

TB D 5:82, p D 0:21. This example reflects the difference between TF and TB

seen in the simulations. As a comparison, we also used the FIML procedure

implemented in LISREL (Jöreskog & Sörbom, 2001) to fit the same model. The
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TABLE 6

Standard Errors of Factor Loadings

SE

Estimate

Complete Data

Covariance

Supplemented

EM Approx.

œ11 11.79 1.76 1.87

œ21 10.67 1.29 1.40

œ32 10.47 0.88 1.33

œ42 13.67 1.43 2.05

œ52 14.44 1.65 2.49

FIML chi-square came out to be 7.00, p D 0:12. Due to the fortunate availability

of complete data, we know that the two-factor model fits well. However, using

the naive GOF statistic TF may lead to the erroneous rejection of the two-factor

model, whereas according to either TB or the FIML chi-square, the conclusion

may be quite the opposite.

For this model we also computed the standard errors. As an illustration we

only look at the five factor loadings. Table 6 shows the EM2S estimates, along

with two sets of standard errors: unadjusted complete data standard errors and

Supplemented EM standard errors. One can see that although the Supplemented

EM standard errors are generally larger, the standard errors for the three loadings

on the second factor are noticeably larger than their complete data counterparts.

This is to be expected as only the last three variables have missing observations.

The inflated standard errors show that Supplemented EM has properly accounted

for the missing information.

Conditional Latent Curve Model

The data analyzed here come from a symposium at the 1997 meeting of the So-

ciety for Research on Child Development (Curran, 1997). The data set contains

four repeated measures of N D 405 participants from the National Longitudinal

Survey of Youth on their aggressive behavior. A number of time-invariant co-

variates, including gender and mother’s age, are also available. This particular

data set can be retrieved from http://www.unc.edu/�curran/example.htm. The

data set exhibits substantial attrition. Roughly half of the cases have missing

observations on one or more measurement occasions beyond baseline.

A linear latent curve model (Bollen & Curran, 2006) for the repeated measure-

ments of aggressive behavior was fitted using the EM2S estimator, with gender

and mother’s age serving as time-invariant covariates. We freely estimate the
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covariance matrix of the intercept and slope. The time-specific residual variances

are allowed to be heteroskedastic.

This model has nine degrees of freedom. The naive GOF statistic TF is equal

to 21.07, leading to a p value of .012. On the other hand, TB is 16.82, and the

corresponding p value is .052. Once again, the difference between TF and TB

may be large enough to lead to qualitatively different conclusions about model

fit. It is of interest to note that in this case the FIML chi-square is equal to

16.56, p D :056, a number much closer to TB than TF .

DISCUSSION

In this article, the Supplemented EM algorithm is applied in a novel way

to solve a long-standing problem in the goodness-of-fit testing of covariance

structure models fitted to incomplete data using the EM two-stage estimator. We

have shown that the central idea is to use the Supplemented EM algorithm to

compute an asymptotic covariance matrix of the EM estimated moments based

on incomplete data. Although the Supplemented EM algorithm is not new and

the EM2S estimator well known, we believe that it is important to point out

their relationship because there exists a class of problems, all involving the EM

algorithm, that would be easy to solve as applications of the Supplemented EM

algorithm (see, e.g., Cai, 2008). Furthermore, given the popularity of the EM

algorithm, the Supplemented EM algorithm should be a useful addition to the

toolbox of data analysts in the behavioral sciences.

This article serves two purposes. First, the statistic TB is new and potentially

useful. Second, we show that it takes only minimal additional programming to

add Supplemented EM computations to the existing EM code. We hope that

this article provides enough motivation for authors of popular CSM software

packages to start investigating the possibility of including the Supplemented

EM algorithm.

