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ABSTRACT Smartphones that are equipped with high-clock frequency and multi-core processors are being
commercially released to provide various services. As the number of cores and the clock speed of a mobile
processor increases, its power consumption also increases, and several software approaches to reducing
power consumption have been studied. Existing techniques estimate processor usage by measuring the
processor usage at a previous time. However, these techniques often waste energy because they assign
frequencies above the usage required to prevent degraded user responsiveness. Therefore, this paper proposes
a machine learning method to predict the usage that the processor currently requires to prevent performance
degradation while reducing power consumption. The proposed method is implemented through a processor
power management system based on Long Short-TermMemory (LSTM). This system learns processor usage
patterns in a variety of situations and predicts the processor usage required for the current situation. The
number of computations required by the LSTM-based technique is analyzed according to the number of
neurons and layers, and the computational load is then compared to an existing technique. Furthermore,
a benchmarking tool that reflects the characteristics of mobile applications is used to test the performance of
the proposed system, which is shown to reduce the power consumption of mobile processors by a maximum
of 19% compared to the existing Android processor power management system.

INDEX TERMS Energy management, dynamic voltage and frequency scaling, recurrent neural networks,
mobile device.

I. INTRODUCTION
As smartphones have evolved and become more widespread,
users have spent increasing amounts of time using these
devices. Therefore, smartphone manufacturers are strength-
ening the competitiveness of their products in a variety of
respects, including improved performance, extended usage
time, and improved user convenience. These enhanced ser-
vices have necessitated multi-core processors running at
high-clock frequencies. However, as the processor’s perfor-
mance increases, its power consumption also increases. To
address this problem, manufacturers have adopted low-power
hardware technologies and increased battery capacities, but
these approaches have had limited success. Therefore, a vari-
ety of software-based approaches have been applied to
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operating systems on smartphones control processors, such as
Dynamic Voltage and Frequency Scaling (DVFS) [1], which
adjusts the frequency and voltage according to the processor
usage, and hotplugging [2], which adjusts the activation states
of the processor’s individual cores.

Unlike the operating systems used in computers, smart-
phone operating systems must consider user responsiveness
when managing processor power. Computer-based operating
systems assign all processor resources as they are needed
by applications, controlling the operating frequency and the
number of activated cores accordingly. In smartphone oper-
ating systems, the responsiveness perceived by the user is
affected more by the foreground application with which the
user is interacting than the applications that are running
in the background. Therefore, several studies [3]–[7] have
been conducted on limiting processor power consumption by
assigning maximum processor resources to the foreground
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application and limiting resources to background applica-
tions. However, the previously proposed approaches have
wasted energy by allocating more resources than the proces-
sor required to prevent performance degradation as perceived
by the user. Existing DVFS-based techniques assume that
accurate predictions of how much processor usage will be
needed in the future are difficult to achieve by analyzing
the current processor usage. Therefore, they increase the
processor’s frequency to the maximum value, preventing a
decrease in user-perceived performance when the processor’s
usage exceeds a threshold where the current processor usage
is considered to be high.

Recently, studies [8]–[10] focused on maximizing energy
efficiency, or performance per watt (PPW), by finding mobile
processors’ performance-energy configuration. The existing
methods to find optimal PPW could not prevent degradation
of application performance with respect to the interactive
governor[11]. They always choose the maximum PPW con-
figuration which leads to the reduced execution performance
of processors. The amount of how much processor perfor-
mance is needed was not considered.

This paper proposes a method based on Long Short-Term
Memory (LSTM) to track and predict processor usage more
accurately than the existing methods. LSTM is an extension
of Recurrent Neural Networks (RNN) [12], [13]. Processor
usage information constitutes time-series data that change
at each fixed time interval. Therefore, a network based on
LSTM is designed to analyze and predict the time series pro-
cessor usage data. If processor usage can be more accurately
predicted, processor resources can be assigned as they are
needed to minimize the processor performance degradation
with further reduced power consumption.

The remainder of this article is organized as follows.
In Section 2, we summarize the existing studies on smart-
phone power management techniques and studies on LSTM.
In Section 3, we introduce the proposed processor power
management architecture. In section 4, we report the power
consumption and performance evaluation results of our pro-
posed system and compare it with existing system. Finally,
in Section 5 we present conclusions and describe future
work.

