論文

비 직교 물성 모델을 이용한 복합재료 계란판의 압축거동 및 파손

한영원^{*}, 장승환^{**}, 유용문^{***}, 전성식^{*+}

Compressive and failure behaviour of composite egg-box panel

using non-orthogonal constitutive model

Youngwon Hahn^{*}, Seung Hwan Chang^{**}, Yong-Mun Ryu^{***} and Seong Sik Cheon^{*+}

ABSTRACT

In the current study, thermoforming and compression analysis were carried out for the woven composite egg-box panel with the non-orthogonal constitutive material model, which is proposed by Xue et al. The material model is implemented in commercial engineering software, LS-DYNA, with a user subroutine. Directional properties in non-orthogonal coordinates are determinedusing the deformation gradient tensor and the material modulus matrix in local coordinate is updated at each corresponding time step. After the implemented non-orthogonal constitutive model is verified by the bias extension test, the egg-box panel simulations are performed. The egg-box panel simulations are divided into two categories: thermoforming (draping) and crushing. The finite element model for crushing analysiscan be obtained using the displacement result of thermoforming process.

초 록

본 연구에서는 직조섬유복합재료를 이용한 계란판 모양의 시편에 대한 드래이핑 공정과 압축 해석을 비직교성 재료 모델 을 이용하여 수행하였다. 비 직교 재료 구성 모델은 Xue 등이 2003년에 발표한 것을 상용 프로그램인 LS-DYNA에서 제공하 는 사용자 부프로그램 (user subroutine)을 이용하여 본 연구에 적용하였다. 비 직교 재료 구성 모델에서 방향성은 변형 기울 기 텐서를 이용하여 계산하였고, 각 단계마다 재료 물성 행렬을 갱신하였다. 비 직교 물성 모델은 바이어스 인장 실험 결과 와 비교 검증을 한 후에 계란 판 성형에 적용하였다. 계란 판 해석을 위해 본 연구에서는 열 성형 공정 (드래이핑)과 압축 해석을 수행하였다. 압축 해석을 위한 유한요소 모델은 드래이핑 해석으로부터 얻은 유한요소결과를 이용하여 구축하였다.

Key Words : 비 직교물성 모델(non-orthogonal constitutive model), 복합재료 계란판(composite egg-box panel), 압축거동 (compressive behaviour), 열성형(thermoforming), 드레이핑(draping)

1. 서 론

구조체의 충돌에 대한 재료의 에너지 흡수력 특성은다양한

산업계 뿐 아니라 특히 자동차 분야에서 귀추가 주목되고 있 으며, 앞으로 더욱 복잡해진 법규에 대응하여 굽힘강성 및 압 축특성이 향상된 샌드위치 구조의 설계 및 제작이 첨예한 관

^{*} University of Michigan at Ann Arbor

^{**} 중앙대학교 공과대학 기계공학부

^{***} 자동차부품연구원, 소재공정연구센터

^{*+} 국립공주대학교 공과대학 기계자동차공학부, 교신저자(E-mail:sscheon@kongju.ac.kr)

심사로 떠오르고 있으며, 내장재로서 허니컴, 다공재질[1]과 더불어 계란판 형상의 구조가 고려되고 있다. 금속 재질의 계 란판에 대한 기계적인 물성치, 해석적 모델, 적용 사례와 공정 에 대하여 여러 연구[2,3]가 진행되어 왔으나, 직조섬유 복합 재료를 이용한 체계적인 해석적 접근은 재질의 섬유방향각도 의 변화에 의해 거의 전무한 상태이다. 대부분의 복합재료에 대한 유한요소 물성모델은 씨줄 (weft)과 날줄 (warp)의 각도 가 모델링시 정해진 뒤, 모든 부분에서 동일하게 유지되어지 는 것이 대부분인데 반해, 직조섬유 복합재료 계란판에 대한 해석은 위치마다 씨줄과 날줄의 각도가 달라지며, 특히 성형 해석시에는 각도가 변형되어야 한다. 이에 따라, 직조섬유 복 합재료의 씨줄과 날줄에 대한 각도변형을 위하여, 등가의 핀 (pin), 기구학적 조인트 (kinematic joint) 및 스프링 (spring) 등을 이용한 기하학적 모델[4-6]과 재료 구성방정식을 비 직 교성으로 한 유한요소모델의 두 가지로 수치적 모델을 구분할 수 있다. 전자의 경우, 복합재료의 방향성을 트러스 (truss) 요 소와 스프링 (spring) 요소로 인장과 전단 효과를 이용하여 표 현하게 되며, 개념적으로 매우 간단하나 계란판과 같은 복잡 한 형상에의 적용에 어려움이 있다. 따라서, 유한 요소 기법에 근거하여 해석시 요소 재료의 구성 방정식을 이용하여 본 문 제를 해결하는 것이 타당한 것으로 사료된다.

