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Abstract: Early stage prediction of economic trait performance is important and directly linked to
profitability of farm pig production. Genome-wide association study (GWAS) has been applied to find
causative genomic regions of traits. This study established a regulatory gene network using GWAS for
critical economic pig characteristics, centered on easily measurable body fat thickness in live animals.
We genotyped 2,681 pigs using Illumina Porcine SNP60, followed by GWAS to calculate Bayes factors
for 47,697 single nucleotide polymorphisms (SNPs) of seven traits. Using this information, SNPs
were annotated with specific genes near genome locations to establish the association weight matrix.
The entire network consisted of 226 nodes and 6,921 significant edges. For in silico validation of their
interactions, we conducted regulatory sequence analysis of predicted target genes of transcription
factors (TFs). Three key regulatory TFs were identified to guarantee maximum coverage: AT-rich
interaction domain 3B (ARID3B), glial cell missing homolog 1 (GCM1), and GLI family zinc finger
2 (GLI2). We identified numerous genes targeted by ARID3B, associated with cellular processes.
GCM1 and GLI2 were involved in developmental processes, and their shared target genes regulated
multicellular organismal process. This system biology-based function analysis might contribute to
enhancing understanding of economic pig traits.

Keywords: Association weight matrix; Bayes factor; economic trait; single nucleotide polymorphism

1. Introduction

Growth rate traits, such as average daily gain (ADG) and days to 90-kg body weight (DAYS),
and production traits, such as backfat thickness (BFAT) and lean percent (PCL), have been typically
considered as important traits, as they play a major role in the economic success of Korean pig breeding
programs. Moreover, the lifetime total number born (LTTNB), lifetime number born alive (LTNBA), and
weaning to estrus interval (WEI) are also economically important for sow longevity and reproduction.
To date, these economic traits have been genetically improved successfully based on traditional best
linear unbiased prediction (BLUP), and breeding values of economic traits have been used with a
selection index to select elite lines in Korean pig breeding.

Recently, genomic information in the form of dense single nucleotide polymorphism (SNP)
marker panels (e.g., Illumina, Neogen-GeneSeek, and Affymetrix) has become available for genetic
evaluation, owing to improvements in genotyping technology and statistical methods. One of its
applications is in genome-wide association study (GWAS), which has become a powerful genomics
tool to identify genetic loci or genes underlying quantitative traits in domestic animals [1]. The single
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marker regression (SMR) method was first introduced in GWAS. However, the original and other
modified SMR versions might have limited application in the estimation of SNP marker effect in the
entire genome owing to various reasons: the SMR methods tend to overestimate the SNP marker effect
as they ignore the effects of other SNP markers [2] and they are insufficient to detect SNPs with small
effects. Therefore, it is useful to apply the Bayesian approach, which fits all possible multiple markers
simultaneously, and was originally developed for genomic selection [3]. It has been shown to be a
better approach for quantitative trait loci (QTL) mapping or GWAS than the SMR method in detection
power [2,4,5]. Furthermore, Fortes, et al. [6] recently suggested a system biology-based strategy called
association weight matrix (AWM) that integrates information from GWAS to study complex traits and
identify candidate genes. Several researchers have applied this methodology using p-values of the
GWAS result, but there has been no report of the use of a combination of AWM-methodology and
Bayesian approach thus far [7–10].

The objectives of the present study were to: (i) conduct a GWAS using the Bayesian method
to investigate the genetic architecture and chromosomal regions associated with economic traits of
pigs, including growth rate and production-related traits such as litter size information in Yorkshire
population using dense SNP panels and (ii) identify the co-associated regulatory network of the
multi-trait Bayesian approach GWAS using the AWM methodology.

2. Materials and Methods

2.1. Genotypes and Phenotypes

From 2014 to 2017, 2681 Yorkshire pigs were genotyped using Illumina PorcineSNP60 version
2 (Illumina, Inc., San Diego, CA) comprising 61,565 SNP markers. After excluding SNPs that were
unmapped, on sex chromosomes, and those with poor call rates (<0.95), the available number of
SNP markers was 47,697. Duplicated animals (n = 60) caused by re-genotyping to obtain acceptable
call rates, and animals with lower call rates (n = 30) were removed after comparing their call rates.
We also removed animals (n = 19) with call rates <0.90. The parentage test was performed using
SEEKPARENTF90 software (INIA, Las Brujas, UY) [11] with known parent-offspring in the pedigree
file. A conflict threshold of 10% was used to detect paternity error and correct the pedigree file.
Consequently, 244 genotyped animals were removed, and the pedigree file was corrected. Furthermore,
genotype identification data that could not be matched to the corresponding animals in the phenotypic
and pedigree files were removed, leaving 1833 animals for further GWAS. Missing SNP genotypes
(0.27%) were imputed using FImpute version 2.2 [12].

All experimental procedures involving animals were conducted in accordance with the Guide
for Care and Use of Animals in Research and approved by the Institutional Animal Care and Use
Committee of the National Institute of Animal Science (No. 2015-137).