II. RELATED WORKS
A. PROCESSOR POWER MANAGEMENT
Processor power consumption can be reduced by dynamically
adjusting the processor’s operating frequency or inactivating
its cores. The Android processor power management system,
which is typically used in smartphones, is shown in Fig. 1.
The core controller measures the processor core loads and
adjusts the number of active cores. The governor measures
the processor’s load and adjusts the processor’s operating
frequency. The processor’s power consumption is propor-
tional to the operating frequency and the square of the input
voltage [14]. Thus, the governor uses the DVFS technique to
reduce power consumption.

FIGURE 1. Android processor’s power management architecture.

If the processor usage that was sampled from the pre-
vious time period exceeds the experimentally established
threshold value for efficient operation of the target device,
Android’s on-demand governor [15] and interactive gover-
nor [11] determine that the current processor usage is high
and set the processor’s operating frequency to the maximum
value. The frequency is then lowered incrementally according
to the processor usage to prevent performance degradation.
In such systems, unnecessary power consumption can occur.
Computer-based operating systems allocate all processor
resources required by all running applications and control the
processor frequency and number of active cores. However,
in smartphone-based operating systems, power consumption
can be reduced without user-perceived performance degra-
dation by considering the response time of the foreground
applications. In previously proposed approaches [3]–[7], the
power management system examines the processor usage of
foreground applications and assigns processor resources as
needed, and processor resources for background applications
are limited to reduce processor power consumption.

In studies [4], [6] on reducing power consumption when
running a video playback application in a smartphone-
based operating system, the resources required during decod-
ing were predicted and processor resources were allocated
accordingly. An integrated CPU-GPU governor based on
machine learning[16] was introduced to improve energy
efficiency with minimizing performance degradation. The
integrated governor infers whether the current state is per-
formance demanding or powersaving from current frames
per second of a game, processor frequency, and proces-
sor usage. In a study [3] on increasing power efficiency
by examining the characteristics of applications that used
smartphone sensors, the current situational information was
analyzed to determine whether the processor, network equip-
ment, and sensor equipment were to be turned on or off.
Another study [7] increased energy efficiency by controlling
the governor and hotplug depending on whether smart-
phone applications were running in the foreground or back-
ground. In this study, the sensitivity was divided into
three levels—high, medium, and low—considering perceived
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performance. The technique estimated the required processor
usage according to the applications’ sensitivities and set the
processor frequency accordingly. When the sensitivity was
high, maximum processor usage was allocated to prevent
perceived performance degradation.When the sensitivity was
medium or low, the processor usage was limited to reduce
power consumption.

The existing techniques are limited in that they propose
power management strategies that are optimized for appli-
cations with specific purposes, and thus these techniques
are difficult to use in a general application usage environ-
ment. Furthermore, even when the techniques can be used
universally, they allocate more processor resources than are
needed to prevent performance degradation. On the other
hand, studies[8]–[10] were conducted to optimize energy
efficiency of mobile processors by finding configurations
that maximize performance per watt (PPW) or instructions
per second per watt (IPS/W) in a given state. These methods
inevitably result in performance degradation of application
performance since higher frequency requires more supply
voltage and current, and the processor power consumption
is proportional to the square of the current. As an example,
a machine learning based scheme to find Pareto-optimal pro-
cessor configuration of energy and performance in a given
execution phase[8], showed approximately 2 times higher
PPWbut also showed approximately 2 times longer execution
time than the interactive governor in performance evaluation.
The methods rather choose a processor configuration with
much lower performance than the ondemand and interactive
governor to maximize PPW. The amount of how much pro-
cessor performance is needed or wasted in a given state was
not considered.

Currently, AMD and Samsung are launching processors
[17], [18] with branch prediction technology [19], which uses
neural networks implemented at the processor’s silicon die
level. These processors require less usage than in existing
technologies in a given work environment, and therefore offer
reduced power consumption. However, these technologies are
limited in that their complex high-level design is difficult to
adjust structurally.

Therefore, this paper proposes a method whereby proces-
sor usage data is collected and learned to predict current
processor usage more accurately than existing methods and
to set power levels accordingly. The proposed method in
this paper also reduces power consumption effectively while
preventing degradation in application performance. For this
purpose, an LSTM-based processor usage prediction model
and a neuro-governor architecture are proposed. This method
offers the advantages of easier design and implementation
compared with hardware-based approaches, and the proposed
method also operates independently of the processor architec-
ture by reducing power consumption via software.

