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ABSTRACT Software architecture documents are valuable assets supporting the maintenance process for
software systems. Unfortunately, in many projects, software architecture documentation is not conducted
properly or the documents become obsolete due to a discrepancy with the current architecture. To address
this, various automated methods to recover software architecture have been proposed in the literature.
We argue that most previous studies have not considered cluster ensembles but relied on a single clustering
algorithm. In this paper, we propose to take advantage of cluster ensembles for software architecture recovery.

Our experiments on five open-source projects are reported and the results are analyzed.

INDEX TERMS Software architecture recovery, module-view, cluster ensembles.

I. INTRODUCTION

The scale and complexity of modern software systems have
grown dramatically. The cost of maintaining software sys-
tems has thus been increasing. Especially when it comes
to large software systems, the complexity of maintenance
becomes enormous and requires architectural knowledge.

Software architecture documents are valuable assets that
support effective maintenance work. The documents provide
software engineers with several architectural views of a soft-
ware system from which important design decisions and their
rationales can be understood.

Among the information provided by architecture docu-
ments, one of the most critical pieces of information for
software engineers is the architecture module-view [4], which
explains the set of modules and their high-level structure.

Unfortunately, software architecture documentation is
rarely conducted properly and the documents often become
obsolete due to a discrepancy with the current architecture.
It is known that manual architecture recovery is labor-
intensive and requires enormous effort even for experi-
enced recovery engineers. To address this problem, there
have been active studies on automated software architecture
recovery [1], [16], [17], [19]-[21], [31], [44]-[47]. Many of
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these have primarily focused on recovery of the architecture
module-view.

Most automated architecture recovery techniques rely on
clustering algorithms to decompose a software system into
meaningful clusters [27]. So far, a number of clustering
algorithms including search-based clustering algorithms,
hierarchical clustering algorithms, and graph-based cluster-
ing algorithms have been investigated in various studies on
architecture recovery [1], [6], [16], [20], [21], [31]. Each
clustering algorithm has unique characteristics and exhibits
different performance depending on the given data set; hence,
itis not a good strategy to rely on a single clustering algorithm
and expect quality results for a wide spectrum of software
projects.

In fields of study such as pattern recognition and data
mining, many researchers began to study cluster ensembles
combining several base clusterings into a consensus clus-
tering [7], [8], [25], [28], [29] in the early 2000s. These
studies were triggered by the success of an ensemble clas-
sifier that combines the results of several classifiers. They
showed that cluster ensembles can contribute to consistently
better performance compared to methods relying on a single
clustering algorithm. Unfortunately, most previous studies
on software architecture recovery have not explored using
cluster ensembles yet [43].

In this paper, we propose to take advantage of clus-
ter ensembles for architecture recovery to complement the
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weaknesses of single clustering techniques and achieve better
recovery accuracy. The purpose of this work is not only to
study the effects of cluster ensembles for software architec-
ture recovery but also to provide guidance for the application
of the proposed recovery process. We clarify the goals of our
work through the following research questions:
RQI - Do cluster ensemble-based recovery methods
perform better than methods using a single clustering
algorithm?
RQ2 — Which consensus method performs well for soft-
ware architecture recovery?
RQ3 — How does the generation method for base
clusterings affect the recovery performance of cluster
ensemble-based recovery methods?
RQ4 - How does the number of base clusterings affect
the recovery performance of cluster ensemble-based
recovery methods?
The main contributions of this paper are the following:

« We propose to utilize cluster ensembles for software
architecture recovery and show how to apply this tech-
nique to existing approaches.

o We perform systematic experiments to answer the above
research questions and present the experimental results
and analysis.

The remainder of this paper is composed as follows. We dis-
cuss the background and previous studies related to our
approach in Section 2. In Section 3, we outline the process
of architecture recovery using cluster ensembles. Sections 4
describes our case study and Section 5 presents the exper-
imental results and analysis. Section 6 describes threats
to validity, which is followed by a summary of the paper
in Section 7.

Il. BACKGROUND AND RELATED WORK

A. SOFTWARE ARCHITECTURE RECOVERY

USING SOFTWARE CLUSTERING

Clustering is a technique for identifying clusters composed of
entities with similar characteristics in a given data set. In order
to recover the module-view of a software architecture, soft-
ware clustering decomposes a large software system into a set
of smaller subsystems to help the software engineers manage
the system effectively. Architecture recovery is generally per-
formed through the following steps [27]:

« Fact extraction

o Similarity computation

« Application of software clustering

« Evaluation
The details of each step are discussed below. In the remainder
of the paper, we shall use the following terminologies.

Cluster: A bundle containing several entities.

Clustering: Grouping data entities into clusters or decom-
posing a given data set into clusters. Note that the term clus-
tering may also be used to indicate the results produced by a
clustering algorithm. When used in this sense, it is understood
as a clustering result, a partition or a decomposition. They can
easily be distinguished by the context.
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Cluster ensemble: An approach combining different clus-
tering results into a single consolidated result. Generally,
cluster ensembles consist of a generation step producing
different clustering results and a consensus step combining
the generated clustering results into a single output.

Base clustering: The generation phase of a cluster ensem-
ble produces a number of clustering results, which are
referred to as base clusterings.

1) FACT EXTRACTION

Prior to applying software clustering, we should define soft-
ware entities to be clustered. In the context of software archi-
tecture recovery, typical software entities include packages,
files, classes, and functions [27]. The appropriate entities
depend on the purpose of the recovery. In case a detailed
level is needed, a function can be selected as a software entity.
If a higher level view is needed, a class or a package can be
chosen.

After determining the entities, we should identify their
features. A feature is an attribute of a software entity and
contains information about relationships with other entities
[9], [19], [27]. The selected features are utilized for setting a
criterion or similarity for clustering.