There are of course limitations to our results. First, as a reviewer pointed

out, we have not systematically compared the performance of TB with the

FIML chi-square statistic. The limited empirical evidence we have suggests that

they behave similarly. However, we cannot be certain unless a comprehensive

simulation study is conducted on that specific topic. Second, a reviewer remarked

that the overall chi-square is only one aspect of evaluating model fit, with

well-known weaknesses. We wholeheartedly agree. Indeed, we see the research

presented here as merely a first step toward a better understanding of CSM fit

evaluation under missing data, and we will look into other model fit indices

in future work. Third, the macro is currently restricted to the SAS software.

However, the Supplemented EM covariance matrix is saved as a SAS data set

by the macro and can, in principle, be brought into any other CSM software. The
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Appendix describes this output data set. Finally, we have made no provisions

for nonnormality in the observed variables. This is partly intended because we

do not wish to be bogged down by the technical details. On the other hand, the

Supplemented EM algorithm turns out to be a convenient method for handling

nonnormal incomplete data estimation problems. As shown by Yuan and Bentler

(2000), one can use a two-stage weighted least squares approach with the

first stage being the same as in EM2S, but in the second stage the structural

parameters are estimated by minimizing a weighted least squares discrepancy

function with the weight matrix being the inverse of a “sandwich” covariance

matrix of the EM estimated moments. We note that the two pieces of “toast”

in Yuan & Bentler’s “sandwich” covariance matrix have already been computed

with the Supplemented EM algorithm.

Before concluding, we point out that the Supplemented EM algorithm has

still other uses. For instance, it can help diagnose the convergence of the EM

algorithm and potentially also detect programming errors in the EM code. Meng

and Rubin (1991) discuss the alternative uses in detail.
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APPENDIX

Usage of the SAS Macro SEM

We use the conditional latent curve model as an example to describe the usage

of the SAS macro. Suppose an SAS data set called srcd is present in the work
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library, and it contains the following six variables: anti1–anti4, gen, momage.

The first four anti variables are the repeated measures of aggressive behavior,

and gen and momage are the gender and mother’s age variables at baseline. First,

the SAS macro definitions should be included using the %include statement.

Next, one must define the structural model to be fitted to the EM estimated

means and covariances using one of the programming statements acceptable to

PROC CALIS. The model definition must be a quoted SAS macro string and in

this example we use the LINEQS-style statements:

%let mymodel=%str(

lineqs

anti1 = 1f1 + 0f2 + e1,

anti2 = 1f1 + 1f2 + e2,

anti3 = 1f1 + 2f2 + e3,

anti4 = 1f1 + 3f2 + e4,

f1 = al1 intercept + gamma1 gen + gamma2 momage + d1,

f2 = al2 intercept + gamma3 gen + gamma4 momage + d2,

gen = al3 intercept + d3,

momage = al4 intercept + d4;

std

e1-e4 = th1 th2 th3 th4,

d1-d4 = ph11 ph22 ph33 ph44;

cov

d1 d2 = ph12,

d3 d4 = ph34;

);

Finally, the macro SEM is invoked.

%SEM(indata=srcd,var=anti1 anti2 anti3 anti4 gen momage,

nvar=6,nobs=405,calismodel=&mymodel);

The indata and var options tell the macro the data set name and the names of

the variables. The nvar and nobs options give the dimensions of the analysis

in terms of the number of manifest variables and the number of observations.

Finally, the quoted macro string &mymodel is passed on to the macro to define

the structural model.

The macro produces the following goodness-of-fit output:

EM Iteration Number

42
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SEM Iteration Number

15

Goodness-of-fit Test for EM2S Estimator

T_B df p-value

16.8207 9.0000 0.0516

The EM iteration number and the SEM iteration number are, respectively,

the number of cycles required for the EM and the SEM algorithms to reach

convergence. The value of TB , the degrees of freedom, and the p value are

printed at the end. The macro also produces adjusted standard errors for the

structural parameters using Equation (18).

The macro will place an SAS data set named Vmatrix under the work library

that contains the Supplemented EM covariance matrix for the estimated means

and covariances. This data set can be imported into other CSM software packages

to serve as a weight matrix.