B. LONG SHORT-TERM MEMORY
LSTM [13], [20] is a model that was proposed to overcome
a limitation of existing RNNs [12], whereby they could learn

FIGURE 2. An architecture of long short-term memory.

TABLE 1. Long short-term memory parameter definitions.

correlations only for short-term data because of the gradient
vanishing [21] problem. Fig. 2 shows the LSTM architecture,
and the parameters associated with this structure are defined
in Table I. LSTM adds the forget gate ft , input gates gt and
it , memory cell ct , and output gate ot to the existing RNN
neuron [12], in which only tanh exists. The forget gate first
adjusts the disposal of data saved in the memory cell; it is
defined as the value obtained by applying sigmoid to the
input xt at time t and the value ht−1 output by the LSTM at
time t − 1, as shown in Eq. (1).

ft = σ (xtwx_f + ht−1wh_f + bf ) (1)

The input gate gt creates the value saved in the memory cell
from xt because of ht−1, as expressed in Eq. (2). The input
gate it selects the value saved in the memory cell at xt from
ht−1, as expressed in Eq. (3).

gt = tanh(xtwx_g + ht−1wh_g + bg) (2)

it = σ (xtwx_i + ht−1wh_i + bi) (3)

The data left in the memory cell because of the forget gate and
the new data to be saved from the input gate are determined,
and the memory cell at time t is updated, as expressed in
Eq. (4).

ct = ft ◦ ct−1 + it ◦ gt (4)

The output gate determines the value to be output by LSTM.
A sigmoid is applied to ht−1 and xt , as expressed in Eq. (5).
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FIGURE 3. Neuro-governor architecture based on LSTM.

Subsequently, ht , which is the LSTM’s output at time t , is the
output value determined at the output gate multiplied by the
data saved in the memory cell at time t , as expressed in
Eq. (6).

ot = σ (xtwx_o + ht−1wh_o + bo) (5)

ht = ot ◦ tanh(ct ) (6)

LSTM learning is performed through the Back-Propagation
Through Time (BPTT) [22], [23] algorithm. The BPTT algo-
rithm unfolds a recursive structure unit, in which the output
at time t is influenced by that at time t − 1, as many times
as the number of data items simultaneously learned, such
as in the RNN neuron or LSTM. The BPTT algorithm then
creates a sequential structure and applies the backpropagation
algorithm [24]. After data input processing, the difference
between the actual output and the target output is calculated
through an error function, and the calculated error value is
again backpropagated to update the weights.

LSTM shows excellent prediction performance when
applied to time-series data that are temporally correlated,
and it is used in a variety of fields such as natural
language processing [25], stock price or market index
prediction [26], [27], human activity classification [28], and
object movement path prediction [29] , [30]. In this paper,
the processor usage information that is to be predicted to
reduce processor power consumption is time-series data that
are sampled at discrete time intervals. Therefore, we design
an LSTM network that can analyze and predict processor
usage.

III. CONTROLLING MOBILE PROCESSORS WITH
NEURO-GOVERNOR
This paper proposes a neuro-governor that predicts processor
usage and controls processor power based on processor usage
patterns. The overall architecture of the processor power
management system, which includes the neuro-governor,
is shown in Fig. 3. Additional parameters related to the neuro-
governor are defined in Table II.

Processor performance varies not only according to archi-
tecture, but also according to the current operating frequency.
Therefore, processor usage must be normalized to determine

TABLE 2. Neuro-governor parameter definitions.

the amount of processor resources required by applications
based on the maximum performance that can be achieved
by the processor. Here, processor usage is normalized with
a utilization normalizer that defines the system’s maximum
amount of processing power r∀ as the sum of rνl_max for all
n cores, as shown in Eq. (7).

r∀ =
∑n

l=1
rνl_max (7)

The unit of rνl_max, rνl_min in this paper is DMIPS, with 1
DMIPS representing the speed of a reference machine. Most
of the industries adopted the VAX 11/780 as the reference 1
DMIPS machine on Dhrystone benchmark [31], [32]. For
example, 80 DMIPS means that a processor running Dhrys-
tone benchmark is 80 times faster than the reference machine.
The rνl_max, rνl_min values are then obtained by running
Dhrystone benchmark. In addition, if it is assumed that the
performance of each core changes linearly according to the
frequency[33], then erνl_t can be defined as in Eq. (8), using
linear interpolation when the frequency of the l-th processor
core at time t is νl_t .

erνl_t = rνl_min

+(rνl_max − rνl_min)
νl_t − νl_min

νl_max − νl_min
(8)

Lastly, ût is the normalized processor usage at time t ,
as defined in Eq. (9).