The relationships among software entities can be classi-
fied into three categories. The first is structural relationships
such as association, dependency, composition, and general-
ization between classes. The second is semantic relation-
ships retrieved from text information such as identifier names
and comments in the source code [17]. The last is change
couplings, which signify that two or more software entities
have been changed together frequently during the evolution
of the software [5]. Structural relationships can be extracted
through static analysis of the source or binary code and
dynamic analysis of the program. Semantic relationships can
be extracted through natural language processing such as
topic analysis. Change couplings can be collected from a
software configuration management system. These extracted
software entities and features are referred to as facts and are
given to clustering algorithms.

2) SIMILARITY COMPUTATION

Software clustering algorithms calculate the similarities
between entities using its features and put the most similar
entities into the same cluster. The features can be categorized
into binary features, categorical features, and numerical fea-
tures according to the range or type of values that the features
can take. Binary features can take only O or 1 values, while
categorical features allow a small number of discrete values.
Numerical features can have real numbers. In calculating the
similarities between entities based on binary features, binary
similarity coefficients such as the Jacquard coefficient are
used. For numerical features, numerical resemblance coef-
ficients such as Euclidian and Manhattan distance are used.
The categorical feature is often represented by a set of binary
features. Therefore, those similarities can be easily computed
by the binary similarity coefficients.
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3) APPLICATION OF SOFTWARE CLUSTERING

After completing the above processes, we can apply soft-
ware clustering to achieve a module view of the software
architecture. A variety of software clustering algorithms have
been proposed in the literature. Tzerpos et al. proposed an
Algorithm for Comprehension-Driven Clustering (ACDC)
that recovers architectures based on subsystem patterns [31].
Mitchell et al. proposed Bunch, which performs architec-
ture recovery using a search-based clustering algorithm [21].
Magbool et al. proposed the Weighted Combine Algorithm
(WCA), which uses an Agglomerative Hierarchical Clus-
tering Algorithm (AHCA). Based on these pioneering stud-
ies, several architecture recovery techniques using clustering
algorithms have been proposed [16], [17], [19], [44]-[47].

4) EVALUATION

Various evaluation methods have been proposed in the liter-
ature. Generally, there are two methods for the evaluation of
architecture recovery methods: external and internal valida-
tion [27]. External validation requires a ground truth because
the architectural decomposition obtained from an automated
recovery method is compared to it. The ground truth is
manually constructed by software experts in the subject or
extracted from architecture documents. In internal validation,
we evaluate an architecture recovery method merely on the
basis of the properties of its output, such as the stability of
the recovered architectures in a series of evolutions of the
software system and the extremity of cluster distribution [41].

B. CLUSTER ENSEMBLES

The basic idea of cluster ensembles is to combine different
clusterings to create a final result with better quality. In gen-
eral, a cluster ensemble technique is performed in two phases.
The first phase is to generate different clustering results for a
given data set and the second is to consolidate the generated
clustering results into a single result (see Fig. 1).

1% Clustering

— >
Dataset 2" Clustering Consensus
Clustering
N™ Clustering
Generation Consensus
Phase Phase

FIGURE 1. The general process of the cluster ensemble technique
consists of two phases: Generation and consensus.

1) GENERATION PHASE
In this stage, different clustering results are generated from a
given data set. These multiple clustering results are referred
to as base clusterings.

It is widely accepted that the supply of diverse base clus-
terings is critical to the quality of an ensemble [32]. If there is
a limited number of unique base clusterings, even if the best
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consensus method is applied, the ensemble method is doomed
to produce an output that is similar to those of homogeneous
base clusterings.

There are two major approaches to generate diverse base
clusterings. The first is to use different clustering algorithms.
The other approach is to run a clustering algorithm with
different parameter settings several times.

2) CONSENSUS PHASE

Several consensus methods have been proposed in the liter-
ature. They can be categorized into two major approaches:
objects co-occurrence and median partition [32].

The idea of the objects co-occurrence approach is that
the entities frequently being assigned to the same clusters
in the base clusterings should belong to the same cluster
in the single consolidated result. We can define new sim-
ilarities between entities through the frequency of entity
co-occurrence. A clustering algorithm is then performed
based on the similarities between entities to obtain a single
consolidated result.

The median partition approach treats the consensus process
as an optimization problem of finding a median partition. The
median partition is a clustering result maximizing the sum of
the similarities between the clustering result and all the base
clusterings.

C. ARCHITECTURE RECOVERY APPROACHES

BASED ON CLUSTER ENSEMBLES

To the best of our knowledge, previous studies have not
exploited cluster ensembles for architecture recovery except
in the following two approaches.

Naseem et al. proposed the Cooperative Clustering Tech-
nique (CCT) for architecture recovery [23]. They utilized two
similarity measures during the process of the Agglomerative
Hierarchical Clustering Algorithm (AHCA). For a typical
AHCA, only one similarity measure, such as the Jaccard
measure, is employed. However, Naseem et al. identified
feature vector cases in which the Jaccard measure alone
did not suffice, and proposed the Jaccard-NM to solve the
problem. Depending on the feature vector cases, they selec-
tively applied either of the measures on each iteration of the
AHCA. The same authors later proposed a more advanced
version of the CCT in their subsequent work [43]. Note that
their approaches do not use cluster ensembles to consolidate
the results of multiple clustering results into a single result,
unlike our approach, but use multiple similarities or distance
measures within a step of the clustering process.

Ibrahim et al. proposed Cooperative Clustering based on
Graphs (CC/G) [12]. CC/G is based on Cooperative Clus-
tering (CC) proposed by Kashef and Kamel [15], which is
one of the cluster ensemble algorithms based on the object
co-occurrence approach. We argue that their study proved
the feasibility of a cluster ensemble approach, however,
their experimental results failed to show the benefit of the
approach.
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FIGURE 2. An overview of the cluster ensemble-based recovery process and questions that should be answered in the process.

