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ABSTRACT
As stem cell technologies have rapidly advanced, the stem cell therapy market has been 
forecast to reach hundreds of millions of USD in market value within the next 5 years. 
Regulatory frameworks throughout the stem cell market have been concurrently estab-
lished, which will encourage the advent of a variety of stem cell products in our society. 
Given the circumstances, stem cell bioprocessing has emerged as one of the most criti-
cal fields of research to address a number of issues that currently exist in manufacturing 
clinical-grade stem cells at an industrial scale. Highly specialized bioreactor designs are 
at the center of essentially required technologies in the field of stem cell bioprocessing, 
which ultimately aim for automated, standardized, traceable, cost-effective, safe, and 
regulatory-compliant manufacture of stem cell-based products. In this review, recently 
developed bioreactor designs to introduce important regulatory factors to three-di-
mensional stem cell culture are exemplified, and prerequisites for the ideal bioreactor 
systems for stem cell bioprocessing are discussed.
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INTRODUCTION

As stem cell research has rapidly advanced and gained much interest in recent years, the pub-
lic is now well aware of this research field and the huge potential of stem cells in therapeutics. 
The successful manufacture of medicinal products based on stem cells and their derivatives is 
crucially required to extend the benefits of therapeutic solutions provided by stem cells 
through our society. Stem cell bioprocessing is a very important step in the translation of vari-
ous scientific breakthroughs developed in the laboratory to the bedside. A variety of principles 
and practices in engineering and cell biology are involved in stem cell bioprocessing for the re-
alization of large-scale, automated manufacturing processes for stem cell-based medicinal 
products. The development of bioreactor systems with the ability to precisely control and re-
capitulate stem cell niche factors is essential to achieve stem cell expansion and controlled dif-
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ferentiation in large-scale bioprocessing. In this review, re-
cent bioreactor technologies for three-dimensional (3D) stem 
cell culture are introduced. These technologies were special-
ly designed to provide mimicry of in situ stem cell microenvi-
ronments including oxygen levels and physiological mechan-
ical forces, and the need for continuous processing features 
in a bioreactor system is discussed.

CONTROLLING OXYGEN LEVELS IN BIO-
REACTOR SYSTEMS

Oxygen largely participates in cellular metabolism and is an 
important microenvironmental factor in the determination 
of stem cell fate. Reduced oxygen tension in culture that 
mimics in vivo physiological situations can maintain stem 
cells at a primitive stage as well as contribute to regulating 
lineage-specific differentiation. Human mesenchymal stem 
cells (MSCs) grown in low-oxygen condition (hypoxia, 1% to 
5% O2) displayed higher colony-forming activity and greater 
expression of various genes related to the innate characteris-
tics of stem cells than those cultured in normal oxygen con-
dition (normoxia, 10% to 21% O2) [1]. Kasper’s research 
group reported that hypoxic culture conditions improved the 
self-renewal capacity of human MSCs, which maintained 
their differentiation potential, and various cytokines ex-
pressed by human MSCs under hypoxia appeared to be di-
rectly related to the improved proliferation and differentia-
tion capacities [2,3]. These results were noteworthy as such 
oxygen-dependent expression of a particular set of cytokines 
in hypoxic MSC culture played a decisive role in enhancing 
the growth potential of undifferentiated MSCs. Likewise, it 
was also reported that culture conditions of 5% O2 resulted 
in reduced frequency of spontaneous differentiation of hu-
man embryonic stem cells (ESCs) through the up-regulation 
of hypoxia-inducible factors [4]. As a number of previous 
studies have reported, bioreactors enable the exquisite con-
trol of oxygen levels at various scales that cannot be readily 
achieved by conventional static culture methods. Lovett et 
al. [5] developed a modular bioreactor that could generate 
well-differentiated oxygen gradients and demonstrated that 
chondrogenesis of human MSCs was significantly enhanced 
at hypoxic levels of oxygen, whereas adipogenesis mostly 
took place in culture conditions with 20% O2. Similarly, size- 
controlled embryoid bodies (EBs) derived from human ESCs 
were cultured in an O2-controlled spinner bioreactor. Com-
pared to a normoxic environment, 4% O2 caused the up-reg-
ulation of cardiac genes [6]. In addition, Wu et al. [7] cultured 