ût =

∑n
i=1 erνl_tul_t

r∀
(9)

The utilization normalizer refers to the processor frequency
table of the CPU frequency driver for the normalized pro-
cessor usage ût and finds the index zt of the most energy-
efficient processor frequency that does not incur performance
degradation. Subsequently, zt , defined as in Eq. (10), is output
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FIGURE 4. Fully connected LSTM network architecture to predict
processor utilization.

to the LSTM predictor and Datastore.

zt = j,where

pj−1 < ût × νl_max ≤ pj(0 ≤ j ≤ m− 1) (10)

The LSTM predictor converts zt to the input vector xt ,
as shown in Eq. (11), and inputs it to the trained LSTM net-
work. The LSTMnetwork then performs forward propagation
to predict the future processor frequency index.

xt =
{
xt0 , xt1 , xt2 , . . . , xtm−1

}
,where

xt_k =

{
1, if zt = k
0, otherwise

for (0 ≤ k ≤ m− 1) (11)

Fig. 4 shows the architecture of the LSTM network for
predicting processor usage. This architecture is a fully con-
nected structure with L layers and N LSTM neurons. The
output of the final layer in the LSTM network is normalized
to a probability value via softmax [34]. The LSTM network
outputs p(xt+1_k ), which is the probability from softmax that
the k-th index of the processor frequency table is selected at
time t + 1. The LSTM predictor determines the k with the
largest probability to be zt+1, defined as shown in Eq. (12),
and outputs that k to the target frequency, which in turn sets
the processor frequency by referring to the frequency table.

zt+1 = argmax
k

p(xt+1_k ) for (0 ≤ k ≤ m− 1) (12)

The LSTM trainer loads the stored zt records from Datas-
tore and trains the LSTM network. The LSTM is unfolded to
the length of the data which are to be learned at once, forming
a feed-forward network. The LSTM trainer then uses a BPTT
algorithm to update the network’s weight parameters through
backpropagation, using the mean squared error (MSE) [35] as
the backpropagation loss function and the ADAM [36] opti-
mizer to make the training process efficient. When training
is complete, the LSTM trainer updates the LSTM network.
If the LSTM network has not been trained yet, Check CPU
operates in interactive governor mode.

IV. EXPERIMENTAL EVALUATION
In this section, we describe the test environment and meth-
ods for measuring the performance of the proposed neuro-
governor and its performance results. A Google Nexus 6P

TABLE 3. Target device specifications.

TABLE 4. Processor usage characteristics of applications.

smartphone with a Qualcomm Snapdragon 810 processor,
detailed in Table III, was used as the target device for the
neuro-governor performance assessment. None of the pro-
cessor cores were manually deactivated in the performance
benchmark. In Section 4.1, we analyze the number of compu-
tation cycles required for the LSTM network architecture in
the target device. In Section 4.2, we compare the performance
of Android’s existing power management technique to the
neuro-governor proposed in this paper.

A. DESIGN OF LSTM NETWORK
We designed an LSTM network architecture to identify pro-
cessor usage patterns and predicted the most efficient pro-
cessor frequencies based on processor usage. To establish an
efficient LSTM network architecture, prediction accuracy for
processor usage was collected by changing the number of
layers of the LSTM network, denoted by L, and the number
of LSTM neurons per layer, denoted by N .

A tool running on Android was developed to collect train-
ing data with the characteristics of mobile applications in
a simulated user environment. As described in Table IV,
depending on the processor usage characteristics, mobile
applications can be categorized as H/C a type that continu-
ously uses the processor, H/B a type that uses the processor
in the near-idle state and then uses the processor more inten-
sively for a short period of time, and L/C a type that keeps the
processor in a near-idle state. Note that the processor utiliza-
tion is equally divided into three intervals and denoted as low,
medium, high. Because applications that use the processor in
the near-idle state for a short period of time are included in
either H/C orH/B, development of a tool according to the type
H/C, H/B, and L/C can reflect all application characteristics.