Our approach is motivated by Ibrahim et al. [12], and we
extend their study by considering combinations of represen-
tative architecture recovery techniques and several cluster
ensemble algorithms. Most importantly, our study explores
a large spectrum of options in cluster ensembles and presents
extensive experimental results providing useful guidance
on the application of cluster ensembles to software archi-
tecture recovery. In addition, the previous approach [12]
evaluated CC/G through a non-normalized measure, MoJo
distance [30], and treated the package structures of sub-
ject projects as ground-truth decompositions. In contrast,
we employ MoJoFM [33], an improved version of MoJo
distance, and treat the module decompositions for open
source projects [9], [19] reconstructed by software experts as
ground-truth module-views.

lIl. ARCHITECTURE RECOVERY METHOD

Fig. 2 shows the proposed architecture recovery process.
First, we extract software entities and features, also known
as facts, from the software repository. The extracted facts are
then utilized to create several base clusterings, each of which
can also be considered as a recovered module-view. Applying
an appropriate consensus technique to the base clusterings
results in a single consensus module-view.

At first glance, it might seem trivial to apply cluster ensem-
bles to architecture recovery. However, it should be noted that
there are several points that must be considered in applying
cluster ensembles.

(1) Which software entities and features are used?
(2) What is the best way to extract software entities and
features?
(3) What is the best way to create multiple recovery archi-
tectures for base clusterings?
(4) How many base clusterings are generated?
(5) Which consensus method should be used?
Among the above five questions, the points (3), (4), and (5)
should be considered only when the cluster ensemble is
applied, while the points (1) and (2) are common to any
architecture recovery approach. To answer the questions
listed above and the research questions stated in Section 1,
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FIGURE 3. An overview of our case study.

we conduct a case study on five open source software
projects.

IV. CASE STUDY DESIGN

Fig. 3 shows an overview of the case study performed in this
paper. First, we extract facts from the five target projects. The
extracted facts are given to two different recovery approaches.
The first is the cluster ensemble-based recovery proposed in
this study and the other is a recovery method based on a single
clustering algorithm. Based on the given facts, software archi-
tecture module views are recovered by each method. Finally,
we evaluate the results of each technique. The experiment for
the case study was performed on a computer with Intel (R)
Core (TM) 17-4790 3.60 GHz CPU and 16 GB RAM running
on Ubuntu 14.04 LTS.

A. SUBJECT PROJECT

Table 1 shows a summary of the subject projects. These soft-
ware systems are open source projects with publicly available
architecture information that has been manually recovered by
experts. We treat the architecture information as the ground-
truth decompositions [9], [19]. The column #Clusters in the
table indicates the number of clusters in each ground-truth
decomposition.

B. FACT EXTRACTION

In this study, we treat source code files as software enti-
ties for clustering, which is typical in software architecture
recovery. This is also due to that the available ground-truth
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TABLE 1. A summary of subject software projects.

Name Version

ArchStudio [36] 4

Description Language #Files SLOC #Clusters
IDE for Architecture Development  Java 592 55K 57

Bash [37] 1.144 Unix Shell C 129 70K 25
Bash [37] 42 Unix Shell C 321 115K 14
OO0DT [35] 0.2 Data Management Java 1008 180K 217
Hadoop [34] 0.19.0 Distributed File System Java 597 87K 67

decompositions in Table 1 consist of clusters of the source
code files. Note that our method can be easily applied to other
software entities such as packages and classes.

As introduced in Section 2, there are various features that
can be used for software clustering. We reiterate that the
purpose of this study is not to find the most effective fea-
tures but to apply cluster ensembles to architecture recovery
and validate its effectiveness. Therefore, the experiments are
conducted using only the most common features, which are
the structural relationships among source code files.

We extract the structural relationships by using Understand
[40], a commercial static analysis tool supporting various
programming languages such as Java and C++. The tool
provides a functionality of analyzing a set of source code and
exporting their structural relationships into a CSV file. Each
line consists of three columns where the file shown in the first
column is dependent on the file in the second column and the
third column indicates the number of dependencies.

File A 3 1

File B 5 1

File C 0 0

FIGURE 4. Two representations of source code files and the structural
relationships between them.

We run a small script to process the CSV file and the
extracted facts can be expressed in the form of a graph or a
matrix, as shown in Fig. 4. The figure shows three files
A, B, and C and the structural relationships between them.
In the graph on the left-hand side, nodes and edges represent
the files and the structural relationships between the files,
respectively. An edge from a source node to a target node
means that the source refers to the contents of the target. The
weight of the edge indicates the number of references.

C. ARCHITECTURE RECOVERY VIA CLUSTER ENSEMBLES
This section explains the two major steps of the process
of recovering a module-view of a software architecture by
applying cluster ensembles.

1) GENERATION OF BASE CLUSTERINGS

In this step, a variety of decompositions are generated,
and these are used as base clusterings. As described
in Section 2.2.1, there are two approaches to generate diverse
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base clusterings; (1) using a single clustering algorithm with
different parameter settings and (2) adopting a number of
different clustering algorithms. In our study, we try both
generation approaches to investigate how they affect the per-
formance of the architecture recovery method.

Specifically, we use four software clustering techniques to
produce base clusterings, Bunch [21], the Weighted Com-
bined Algorithm (WCA) [20], K-means [11], and Blondel’s
algorithm [3]. These have been widely used in the literature
and show decent performance in many studies [3], [9], [11],
[19]-[21]. We have selected this set of techniques because
each technique has a unique perspective on clustering.

Another consideration is the number of base clusterings we
are going to generate. We conducted a preliminary study to
obtain a rough guideline on the number of base clusterings.
We generated the base clusterings using Bunch with different
parameter settings for each execution and adopted Evidence
Accumulation [8] for the consensus technique. We combined
a set of the base clusterings into a consolidated result while
incrementally increasing the size of the set from 1 to 100.
It was observed that the quality of the consolidated results,
measured by MoJoFM, gradually increased until the size of
the base clustering set was less than 20. However, the qual-
ity did not change much after the size exceeded 20. While
analyzing the results, we noticed that if the number of base
clusterings was larger than 20, then the quality of the results
became stable; hence we decided to use 50 base clusterings
in the experiments, which seems to be a large enough number
for the base clusterings.