mouse and human ESCs using a stirred-suspension bioreac-
tor with adjustable oxygen levels. They demonstrated differ-
ent behaviors between mouse and human ESCs under hy-
poxic conditions and successfully aligned their experimental 
results with a mathematical model. This framework was 
meaningful since such validated mathematical modeling 
could facilitate extended bioprocess designs for the produc-
tion of stem cell therapeutics [7].

APPLYING PHYSIOLOGICAL MECHANI-
CAL FORCES USING BIOREACTOR SYS-
TEMS

Conventional cell culture systems often disregard the me-
chanical stimuli that significantly influence the intricate in 
vivo cellular microenvironments. It is well understood that 
specific mechanical forces with given magnitudes regulate 
tissue development and remodeling of bone, cartilage, mus-
cle, and cardiovascular tissues. Extracellular matrices could 
be readily influenced by various extracellular mechanical 
stresses and thus, the cell surface could be directly changed 
by deforming integrin-binding sites. The resulting mechano-
biological responses are critically dependent on the type of 
mechanical stress and the location at which mechanical 
loading takes place [8]. Cellular differentiation pathways 
could be affected by such mechanical forces, which have 
been widely applied for the control of tissue morphogenesis 
from stem cells [9]. For instance, primarily cultured myofi-
broblasts were seeded in 3D porous polyurethane scaffolds 
and subsequently cultured in a bioreactor with the applica-
tion of cyclic mechanical stretching, resulting in effective dif-
ferentiation into smooth muscle cells with a consistent cellu-
lar alignment [10,11]. Articular cartilage is most frequently 
subjected to deformational loading and hydrostatic pres-
sure. Therefore, a specialized bioreactor implemented with 
such mechanical conditions in the cellular microenviron-
ment was developed to engineer artificial cartilage [12]. In 
addition, other studies demonstrated that bone morphogen-
esis was successfully accelerated by applying longitudinal 
strain to MSC culture [13]. A biaxial rotating bioreactor was 
also designed for bone tissue engineering and achieved 
higher cellularity, confluence, and robust osteogenic differ-
entiation of MSCs compared to other types of bioreactors 
such as spinner-type, perfusion, and rotating wall vessel bio-
reactors [14,15]. Another advanced bioreactor combining dy-
namic tension and torsion was developed to more sophisti-
catedly mimic in situ physical microenvironments of liga-
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ments and resulted in significant improvement in the func-
tion of engineered human ligament tissues [16,17]. An inter-
esting study using a mechanical compression bioreactor 
demonstrated that hydrogel-encapsulated MSCs experienc-
ing compression stress up-regulated chondrogenic genes in 
the absence of transforming growth factor β1 (TGF-β1), 
whereas human EB-derived mesenchymal progenitor cells 
were highly dependent on the supplementation of TGF-β1 
for similar outcomes [18]. Taken together, the aforemen-
tioned bioreactors with novel designs to recreate physiologi-
cal loading environments not only contributed to a better 
understanding of stem cell behaviors in their specific micro-
environments, but also suggested promising strategies to 
manufacture functional tissue-engineered products.