직조섬유 복합재료에 대한 수치적인 모델은 바이어스 인장 시험과 사진 프레임 시험을 통하여 재료의 면내 전단 효과를 연구하는 것부터 그 기원을 찾을 수 있다[7-14]. 유한 요소 해 석을 위하여 직조섬유 복합재료에 대한 쉘 (shell) 요소와 3차 원 재료 모델이 개발되어 위의 두 개의 시험결과와 비교 연구 [15-20]되었으나, 보편적인 산업현장에 적용하기에 아직도 어 려움이 있다. Xue 등 [21-23]이 개발한 비 직교성 재료모델 (non-orthogonal constitutive model)이라 불리는 수치모델이 그 중에서 가장 적용이 용이하며 효율적이라 사료되어 본 연구에 적용하였다. 또한, 본 해석에서는 면외(out-of-plane)방향의 전 단효과를 간단히 고려하여 해석을 수행하였다.

본 논문은 다음과 같이 구성되어 있다. 먼저 비 직교재료 모델을 간단히 소개하고, 문헌 [22]에서 참조한 바이어스 인장 시험의 결과를 이용하여 본 연구에서 구현한 비 직교재료 모 델의 검증을 하였다. 마지막으로 계란판 제조 공정을 소개하 고, 수치 해석을 실험과 비교하였다.

2. 비 직교재료 모델

Fig. 1과 같이 변형에 따른 섬유 방향에 따라 재료의 물성 치가 바뀌어지는 현상에 대하여 서론에서 언급한 여러 수치적 모델이 있으나 본 연구에서는 Xue [21]등에 의하여 소개된 모 델을 사용하였다.

Fig. 1 Fibre coordinate: (a) Before, (b) after deformation.

변형 시 섬유의 재료 좌표계 gi과 g2는 각도 a와 β를 가지 고 국부 좌표계 e1와 e2에 대하여 회전한다. 이러한 두 가지의 회전 각도는 재료 좌표계와 국부 좌표계 사이에 다음과 같은 관계가 성립한다.

$$\begin{cases} g_1 \\ g_2 \end{cases} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ \cos(\alpha + \beta) & \sin(\alpha + \beta) \end{bmatrix} \begin{cases} e_1 \\ e_2 \end{cases} = P \begin{cases} e_1 \\ e_2 \end{cases}$$
(1)

연속체 역학의 관계를 이용하면 위의 관계는 직교 좌표와 역변환 (contravariant) 좌표계 간의 관계와 일치한다 [22]. 위 의 관계를 이용하여 다음과 같은 변형률의 관계를 성립할 수 있다.

$$\varepsilon_{ij}^{'} = P_i^m P_j^n \varepsilon_{mn} \tag{2}$$

ε_{ij}: 역변환 좌표계에서 변형률 성분 (gi)

*ε*_{ij}: 국부 좌표계에서 변형률 성분 (ei)

그리고 각 단계에서 역변환 좌표계를 변형 기울기 텐서 (deformation gradient tensor)를 이용하여 갱신한다. 또한, 면내 (in-plane) 응력 성분은 다음과 같은 관계에 의하여 계산될 수 있다.

$$\sigma = T^{T} \sigma' = T^{T} D' T \varepsilon$$
⁽³⁾

여기서 D'는 역변환 좌표계에서의 탄성 계수 매트릭스이고,

$$\sigma = \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases}$$
$$T^{T} = \begin{bmatrix} \cos^{2} \alpha & \cos^{2} (\alpha + \beta) & 2\cos \alpha \sin (\alpha + \beta) \\ \sin^{2} \alpha & \sin^{2} (\alpha + \beta) & 2\sin \alpha \cos (\alpha + \beta) \\ \sin \alpha \cos \alpha & \sin (\alpha + \beta) \cos (\alpha + \beta) & \sin (2\alpha + \beta) \end{bmatrix}$$

이다. 본 연구에서는 LS-DYNA 971을 이용하여 비 직교 재 료모델을 사용자 부프로그램 (user subroutine)으로 구성하였다.