Previous research has described a reproducible method
of collecting processor usage [4], [6], [7] to evaluate per-
formance. Therefore, with MediaCodec and WebView from
Android’s open source API, we tested the LSTM network
architecture with processor usage data samples collected
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FIGURE 5. MSE loss for each LSTM architecture.

during CPU decoding of 2160p H.264 video to reflect type
H/C and Vorbis music to reflect type L/C, as well as during
web browsing using WebView to reflect type H/B.

The MSE loss of the LSTM network is shown in Fig. 5.
The maximum difference of MSEs was approximately
0.0053 when the number of LSTM neurons N was 10. The
MSE decreased as the number of LSTM neurons and the
number of layers increased.

Because we aim to deploy the LSTM network in a smart-
phone to reduce power, the computational overhead of the
LSTM network’s forward propagation task must be consid-
ered. Therefore, the computational overhead of the LSTM
predictor’s code was analyzed with different numbers of lay-
ers and LSTM neurons per layer in the LSTM model. The
number of execution cycles required by the LSTM network
can vary in different implementations; however, with a fully
connected architecture, the number of cycles increases expo-
nentially with N and increases linearly with L and m. The
computational load required for the forward propagation of
the LSTM network implemented in this paper was calculated
as follows. A layer consisting of N LSTM neurons with
each neuron performs the arithmetic operation described by
Eq. (1), where the input xt has m elements and the network
is a fully connected architecture so that each neuron per-
forms multiplication of ht−1 with size N . Because a neuron
takes a sigmoid of the multiplication result, the number of
computations required to obtain ft for every neuron in a
layer is N (m + N + 1). This approach also applies equally
to Eqs. (2), (3), and (5). In Eq. (4), the number of com-
putations is 2N because two multiplication operations are
performed for each neuron. Each neuron uses ht to generate
data with size m to be passed as an input to the neuron in
the next layer, and the number of computations for this step
is Nm.

When all neurons in the LSTM network finish their oper-
ations, a softmax is performed on the output data with m ele-
ments. By definition, the softmax operation applies a natural
exponential function and division operation to each of the m
elements; therefore, a total of 2m operations are performed.
The cumulative number of computations p is defined as in
Eq. (13).

p = L
(
4N 2
+ 5Nm+ 8N

)
+ 2m (13)

FIGURE 6. Measured total cycles needed to execute.

In addition to the analysis of the LSTM network archi-
tecture, the PMU register [37] of the ARM processor was
used to collect the processor cycles required for the target
device to execute the code. Fig. 6 shows the number of cycles
obtained by Eq. (13) with varying numbers of layers and
LSTMneurons per layer. The number of cycles of the existing
interactive governor were analyzed and added to compare the
LSTM network to the existing method. Because of a branch
in the interactive governor’s code, the LSTM network does
not always execute the same amount of code. We defined
the number of cycles required by the interactive governor to
perform all the codes as gov-max and the number of cycles
reduced by the branch as gov-med.

In this paper, the LSTM architectures used required fewer
cycles to execute their functions than gov-max. The selected
10 LSTM network architectures consisted of 5, 10, 15, 20,
and 25 LSTM neurons for one layer; 5, 10, and 15 neurons
for two layers; and 5 and 10 neurons for three layers. Given
that the execution overhead exponentially increases with N ,
an architecture with a number of computations larger than
gov-max will have a power consumption disadvantage that
exceeds the advantages gained from the increased accuracy.

The MSE loss of 10 selected LSTM network architectures
is shown in Fig. 7. The losses start to converge around 10k
training samples, and the losses are oscillating in converging
process.

B. EVALUATION OF NEURO-GOVERNOR
The smartphone’s battery was removed and replaced with
Hardkernel’s SmartPower2 monitoring device to measure
the smartphone’s current power consumption. The hardware
specifications of the power measuring device are described
in Table V. The supply voltage was set to 4.33V during the
benchmark. The smartphone’s average power consumption
in Ampere was calculated from the accumulated power con-
sumption data. The smartphone was switched to airplane
mode to minimize impacts not related to the processor power
consumption, such as wireless and peripheral devices. The
display brightness is also set to its minimum.