Base Base
Clustering | X 50 Clustering

Base
‘ Clustering |X5°

x
=)

a
l Clustering 5!

v

X 50

% ] 6 ot % v
Set 1 Set 2 Set 3 Set 4
Base X 25 Base X 25 Base X 25 Base X 25
Clustering Clustering Clustering Clustering
V v AV AV
Set 5 Set 6
Base Base Base ase
| Clustering | X 15 ‘ Clustering | X 10 ’ Clustering Ix 10 ‘ c..,m,.,,g ‘x 15
@ By Bunch @ By WeA By Bunch @ By Wea
Base Base Base Base
‘ Clustering | X 13 ‘ Clustering ‘X 10 ‘ Clustering ’ Clustering ‘ X1
Kmeans © ook © .f! © soa
Set 7 Set 8

FIGURE 5. Sets of base clusterings used in our case study.

Fig. 5 shows different generation strategies for base clus-
tering, which will be the input to the cluster ensembles.
Each set 1, 2, 3, and 4 refers to a set of clustering results
generated by a single clustering algorithm, Bunch, K-means,
WCA, and Blondel, respectively, while changing its cluster-
ing parameters. Sets 5 and 6 include the clustering results
generated by two different clustering algorithms. Sets 7 and 8
use four algorithms. We apply the consensus technique to
each of these eight base clustering sets to obtain the final
module-view.
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The following is a brief introduction to the four software
clustering algorithms. We elaborate on how to use them to
generate a number of different base clusterings.

« Bunch

Bunch is a widely used tool that provides a set of search-based
clustering algorithms for software architecture recovery.
These algorithms seek a solution maximizing an objective
function called Modularity Quality (MQ) [21], which cal-
culates the sum of the modularity of all clusters. The mod-
ularity of each cluster is computed by considering both
cohesion and coupling properties. Bunch includes exhaustive
search, the genetic algorithm (GA), and the hill-climbing
algorithm (HCA).

In this study, we select the HCA for the generation of
base clusterings [26]. Bunch can generate different results
from the same input due to the nature of search-based
algorithms. However, we still modify the parameters of the
HCA with every execution in order to generate more diverse
base clustering results. The parameter values range from
0 to 100. The behavior of the HCA becomes more like that
of Nearest Ascent Hill Climbing (NAHC) or Steepest Ascent
Hill Climbing (SAHC) if the parameter is set to close to
zero or one hundred. We generate 50 decompositions as base
clusterings by changing the parameters from 1 to 100. The
experiment is conducted using the implementation available
online [21].

« Weighted Combined Algorithm (WCA)

The WCA [20] is a special form of AHCA. The difference
between the WCA and the standard AHCA is the updating
rule defining a method of calculating the similarity between
sub-clusters (or between sub-clusters and entities). The WCA
provides a set of measures for the computation of similarity
between entities, e.g., the Jaccard coefficient and the unbi-
ased Ellenberg measure for binary features and non-binary
features. On each iteration, the WCA creates a new cluster
and its feature vector by combining feature vectors of entities
which belong to the new cluster.

In this study, the value of the feature is set to the number of
structural relationships between the source code files; hence,
we choose the unbiased Ellenberg measure to calculate simi-
larity. Unlike Bunch, the WCA is deterministic; hence, we try
different parameters including the number of clusters for each
execution to generate various results.

In the case of ArchStudio, OODT, and Hadoop projects,
the value of the parameter is increased or decreased by
five based on the number k of clusters in the ground-truth
structure, and a total of 50 values are used. The projects
Bash 1.14.4 and Bash 4.2 are relatively small in the num-
ber of entities. Especially the number of ground-truth clus-
ters is smaller than 25 in each project. Therefore, the num-
ber of clusters is increased or decreased not by five but
by one and a total of 50 values are used for the both
projects.

We implemented the WCA in Python by utilizing the
implementation of the AHCA available online.
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+ K-means algorithm

K-means [11] is one of the most well-known clustering
algorithms. Given user-defined parameter K, it produces a
decomposition consisting of K clusters. At the initial step,
K-means randomly selects K points in the search space. Then
each entity chooses the nearest among the K points and joins
a cluster based on the chosen point. In this way, the initial
K clusters are prepared. After this, each cluster recalculates
its central point of the entities included in the cluster. Then,
each entity again chooses the nearest central point and rejoins
a cluster formed by the central point. The above steps are
repeated until convergence. K-means computes the distance
between data points in the search space, and we use the Jac-
card distance to calculate the distance between the software
objects.

Similar to the search-based clustering algorithm, K-means
can produce different clusterings with each iteration because
it selects the K points randomly at the initial stage. Due
to this non-deterministic property, many studies on cluster
ensembles have employed K-means for generating base clus-
terings [7], [8], [15], [25], [28]. In addition, we set different
numbers of clusters K for every iteration to produce diverse
base clusterings.

« Blondel’s algorithm

Community detection methods for the analysis of large net-
works have been utilized for architecture recovery in several
studies [6], [16]. We thus consider the community detection
algorithm proposed by Blondel. This algorithm detects com-
munities by optimizing Newman’s Modularity [24] in a large
network. The method is well known for its scalability as well
as performance [3]. In our work, we run Gephi [2], which
includes an implementation of Blondel’s algorithm. The tool
exposes a parameter for the resolution of clusters [18] that
is adjusted differently at every iteration to produce diverse
base clusterings. We generate a total of 50 base clusterings by
increasing the cluster resolution parameter from 0.1 to 1 by
steps of 0.05 and from 1 to 32 by steps of 1.