3. 바이어스 인장 시험의 유한요소해석

바이어스 인장 시험은 직조섬유 복합재료에서 재료의 면내 (in-plane) 방향의 전단 성분를 측정하기 위해 일반적으로 사용 되는 방법이다. 본 연구에서 구성한 사용자 부프로그램 (user subroutine)및 해석결과에 관한 검증 비교를 위해 Peng과 Cao [22]의시험결과를 비교하였다. 직조섬유 복합재료 시편은 초기 에 각각 ±45방향으로 섬유가 설정되어 있고, 상하 방향으로 하중이 가해진다. 초기의 유한요소모델은 111.3mm × 222.6mm 로서, Fig. 2(a)에 나타나 있다.

Fig. 2 FE model of bias tension test specimen: (a) Initial state, (b) effective strain contour of deformed specimen.

Fig. 2(a)의 모델에서 하부 절점들을 구속하고, 상부 절점들을 위의방향으로 변위를 주게 된다. 변위속도를 낮추어 준정적해석 이 진행될 수있도록 하고,빠른 전체 적분(fast full integration)을 적용한 쉘 (shell) 요소을 사용하였다. 준정적 시험에 관련된 해 석이므로, 관성효과는 높지않은 것으로 가정하여, 해석시간을 단 축하기 위하여 질량 스케일링 (mass scaling)을 하였다. Fig. 2(b) 에서 변형된 모습과 유효 변형률 곡선 (effective strain contour) 을 보여주고 있다. 이 결과는 [22]의 시험결과와 비교하여 유사 한 변형양상을 보여주고 있다. 가운데 부분에서 심하게 변형되는 모습과 다이에서 가까운 부분인 위와 아래의 부분에서는 변형되 지 않는 부분을 보이고 있다. Fig. 3에서는 관련 논문 [22]의 결 과와 비교한 하중-변위 선도를 나타내었다. Fig. 3 (a)에서 보듯 이 본 연구에서 구현된 LS-DYNA 에서 얻은 결과는 [22]에서 얻 은 결과와 비교하여 유사한 결과를 얻을 수 있었다. [22]에서는 ABAQUS을 사용하여 실험과 비교하였다. 변위가 커짐에 따라 두 해석 결과에 차이가 발생하는 이유는 각각 다른 유한요소프 로그램을 이용하다 보니, 이에 따른 서로 상이한 요소 알고리즘 (element formulation)을 채택하기 때문인 것으로 사료되고 있다.

Fig. 3 Analysis results: (a) Force-displacement curve, (b) kinetic energy and internal energy curves.

Fig. 3(b)에 kinetic 에너지와 internal 에너지를 비교하였다. 내부 에너지가 증가하며, 운동 에너지는 0에 가까운 것으로 보아, 정적인 해석으로 볼 수 있다고 사료된다.

4. 계란판 드레이핑 및 유한요소해석

4.1 계란판 드레이핑 제조방법 및 공정해석

실험실에서 제조되는 직조섬유 복합재료 계란판은 기본적으 로 오토클레이브 진공백 성형법으로 제조된다. 실리콘고무로 제조된 양각과 음각의 금형사이에 원하는 각도로 제단된 직조 섬유 복합재료 프리프레그 (1-ply)를 위치시키고 금형을 포함 하여 진공백으로 포장한 뒤 내부에 진공을 가한다. 상온에서는 프리프레그가 어느정도 강성을 갖고 있기 때문에 금형에 정확 히 일치되지 않으나, 이를 오토클레이브에 장착하고, 외부로 압력을 가하고 섭씨 80도에서 30분 유지후 섭씨 120도로 3시 간 유지시키게 되면, 프리프레그의 레진이 녹아서 금형과 같은 형상의 계란판으로 제조된다. 본 연구에서 사용된 계란판 내의 패턴 형상 및 치수는 Fig. 4 [24-28]에서 보여주고 있다.