Each LSTM network architecture is denoted according to
the number of layers and the number of LSTM neurons per
layer in benchmark results. For example, an LSTM network
architecture consisting of one layer and 5 neurons is denoted
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FIGURE 7. MSE losses for the number of training samples.

TABLE 5. Measuring device specifications.

by L1N5. The interactive governor that operates by default in
the Android kernel was selected as the comparison target and
denoted by IG.

We evaluated the performance with PCMark for Android
Work 2.0 benchmark[38], a smartphone benchmark to deter-
mine whether the proposed neuro-governor would degrade
the smartphone’s performance. The performance score of
PCMark for Android Work 2.0 is a geometric mean of its
sub-benchmark scores[39], which are web browsing, photo
and video editing, data compression. Then computation time,
memory access time, and rendering time is measured during
each sub-benchmark task. With all other smartphone compo-
nents except governor being controlled constantly, the higher
scores mean better processor performance. The precision of
the benchmark’s performance measure is reported to better
than 3%[39], meaning that the performance variation is a
range of less than 3% with a device in a well-controlled
environment.

Fig. 8 shows the average power consumption results during
PCMark for AndroidWork 2.0 runwhere the proposed LSTM
architecture consumes less power than IG. In addition, LSTM
architecture saved more power when moving from L1N5 to
L1N25, which was due to the increase in prediction accuracy.

FIGURE 8. Average power consumption on PCMark for Android Work
2.0 run.

There was no significant difference in power consumption
between L1N25 and L2N5 due to L2N5’s lower prediction
accuracy. The L2N10 architecture was the most efficient
LSTM architecture with regard to prediction accuracy and
computational overhead, reducing the average power con-
sumption by approximately 19.4% compared to IG. Then
the power consumption increased sharply from L3N10. The
higher the number of layers, the faster the computational
overhead increased, which led the processor to consumemore
power than could be recovered by prediction accuracy.

The execution time of each benchmark run was measured
to find the execution performance of the processor and to
find the system’s actual energy consumption. The results
in Fig. 9 show that the execution performance measures
of neuro-governor with 10 network architectures are fall
within a 3% precision range of IG. Additionally, the PCMark
for Android Work 2.0 score was also recorded and shown
in Fig. 10, supporting that our proposed neuro-governor per-
forms almost equivalently with IG.
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FIGURE 9. Average execution time on PCMark for Android Work 2.0 run.

FIGURE 10. Average performance score on PCMark for Android Work
2.0 run.

FIGURE 11. Calculated total energy consumption on PCMark for Android
Work 2.0 run.

Finally, the actual energy consumption in Joules was
calculated by multiplying the average power consumption,
4.33 volts of constant supply voltage, and the average exe-
cution time of each benchmark run. The energy consumption
results are shown in Fig. 11. The trends of the power con-
sumption results and the actual energy consumption results
were similar since the execution time measure showed the
almost equivalent performance between the governors. The
L2N10 architecture was the most energy efficient LSTM
architecture while minimizing the performance degradation.
It consumed approximately 19% less energy compared to IG.

V. CONCLUSION
Existing software approaches for reducing the power con-
sumption of mobile processors waste power because they
allocate more resources than necessary to prevent deterio-
ration of the processor performance. When a simple model
is used to reduce the overhead of the computation used to

estimate the processor usage, this can result in errors in
relation to actual usage, resulting in wasted power. Therefore,
this paper proposed a power management technique that can
predict processor usage based on an LSTM network and can
reduce the wasted power due to processor usage estimation
error. In addition, we proposed the methodology on how
to identify the most efficient LSTM architecture by com-
paring the computational overhead according to the number
of LSTM neurons and layers of the new prediction model
and the computational overhead of the existing technique.
We constructed a power measurement environment for smart-
phones and measured power consumption to evaluate perfor-
mance based on a benchmarking tool that reflects the charac-
teristics of mobile applications. The comparison between the
proposed method and the existing method showed that the
proposed method reduced energy consumption by approxi-
mately 19% without degrading the processor performance.

We expect that smartphone usage time can be extended
without degrading the usability using our proposed method.
The limitation of our proposed method is that it uses only the
processor usage to learn andmake predictions with the LSTM
network, and more detailed user context information that
could change processor usage patterns was not considered.
In the future, we plan to study a processor usage prediction
model that considers the characteristics of each application
and the overall situation of smartphone users.
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