2) CONSENSUS METHOD

In this step, we apply a consensus technique to the mul-
tiple base clusterings and consolidate them into a single
module-view. As described in Section 2.2.2, several consen-
sus techniques have been proposed [10], [32]. In this study,
we perform architecture recovery using five representative
consensus techniques based on the objects co-occurrence
approach [32]. The underlying concept of these algorithms
is that entities frequently belonging to the same cluster in the
base clusterings must be tied to the same cluster. The five
consensus techniques selected in this study were found to be
very intuitive and perform well [7], [8], [25], [28]. We provide
details of the selected consensus methods in the following.

o Cluster-based
Algorithm (CSPA)
The number of co-occurrences between two entities
appearing in all base clusterings can be interpreted as the

Similarity Partitioning
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similarity between them. Such an approach is proposed in
the CSPA [28]. The algorithm treats the data set as a graph
in which nodes represent entities and the weights of the
edges are set to the aforementioned similarity. Then, a graph
partitioning algorithm is applied to the graph, and it produces
a consensus result. The CSPA uses METIS [13] for graph
partitioning.

o HyperGraph-Partitioning Algorithm (HGPA)

In the HGPA [28], the summarization of base clusterings is
reduced to a hypergraph partitioning problem. The nodes and
the hyperedges of a hypergraph are mapped to the entities of
the data set and the clusters in base clusterings, respectively.
A hypergraph partitioning algorithm is employed to obtain
a final clustering result. We select HMETIS [14] for the
hypergraph partitioning algorithm as done in study [28].

o Meta-Clustering Algorithm (MCLA)

The MCLA [28] employs graph formulation as well.
However, a distinct feature of the algorithm is that the target
to be clustered is not entities but clusters. In the algorithm,
clusters in base clusterings represent nodes of the graph,
and weights of edges are set to the similarity measured by
the binary Jaccard coefficient between the clusters. After
applying a graph partitioning algorithm to the graph such
as METIS, we can obtain a clustering result consisting of
meta-clusters formed by several clusters from base cluster-
ings. Because the clusters result from multiple base cluster-
ings in the MCLA, a meta-cluster may have several clusters
sharing the same entities. It is also possible that an entity
belongs to multiple meta-clusters after the partitioning pro-
cess. Therefore, each entity should be reassigned so that it
is included in only one meta-cluster. Note that nodes of the
formulated graph in the CSPA and HGPA are entities of data
sets, whereas the nodes are clusters from base clusterings in
the MCLA.

« Hybrid Bipartite Graph Formulation (HBGF)
HBGF [7] takes both entities and clusters as nodes of its
graph. In the graph of HBGF, only the edges between an
entity and a cluster are allowed; i.e., there is no edge between
clusters or between entities. Hence, the formulated graph
is bipartite. The authors of HBGF claim that the bipartite
approach takes advantage of both the entity-based and the
cluster-based graph formulations. Graph partitioning algo-
rithms such as METIS can transform the bipartite graph into
a final clustering result.

« Evidence Accumulation Algorithm (EA)

The EA [8] is similar to the CSPA in that it uses the number
of co-occurrence across base clusterings as the similarity
between two entities. However, the EA constructs not a graph
but a similarity matrix of which rows and columns correspond
to entities. Applying the AHCA to the matrix produces a final
clustering result. The algorithm is known for its robustness
and stability across various data sets [25].

« Implementations and Parameters
MATLAB implementations of CSPA, HGPA, and MCLA
algorithms are available on the website of paper [28]. We have
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implemented each algorithm in the Python language based
on an understanding of their MATLAB code. In addition,
the HBGF and EA were implemented in Python by referring
to studies [7] and [8].

These five consensus techniques require the number of
clusters as an input parameter. Depending on the purpose of
architecture recovery, you can set the input parameter to a
small number to produce a module-view from a macroscopic
perspective, or a large number for a microscopic perspective.
Hence, it is challenging to determine the number of clusters
in our experiment. We determine the number of clusters for
consensus techniques by referring to the number of clusters
of the ground-truth decomposition. Table 2 shows the range
of the number of clusters for the projects; the increment is set
to five. The final result is chosen to have the best evaluation
scale among the consensus outputs from various experiments.

TABLE 2. The number of clusters for consensus techniques.

Project | ArchStudio IB fjl‘l‘ Bash 4.2 Oodt Hadoop
# of 7,12,17, | 5,10,15, | 4,9,14, | 152,157,162, | 7,12,17,
clusters .., 152 ..., 150 ..., 149 .., 297 L, 152

D. ARCHITECTURE RECOVERY VIA AN INDIVIDUAL
CLUSTERING ALGORITHM

We design a control group relying on a single clustering
algorithm to compare its performance with the approaches
using cluster ensembles. The control group uses only one
of the baseline approaches such as Bunch, the WCA,
K-means, Blondel’s algorithm, or ACDC. We select the best
quality recovery results among base clusterings as the control
group. ACDC is a popular architecture recovery algorithm
exploiting subsystem patterns [31] and its good performance
is reported in the literature [9], [19]. Note that we did not
utilize ACDC for generating base clustering because it was
almost impossible to generate different base clusterings due
to the nature of the algorithm.

E. EVALUATION
For recovery evaluation, we perform external validation,
an evaluation method that compares the clustering results
with the ground-truth decomposition. This method has been
used in several recovery studies since it can be evaluated
objectively [9], [19], [44]. However, this evaluation method
can only be applied if there is a ground-truth architec-
ture. Creating the ground-truth architecture is difficult and
costly. Fortunately, several recent studies have proposed pro-
cesses for building ground-truth decompositions and made
the ground-truth decompositions of several open source soft-
ware projects [9], [19] publicly available.

External validation measures the degree of similarity
between the decomposition generated by the automatic recov-
ery technique and the ground-truth decomposition. We use
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MoJoFM [33] for similarity measurement, which is widely
used in the field of architecture recovery. MoJoFM measures
the number of move and merge operations required when one
structure is converted to another. The definition of MoJoFM
is as follows:

_ mno(D, G)
max(mno(ND, G))

MoJoFM (D, G)= (1 ) x 100% (1)
mno (D, G) indicates the minimum number of moving and
merging operations required to convert the decomposition D
into G. D is the decomposition generated by the automatic
recovery technique and G is the ground truth. A higher value
is considered better.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section analyzes the experimental results of our case
study while focusing on the research questions

A. RQ1
RQI - Do cluster ensemble-based recovery methods perform
better than methods using a single clustering algorithm?

The Null Hypothesis Is: Cluster ensemble-based archi-
tecture recovery does not show better quality than single
clustering algorithm-based recovery.