Fig. 4 Geometry and sectional dimensions of the egg-box panel: (a) Local view, (b) section 1, (c) section 2, and (d) section 3.

(d)

Fig. 5 FE model for draping analysis.

Fig. 6 Draped egg-box panel: (a) Product, (b) analysis.

Table 1 Composite material properties used in draping simulation

	E ₁₁ (GPa)	E ₂₂ (GPa)	G ₁₂ (GPa)	V ₁₂
Carbon fabric	55	55	4.75	0.13

열 성형해석을 하기위해, Fig. 4와 같이 금형과 시편모델을 준비하였다. 성형시 레진은 열에 의하여 녹고, 직조탄소섬유들 만 변형에 영향을 미치므로 섬유에 대한 물성치만을 고려하여 드레이핑 해석을 수행하였다. Table 1에 사용된 물성치가 나 타나있다. 쉘요소는 해석의 정도 및 시간을 고려하여 빠른 전 체 적분(fast full integration)옵션을 사용하였다.

하부 다이는 고정하고, 상부 다이를 밑으로 압축하는 방식 으로 해석이 수행되었고, 드레이핑 해석결과 제조된 계란판이 Fig. 6에 나타나있다.

해석결과로부터 얻어진 계란 판의 형상이 드레이핑으로 제 조된 제품과 거의 동일하였다. 이 해석결과는 다음단계 해석 인 압축해석에서 해석모델로 사용되었다.

4.2 계란판 압축 해석

드레이핑 해석결과로 얻어진 계란판 형상모델을 이용하여 압축 해석을 수행하였다. 마찬가지로 빠른 전체 적분(fast full integration)이 가능한 쉘요소을 사용하였다. 다이와 시편사이의 마찰계수는 0.8을 적용하였고, 접촉은 상대적으로 안정적인 one_way_surface_to_surface 옵션을 사용하였다. 압축시 변형은 면 내 (in-plane)와 면외 (out-of-plane) 방향의 전단 변형률이 동시에

Fig. 7 Crushing analysis: (a) Before crushing, (b) after crushing.

발생하며, 본 계란판의 경우 두께가 충분히 얇다고 가정하여면외 (out-of-plane)방향의 전단 계수는 상수로 가정하여 해석을 수행하 였다. Fig. 7에 압축 전후의 모델을 보여주고 있다.

Fig. 8은 스프링 백 이후, 직조섬유 복합재료의 파손된 부위 에 관해 해석과 실험을 비교하고 있다. 또한, 비 직교 재료모 델의 해석결과의 건전성을 평가하기 위해, 기존의 등방성 모 델을 이용한 해석결과도 함께 도시하였다.

본 해석 결과는 스프링 백 효과를 고려하지 않아서 변형 결과를 직접적으로 실험과 비교할 수 없으나, 파손이 발생한 부분의 변형양상을 비교하는 것은 가능하였다.

Fig. 8(a)와 (b)를 비교하였을 때, 실험에서 파손이 발생한 부분은 해석에서 과도한 변형이 발행한 것을 알 수 있으며, 따라서 비 직교모델에서 계란판의 압축시 발생하는 파손을 비 교적 우수하게 예측하는 것으로 사료된다. 비 직교모델을 사 용하지 않고, 등방성 모델을 사용하여 해석하였을 경우, Fig. 8(a)와 (c)를 비교해보면, 실험에서 발생한 파손부분들의 변형 특성이 상이하게 나오는 것을 볼 수 있었다.

Fig. 9에서 압축시 발생한 힘-변형 선도를 보여주고 있다. 등방성 모델의 해석결과는 약 11mm변형에서 피크값이 다시

(b)

(c)

Fig. 8 Final shape after springback: (a) Experiment, (b) FE analysis using non-orthogonal material model, and (c) FE analysis with isotropic model.