CONTROLLING FLOW SHEAR STRESS IN 
BIOREACTOR SYSTEMS

It is well recognized that the vascular endothelium is regular-
ly subjected to hemodynamic forces of blood vessels in vivo. 
Therefore, different levels of shear stress influence the func-
tional properties of vascular endothelial and smooth muscle 
cells. A bioreactor simulating blood flow was designed to 
provide human induced pluripotent stem cell-derived endo-
thelial cells (hiPSC-ECs) with biomimetic shear stress [19]. 
The biomimetic flow bioreactor efficiently matured hiP-
SC-ECs into arterial-like cells in 24 hours, which was not 
achieved by traditional exogenous addition of soluble factors 
to the cell culture. In addition, a bioreactor that mimicked in 
vivo mechanical loading environments of vascular tissues 
was developed to induce differentiation of human MSCs into 
vascular cells [20]. MSCs seeded on double-layered tubular 
scaffolds were subjected to shear stress (2.5 dyne/cm2) and 
cyclic circumferential stretching generated by pulsatile flow 
in the bioreactor system. Consequently, MSCs were efficient-
ly differentiated into ECs. Flow shear stress could also be 
generated by perfusion-based or agitation-based bioreac-
tors. In general, direct perfusion has been reported to be 
beneficial for stem cells by increasing their cellularity and 
matrix synthesis in the engineered tissue architecture, while 
providing better control of nutrient and oxygen delivery to 
the deeper parts of the cultured tissue [21-23]. However, 
while high levels of shear stress serve the purpose of engi-
neering vascular endothelium tissues, they could generate 
turbulent eddies that interact with the cell surface, which 
could lead to unrecoverable cellular damages due to the high 
rate of local energy dissipation [24,25]. Therefore, when us-

ing the spinner flask-type bioreactors, an optimal impeller 
speed range must be determined to culture stem cells within 
conditions that allow for minimal hydrodynamic shear stress 
generation.

CONTINUOUS PROCESSING OF BIORE-
ACTOR

Continuous processing requires procedures to be operated 
with culture medium that can be continually processed into 
intermediate or final stem cell products by controlled flow in 
and out of a bioreactor. Continuous processing is highly ad-
vantageous to achieve control, reproducibility, validation, 
and safety of the bioprocesses and manufactured stem cell 
products. It facilitates automation and requires less human 
intervention, contrasting fed-batch production that entirely 
relies on an isolated volume in a single manufacture cycle. 
Yeo et al. [26] investigated the impact of metabolic stress 
caused by inefficient feeding of fed-batch-type bioreactor 
systems, as demonstrated by experimental data showing 
good agreement with mathematical modeling. They report-
ed that although sufficient nutrients and growth factors were 
provided to culture in a given culture time, unscheduled dif-
ferentiation and reduced proliferation of murine ESCs took 
place because of the accumulation of inhibitory metabolites 
such as lactate and ammonia. In contrast, continuous medi-
um perfusion in a bioreactor efficiently circumvented meta-
bolic by-product accumulation and maintained it below crit-
ically toxic levels, resulting in the robust expansion of ESCs 
with high pluripotency. In addition, Lambrechts et al. [27] 
developed a hollow-fiber perfusion bioreactor (HFPB) that 
enabled real-time monitoring of culture parameters during 
the bioprocessing operation. The HFPB successfully achieved 
clinical-scale production of human periosteum-derived stem 
cells, and the function of tracking the intermediate process 
performances could aid in dealing with variations resulting 
from donor-to-donor batches, such as different needs for nu-
trient and optimal timing for harvesting cells.

CONCLUSION

Unlike the well-established manufacturing fields of thera-
peutic antibodies or virus vaccines, bioprocessing of highly 
complex and susceptible stem cells involves controlling a 
broader spectrum of parameters. Meanwhile, the fundamen-
tal requirements for clinical approval, such as therapeutic 
potency, purity, stability, efficacy, safety, and quality, are yet 
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to be considered. A scalable and robust bioreactor system 
that provides controlled physiochemical culture environ-
ments for stem cells along with efficient monitoring modules 
for read-out of informative culture parameters represents a 
key element for stem cell biomanufacturing technologies. As 
exemplified in this review, although limited, numerous bio-
reactor systems with flexible culture strategies have been de-
signed to date, and further investigations are actively ongo-
ing in the field. We believe that priceless knowledge that is 
continuously accumulating by such endeavor will enable the 
realization of validated, streamlined 3D stem cell bioprocess-
es, which will ultimately contribute to the manufacture of 
clinically and commercially viable stem cell-based medicinal 
products.
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