Table 3 summarizes the results of the case study. The
leftmost two columns represent the base clustering set and
the consensus methods. In the case study, we perform a total
of 40 cluster ensembles by using eight base clustering sets and
five consensus techniques as shown in Fig. 5. The evaluation
results of each recovery technique for each target project are
presented as MoJoFM values. The evaluation results of the
five baseline approaches are also shown at the bottom of the
table.

In the table, the MoJoFM values for the top five results
for each target project are highlighted in gray. In the case
of ArchStudio 4, ACDC shows the best performance and
ensemble recovery techniques rank second to fifth. For
Bash 1.14.4, the ensemble recovery techniques rank first,
second, and fourth, while ACDC and Blondel rank third
and fifth, respectively. For Bash 4.2, the first to fifth ranks
are all ensemble-based recovery techniques, and Hadoop
0.19.0 shows similar results. For OODT 0.2 the ensemble-
based recovery techniques rank fifth in all cases except for the
WCA, where it ranks fourth. The top five of the averages are
also occupied by the ensemble-based recovery techniques.
From these results, it can be observed that the ensemble-
based recovery technique shows better recovery results than
the baseline approach in most cases. For example, when the
EA is used as a consensus technique in Set 1, the average
MoJoFM value is at least 3% to 10% higher than cases using
the baseline techniques only.

Unfortunately, the ensemble-based recovery technique
does not always outperform the baseline approach. In Arch-
Studio 4, ACDC shows better performance than ensemble
techniques, and WCA and Blondel show decent performance
with respect to MoJoFM.
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Based on the experimental results and analyses, we answer
RQ1: An appropriate combination of a consensus method and
a set of base clusterings can lead to better performance than
relying on a single clustering algorithm.

B. RQ2
RQ2 —Which consensus method performs well for software
architecture recovery?

In the previous section, we observed that it is important
to select and use an appropriate consensus technique to
obtain good results when performing ensemble-based recov-
ery. Table 3 shows that the MCLA and EA techniques perform
well among the consensus techniques. The case showing the
highest average of MoJoFM adopts the EA, and the second
and third cases use the MCLA. Note that the cases in which
MoJoFM values are within the top five in each project are
highlighted in gray, and many use the MCLA and EA. Among
the remainders, HBGF shows decent performance, while the
CSPA and HGPA show relatively poor performance.

Since our experiments could not consider all the existing
consensus techniques, the above analysis cannot be general-
ized. However, the experiment results may provide helpful
hints on selecting consensus techniques in the context of
cluster ensembles for architecture recovery.

C. RQ3

RQ3 — How does the generation method for base clusterings
affect the recovery performance of cluster ensemble-based
recovery methods?

Not only the consensus technique but also the base clus-
tering generation method is an important factor in cluster
ensemble-based architecture recovery. In this section, we will
examine the experimental results to find out which base
clustering method can lead to good performance.

For Set 1 in Table 3, the ensemble-based recovery meth-
ods show overall better MoJoFM values than the baseline
approach using Bunch. Specifically, the EA ensemble shows
better recovery quality on average than Bunch. In the OODT
0.2 project, where Bunch performs poorly, EA shows a signif-
icant performance improvement of more than 25%. Although
there are various degrees of improvement, the ensemble-
based methods using Bunch for base clusterings show signifi-
cant performance improvement. Also, when we use K-means
for base clusterings (Set 2), the MCLA and HBGF show
higher MojoFM values than K-means in all other projects
except Bash 1.14.4.

In contrast to the above cases, when the Blondel algorithm
is used as the base clustering generation method (Set 4), most
of the ensemble-based techniques show worse performance
than Blondel’s approach. Even when using the WCA as a
base clustering method (Set 3), no ensemble technique out-
performs it. Based on the above results, we do not recom-
mend the WCA or the Blondel algorithm for generating base
clusterings. We will briefly discuss this phenomenon while
pointing out some characteristics of each base clustering
method in the following paragraphs.
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TABLE 3. Experimental results (rounded to four digits) of our case study on the five subject projects. Eight sets of base clusterings and five consensus

methods are used for a total of forty cluster ensemble-based recovery methods.