발생하는 데 반해, 비 직교 모델의 경우는 실험결과와 비슷하 게 덴시피케이션 (densification) 과정으로 직접 진행되는 것을 볼 수 있었다. 비직교모델의 경우 대체적으로 실험치에 근사적 으로 잘 일치한다고 사료되었으나, 실험과는 다른 초기 피크값 이 발생하는 것을 볼 수 있었다. 이는 향후 후속적인 사용자 부프로그램(user subroutine)개발 등으로 해결할 수 있을 것으로 여겨지고 있다. 본 연구에서는 현재 복합재료 계란판이 프리프 레그 1장 (1ply)으로 제조된 것에 대한 해석과 시험을 병행한

것이므로, 면외 (out-of-plane)방향의 전단 계수를 상수로 가정 하였으나, 향후 여러장을 적층한 형태의 복합재료 계란판에 있 어서는 이 값의 검증과 더불어, 적절한 값을 제안할 수 있는 식의 제안이 필요할 것으로 여겨진다.

5. 결 론

본 연구는 비 직교 재료 모델을 구현할 수 있는 사용자 부 프로그램 (user subroutine)을 구성하여, 직조탄소섬유 복합재료 로 제작된 계란판의 드레이핑 및 압축거동에 관한 해석을 수 행하였다. 또한, 준정적 압축시험결과와 비교하여 변형 및 파 손거동과, 하중-변형 선도를 분석하였다. 비 직교모델의 경우 대체적으로 실험치에 근사적으로 잘 일치한다고 볼 수 있으나, 실험과는 다른 초기 피크값이 발생하는 것을 볼 수 있었다. 이 는 향후 후속적인 사용자 부프로그램 (user subroutine)개발 등 으로 해결할 수 있을 것으로 여겨지고 있다. 본 연구에서는 현 재 복합재료 계란판이 프리프레그 1장 (1ply)으로 제조된 것에 대한 해석과 시험을 병행한 것이므로, 면외 (out-of-plane)방향 의 전단 계수를 상수로 가정하였으나, 향후 여러장을 적층한 형태의 복합재료 계란판에 있어서는 이 값의 검증과 더불어, 적절한 값을 계산할 수 있는 식의 제안이 필요할 것으로 여겨 진다. 압축변형 및 파괴에 있어서 비 직교모델은 실험에서 얻 은 결과와 매우 유사한 거동을 보여주었다.

후 기

본 연구는 학술진흥재단에서 지원하는 연구과제 (KRF-2006-331-D00011)로 수행된 것이며, 지원에 대해 감사드립니다.

참고문헌

- 전성식, "통계적 유한요소모델을 이용한 발포된 금속기지 복합재료의 인장특성," 한국복합재료학회지, 제17권, 2004, pp. 34-39.
- Zupan, M., Chen, C. and Fleck, N.A., "The Plastic Collapse and Energy Absorption Capacity of Egg-box Panels," *International Journal of Mechanical Sciences*, Vol. 45, 2003, pp. 851-871.
- Deshpande, V.S. and Fleck, N.A. "Energy Absorption of an Egg-box Material," *Journal of the Mechanics and Physics of Solids*, Vol.51, 2003, pp. 187-208.
- Potter, K.D., "The Influence of Accurate Stretch Data for Reinforcements on the Production of Complex Structural Mouldings: Part 1. Deformation of Aligned Sheets and Fabrics," *Composites*, Vol. 10, 1979, pp. 161-167.
- Potter, K.D., "The Influence of Accurate Stretch Data for Reinforcements on the Production of Complex Structural Mouldings: Part 2. Deformation of Random Mats, *Composites*, Vol. 10, pp. 168-173.
- Sharma, S.B. and Sutcliffe, M.P.F., "A Simplified Finite Element Model for Draping of Woven Material," *Composites: Part A*, Vol. 35, 2004, pp. 637-643.
- Sharma, S.B., Sutcliffe, M.P.F. and Chang, S.H., "Characterisation of Material Properties for Draping of Dry Woven Composite Material," *Composites Part A*, Vol. 34, 2003, pp. 1167-1175.
- Prodromou, A.G. and Chen, J., "On the Relationship Between Shear Angle and Wrinkling of Textile Composite Preforms," *Composites Part A*, Vol. 28, 1997, pp. 491-503.
- Robertson, R.E., Hsiue, E.S., Sickafus, E.N. and Yeh, G.S.Y., "Fiber Rearrangements during the Molding of Continuous Fiber Composites. I. Flat Cloth to a Hemisphere," *Polymer Composites*, Vol. 2, 1981. pp. 126-131.
- Rozant, O., Bourban, P.-E. and Manson, J.-A.E., "Drapability of Dry Textile Fabric for Stampable Thermoplastic Preforms," *Composites Part A*, Vol. 31, 2000. pp. 1167-1177.
- Mohammed, U., Lekakou, C., Dong, L. and Bader, M.G., "Shear Deformation and Micromechanics of Woven Fabrics, *Composites Part A*, Vol. 31, 2000. pp. 299-308.
- Buet-Gautier, K. and Boisse, P., "Experimental Analysis and Modeling of Biaxial Mechanical Behavior of Woven Composite Reinforcements," *Experimental mechanics*, Vol. 41, 2001. pp. 260-269.
- Launay, J., Hivet, G., Duong, A.V. and Boisse, P., "Experimental Analysis of the Influence of Tensions on In-plane Shear Behavior of Woven Composite Reinforcements," *Composites*