Used set of Consensus
base clusterings method ArchStudio 4 Bash 1.14.4 Bash 4.2 OODT 0.2 Hadoop 0.19.0 Average
CSPA 64.70 42.86 56.49 47.18 48.57 51.96
EA 65.95 57.14 (1st) 59.54 54.35 54.29 (3rd) 58.25 (1st)
% :ye:l:nch HBGF 65.23 4821 59.16 45.88 48.75 53.45
HGPA 64.34 46.43 55.34 43.88 46.07 51.21
MCLA 66.67 50.89 (4th) 59.54 42.94 48.57 53.72
CSPA 65.23 40.18 60.69 (4th) 47.76 51.43 53.06
EA 62.54 41.96 53.05 54.24 50.89 52.54
" byszj;eans HBGF 68.46 42.86 59.54 56.71 (1st) 54.82 (1st) 56.48 (5th)
HGPA 65.59 41.96 55.73 53.06 52.14 53.70
MCLA 67.74 42.86 61.83 (2nd) 56.35 (2nd) 54.82 (1st) 56.72 (3rd)
CSPA 62.19 37.50 53.44 51.88 47.68 50.54
EA 68.82 40.18 58.02 55.41 (4th) 52.32 54.95
" :;t;;CA HBGF 65.59 40.18 56.87 53.76 51.61 53.60
HGPA 67.74 40.18 54.20 52.12 49.82 52.81
MCLA 67.03 41.07 58.78 55.53 (3rd) 51.43 54.77
CSPA 65.23 45.54 57.25 43.06 47.14 51.64
EA 67.20 54.46 (2nd) 57.25 49.06 51.96 56.00
" biel;:ndel HBGF 64.34 44.64 55.73 34.82 43.57 48.62
HGPA 64.70 46.43 58.78 45.06 46.07 5221
MCLA 66.85 49.11 54.58 38.24 47.14 51.18
CSPA 64.87 43.75 59.16 52.59 51.25 54.32
Set 5: EA 66.49 48.21 56.49 53.88 52.14 55.44
25 by Bunch HBGF 68.82 43.75 61.45 (3rd) 54.12 54.64 (2nd) 56.56 (4th)
25 by K-means HGPA 67.38 41.07 59.54 51.88 50.89 54.15
MCLA 69.71 (5th) 46.43 62.21 (1st) 52.94 54.64 (2nd) 57.19 (2nd)
CSPA 65.59 39.29 54.96 48.24 4929 51.47
Set 6: EA 69.00 39.29 58.02 54.71 525 54.7
25 by WCA HBGF 66.67 41.07 55.34 50.71 50.36 52.83
25 by Blondel HGPA 66.85 45.54 54.58 52.71 50 53.94
MCLA 70.79 (2nd) 45.54 58.78 55.06 51.79 56.39
Set 7: CSPA 65.95 40.18 58.4 52.71 50.89 53.63
15 by Bunch EA 65.05 46.43 58.4 53.88 51.96 55.14
15 by K-means HBGF 67.38 41.96 56.11 54.24 52.32 54.4
10 by WCA HGPA 66.67 40.18 542 52.35 48.21 52.32
10 by Blondel MCLA 69.89 (4th) 44.64 60.69 (4th) 53.88 53.04 56.43
Set 8: CSPA 66.31 40.18 55.73 49.53 49.46 52.24
10 by Bunch EA 67.38 44.64 55.34 53.88 53.75 55
10 by K-means HBGF 67.38 41.07 53.82 52.94 50.36 53.11
15by WCA HGPA 64.16 40.18 53.44 51.53 49.82 51.83
15 by Blondel MCLA 70.25 (3rd) 41.96 58.02 54.24 51.43 55.18
Bunch - 64.34 47.32 57.63 28.71 2.32 48.01
K-means - 63.08 44.64 59.16 51.41 51.25 53.91
WCA - 68.82 40.18 58.78 55.41 (4th) 52.32 55.10
Blondel - 67.56 50.00 (5th) 58.02 46.94 51.96 54.90
ACDC - 74.91 (1st) 51.79 (3rd) 52.67 43.76 40.00 52.63
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FIGURE 6. The histograms show the distributions of pairwise similarity (MoJoFM) of three sets of base clusterings, Set 1 (by Bunch),

Set 2 (by Kmeans), and Set 4 (by Blondel).

First, we discuss why the WCA is not appropriate as a
technique for base clustering generation. Table 3 shows that
the MoJoFM values of the baseline WCA and EA-based
ensemble recovery (Set 3) are almost the same. Their perfor-
mance is almost the same across all projects except Bash 4.2,
where the difference is only 0.76%. This implies that applying
the EA consensus technique to the base clustering results
generated by the WCA is not fruitful. Note that both the WCA
and EA are based on the AHCA whose salient property is
to group the closest pair of entities or sub-clusters until all
entities are merged in a single cluster. Specifically, a pair of
two entities first grouped together by the WCA must be in the
same cluster in all the base clusterings by the WCA and the
decision is never revoked. Similarly, the EA treats the number
of co-occurrences between two entities across all the base
clusterings as similarity. Therefore, the pair of objects that
are initially grouped in WCA-based clustering is the same in
the EA. This pattern continues in the rest of the clustering
process. To sum up, the base clusterings by the WCA cannot
give a variety of object co-occurrence information to the
consensus methods.

As discussed in Section 2.2.1, the diversity of the base
clusterings is critical to the performance of cluster ensembles.
Hence, we decided to measure the similarity among base clus-
terings generated by the Blondel algorithm to investigate why
cluster ensemble-based recovery methods were inferior when
using Blondel for the generation of base clusterings. In Fig. 6,
the horizontal axis of the histograms indicates the pairwise
MoJoFM score. The vertical axis represents the frequency.
The number of base clusterings is 50 per project; hence,
the total frequencies in each case is (502) * 2. The reason
for multiplying 507, the number of pairwise combinations,
by two is that MoJoFM is not symmetric, so there are two
MoJoFM values in a pair of structures. Fig. 6 includes the
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results for Bunch and K-means as well as those for Blondel
for the purpose of comparison. In the case of the Blondel algo-
rithm, most pairwise MoJoFM values range from 90 to 100.
In the Bunch and K-means cases, on the contrary, much wider
distributions are observed. The pairwise comparison results
indicate that the Blondel algorithm fails to generate diverse
base clusterings; hence, applying the consensus methods to
such base clusterings cannot produce quality results.

By summarizing the above discussion, we can answer the
following to RQ3: When creating base clusterings, we should
use clustering techniques with nondeterministic characteris-
tics such as Bunch or K-means.

Another interesting point observed in Table 3 is that the
recovery quality is generally better when the ensemble is
performed on Bunch or K-means (Sets 1, 2, and 5) than
when the ensemble is applied to various combinations of
algorithms (Sets 7 and‘8). It is supported by the data high-
lighted in gray, which are concentrated in Sets 1, 2, and 5. Our
experiment suggests we should choose a clustering algorithm
that provides diversity in results instead of using a large set of
different clustering algorithms that does not guarantee diverse
results.

D. RQ4

RQ4 - How does the number of base clusterings affect the
recovery performance of cluster ensemble-based recovery
methods?

Recall that the experiments shown in Table 3 use base
clusterings with a fixed number of 50. To answer RQ4,
we perform the cluster ensemble-based recovery experiments
while changing the number of base clusterings. We create
ten subsets of base clusterings whose numbers range from
five to 50 with a step of five by randomly selecting the set
of base clusterings shown in Fig. 5 without replacement.
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FIGURE 8. MoJoFM results of cluster ensemble-based recovery methods on varying numbers of base clusterings. The used sets of base
clusterings are sets 1 to 4 in Fig. 5 and the applied consensus method is the MCLA.

We then apply consensus methods to the subsets and evaluate
the results.

In designing the experiments for RQ4, we decided to focus
on the consensus algorithms EA and MCLA, the two best-
performing algorithms, while switching their base clusterings
toSet1,2,...,4in Fig. 5.

Fig. 7 shows the experimental results when the EA is used
as a consensus technique. The title on each graph represents
the combination of an applied consensus method and a soft-
ware clustering technique for generating base clusterings. For
example, “EA BUNCH” means that we use Bunch for gener-
ating base clusterings and apply EA to produce a consolidated
decomposition. The vertical axis of the graph represents the
MoJoFM value, and the horizontal axis represents the number
of base clusterings.

In the graph titled “EA BUNCH,” the MoJoFM score
continuously increases for all five projects until the number
of base clusterings reaches 10 and becomes stable. In the case
of “EA KMEANS,” the performance on Bash 1.14.4 and
Bash 4.2 fluctuates with varying numbers of base clusterings;
however, in the remaining three projects, the MoJoFM value
also increases as the number of base clusterings increases.
Similar to the case of “EA BUNCH,” this increasing trend
remains until the number of base clusters reaches 10. The
MoJoFM values in the case of “EA WCA” become stable
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when the number of base clusterings is larger than five in all
projects. This is due to the fact that, as we have mentioned in
RQ3, the WCA fails to produce diverse base clustering sets
even if the number of base clusterings increases. In the case
of “EA BLONDEL,” it is observed that the MoJoFM value
increases as the number of base clusters increases for all five
projects. Also, similar to the cases for “EA BUNCH” and
“EA KMEANS,” the MoJoFM value increases rapidly from
10 to 20 base clusterings, but there is no significant change
thereafter.

Fig. 8 shows the result of using the MCLA instead of
the EA as a consensus technique. Similar to Fig. 7, in the
cases of “MCLA BUNCH” and “MCLA BLONDEL,”
the MoJoFM values increase rapidly until the number of
base clusters reaches 10 or 20 and then remain steady. The
case for “MCLA KMEANS” is similar to the cases of
“MCLA BUNCH” and “MCLA BLONDEL” except for the
Bash 1.14.4 project. In the case of “MCLA WCA,” the
result is almost the same as that of “EA WCA,” which also
shows that changing the number of base clusters does not
contribute to producing diverse base clusterings. The results
shown in Fig. 7 and Fig. 8 suggest that at least ten different
base clusterings are needed to benefit from cluster ensemble
techniques for software architecture recovery as an answer
to RQ4.
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VI. THREATS TO VALIDITY
In this section, we discuss various threats to validity in our
case study.

Construct Validity: Construct validity refers to whether the
tools and methods used in the study have effectively measured
what they intended to measure. The core question we are
trying to answer is how well ensemble-based decomposition
techniques can recover architecture. To do this, the similarity
between the result of the proposed recovery method and
the ground-truth structure is computed by MoJoFM, using a
single ground-truth decomposition for each subject project.
However, there can be several versions of acceptable decom-
positions for a software system. Hence, the evaluation method
we adopted in this work may have caused a latent bias.
To minimize this threat, we have chosen a set of ground truths
that are widely accepted in the literature [9], [19]. MoJoFM is
a measure of the similarity of two decompositions commonly
used in recovery studies; hence we adopt this general measure
that is familiar to most researchers in the software architecture
recovery area.

Internal Validity: Internal validity is the question of
whether there is a causal relationship between indepen-
dent and dependent variables. In this study, the accuracy of
ensemble-based recovery is measured while we are chang-
ing kinds of base clustering sets and consensus techniques.
In addition, the number of base clusterings is considered
with respect to RQ4. We have tried to minimize the threat to
internal validity by controlling factors other than independent
variables, but the threat still remains.

The four software clustering technologies used for creating
the base clustering set support various parameter settings.
As shown in Section 4.3.1, all the experiments are performed
with default configuration except for the parameters adjusted
to increase the diversity of the base clustering results. This
default configuration might benefit or adversely affect a par-
ticular technique. However, note that we focus on applying
cluster ensembles to architecture recovery, rather than trying
to optimize the parameters of each technique. We believe
that the default configuration should also be beneficial in
reproducing our research.

Among the software clustering techniques used to gener-
ate base clusterings, Bunch and K-means are characterized
by producing various outputs for each execution. Therefore,
even if we repeat our case study again, the results may be
different from previous experiments. To mitigate this threat,
we set the cardinality of the base clusterings to 50, which is
large enough to have stable results in the current experimental
environment.

External Validity: External validity is related to the gen-
eralization of case study results. Our experiments were con-
ducted on only open source software projects. Obviously,
they cannot represent all software systems and our work
did not cover proprietary software projects. The projects in
our experiment, however, have diverse characteristics such
as different domains, sizes, and implementation languages,
which can mitigate the limitation.
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VIi. CONCLUSION AND FUTURE WORK

In this paper, we have proposed utilizing cluster ensemble
techniques for software architecture recovery. The techniques
are applied to five open source software projects and the
results validate the effectiveness of cluster ensembles for
software architecture recovery. Through the experiments,
we have found that the MCLA and EA among the con-
sensus techniques yield relatively quality recovery results.
Moreover, it is observed that non-deterministic clustering
algorithms such as Bunch and K-means are suitable for gen-
erating diverse base clusterings, which is critical to cluster
ensembles. Our experimental results also indicate that at least
10 different base clusterings are recommended for cluster
ensembles for software architecture recovery.

For future work, we will explore more diverse cluster
ensemble algorithms for architecture recovery. We have
considered only cluster ensembles based on the object
co-occurrence approach in this work. In addition, we will
apply the proposed recovery method to proprietary software
projects as well as additional open source software projects.
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