Science and Technology, 68, 2008. pp. 506-515.

- 14) Zhu, B., Yu, T.X. and Tao, X.M., "Large Deformation and Slippage Mechanism of Plain Woven Composite in Bias Extension," *Composites Part A*, Vol. 38, 2007. pp. 1821-1828.
- Shahkarami, A. and Vaziri, R., "A Continuum Shell Finite Element Model for Impact Simulation of Woven Fabrics," *International Journal of Impact Engineering*, Vol. 34, 2007. pp. 104-119.
- 16) Yu, W.R., Pourboghrat,, F., Chung, K., Zampaloni, M. and Kang, T.J., "Non-orthogonal Constitutive Equation for Woven Fabric Reinforced Thermoplastic Composites," *Composites Part A*, Vol. 33, 2002. pp. 1095-1105.
- Ivanov, I.and Tabiei, A., "Three-dimensional Computational Micro-mechanical Model for Woven Fabric Composites," *Composite Structures*, Vol. 54, 2001. pp. 489-496.
- 18) Dong, L., Lekakou, C. and Bader, M.G., "Solid-mechanics Finite Element Simulations of the Draping of Fabrics:a Sensitivity Analysis," *Composites Part A*, Vol. 31, 2000. pp. 639-652.
- Daniel, I.M., Luo, J.-J. and Schubel, P.M., "Three-dimensional Characterization of Textile Composites," *Composites Part B*, Vol. 39, 2008. pp. 13-19.
- Hamila, N. and Boisse, P., "A Meso-macro Three Node Finite Element for Draping of Textile Composite Preforms," *Applied composite materials*, Vol. 14, 2007. pp. 235-250.
- Xue, P. Peng, X. and Cao, J. "A Non-orthogonal Constitutive Model for Characterizing Woven Composites," *Composites Part A*, Vol. 34, 2003, pp. 183-193.
- 22) Peng, X.Q. and Cao, J., "A Continuum Mechanics-based Non-orthogonal Constitutive Model for Woven Composite Fabrics," *Composites Part A*, Vol. 36, 2005. pp. 859-874.
- 23) Lee, W., Cao, J., Chen, J. and Sherwood, J.A., "Numerical Analysis on Double Dome Stretching Tests of Woven Composites," *The 10th ESAFORM Conference*, Zaragoza, Spain, 2007. pp. 1052-1057.
- 24) Chung, J.G., Chang, S.H. and Sutcliffe, M.P.F., "Deformation and Energy Absorption of Composite Egg-box Panels," *Composites Science and Technology*, Vol. 67, 2007, pp. 2342-2349.
- 25) 강재훈, 장승환, "직물 복합재료의 드레이핑 미소 거동관찰: 사진틀 전단실험," 한국복합재료학회지, 제18권, 2005, pp. 13-19.
- 26) 김용수, 장승환, "평직 탄소섬유 복합재료-고분자 포움 샌드 위치 구조의 성형중 미소변형에 관한 연구," 한국복합재료 학회지, 제17권, 2004, pp. 28-36.
- 27) 정지규, 장승환, "직물 복합재료 계란판의 압축특성과 에너지 흡수율," 대한기계학회논문집A, 제30권, 2006, pp. 1603-1610.

28) 유성환, 박석원, 장승환, "직조구조차이와 적층각의 변화에 따른 섬 유강화복합재료의 압축특성," 한국복합재료학회지, 제22권, 2009, pp. 15-21.