2.2. Measurement of Economic Traits

Body weights were measured once during performance testing (at approximately 150 days).
The ADG was calculated as the difference in final weight and initial weight divided by the number of
days at the time of performance testing. The DAYS was estimated according to the recommendations
of the Korean Swine Performance Recording Standards (KSPRS), adjusted from birth to the time
of performance testing. The BFAT was calculated based on the average fat thickness values of the
shoulder (on the fourth thoracic vertebrae), mid-back (on the last thoracic vertebrae), and loin (on the
last lumbar vertebrae) measured using the A-mode (amplitude mode) ultrasound device (PIGLOG
105). The PCL was calculated according to the recommendations of the KSPRS, following previously
reported procedures [13]. More details of the correction formula for growth and production traits were
reported by Choy et al. [14]. The three-sow reproduction-related traits LTTNB, LTNBA, and WEI were
obtained from real phenotypic records.



Genes 2019, 10, 293 3 of 14

2.3. Response Variable

Phenotypic data of 39,518 purebred Yorkshire pigs were collected from three Korea GGP farms
between 2012 and 2017. Pedigree data from 99,694 individuals were also used. Table 1 shows the
number of available records, phenotypic means and their standard deviation, variance component,
and heritability for each trait. Genetic parameters, breeding values, and the corresponding reliability
were estimated using a pedigree relationship matrix fitted with ASReml version 4.1 software (VSN
International Ltd., Hemel Hampstead, UK) [15] for growth rate (ADG and DAYS), production traits
(BFAT and PCL), and reproductive traits (LTTNB, LTNBA, and WEI). A multi-trait animal model
was used for those parameters and estimated breeding value (EBV) including fixed effects of farm,
birth-year, season, and sex. Further, the deregressed estimated breeding value (DEBV) was adjusted
for parental information by a combination of deregression after adjusting for parental average such
that the DEBV information contained only their phenotypic information and that of their descendants.
The response variable was weighted to account for the heterogeneous variance of DEBV due to the
differences in EBV reliabilities among the genotyped animals. The weighting factor [16] for animal i
(wi) was calculated as follows:

wi =

(
1− h2

){
c +

[(
1− r2

i

)
/r2

i

]}
h2

where, r2
i is the reliability of DEBV, h2 is the heritability of the trait, and c is the proportion of genetic

variation that could not be explained by markers. In the present study, c was assumed to be equal to
0.40 [17]. After removing animals with reliability <0.10, 1596 registered Yorkshire pigs were used in
the GWAS.

Table 1. Variance components and heritability estimated for growth and reproductive traits in
Yorkshire pigs.

Trait 1 N Mean SD Min. Max. σ2
A σ2

P h2

BFAT (mm) 39,406 13.76 2.96 7.60 23.20 2.93 6.99 0.36
ADG (g) 39,516 609.30 74.48 449.00 952.00 0.12 0.35 0.42

DAYS (days) 39,221 149.3 14.4 112.00 188.00 0.44 1.26 0.35
PCL (%) 39,508 58.14 2.97 49.60 65.80 3.48 8.33 0.42
LTTNB 39,518 11.80 2.95 2 25 0.76 7.20 0.11
LTNBA 39,518 10.65 2.70 1 24 0.73 7.07 0.10

WEI 12,975 4.88 1.40 1 15 0.15 1.86 0.08
1 BFAT = backfat thickness; ADG = average daily gain; DAYS = days to 90-Kg body weight; PCL = lean percent;
LTTNB = lifetime total number of born; LTNBA = lifetime number of born alive; WEI = weaning to estrous interval.

2.4. Bayesian Method for Genome Wide Association Study

The BayesB [3] method with π set to 0.99 and weighting factors was used to estimate the effect
of SNP markers and calculate variances attributed to every non overlapping 1-Mb genome window
using GenSel4R software [18]. BayesB method uses a mixture model that assumes some fraction π of
SNP markers have zero effect and every SNP marker has locus-specific variances. For each trait, the
following model was fitted to estimate marker effects:

yi = µ+
k∑

j=1

Zi ju jδ j + ei

where, yi is response variable (DEBV) of animal i for the respective trait; µ is the population mean; k
is the number of markers; Zi j is allelic state at locus j in individual i; u j is the random substitution
effect for marker j, which follows a mixture distribution for this random substitution effect according
to indicator variable (δ j), a random 0/1 variable indicating the absence or presence of marker j in the
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model, with u j assumed normally distributed N(0,σ2
u) when δ j = 1; and ei is a random residual effect

assumed to be normally distributed N(0, σ2
e ). The posterior distribution of the parameters and effects

was obtained using Gibbs sampling for 110,000 Markov chain Monte Carlo (MCMC) iterations, of
which the first 10,000 were discarded for burn-in before estimating posterior means of marker effects
and variances, saving the results every five cycles. The accumulated frequency across iterations of
the chain for a particular SNP based on prior π fitted in the model (referred to as “model frequency”)
can be used as evidence of an informative SNP or QTL [19]. However, the adjacent SNPs might be
in high linkage disequilibrium (LD) with the same QTL in a high-density SNP panel and, hence, the
effect of QTL and the SNP model frequency would be spread over all SNPs in high LD, which can
result in the underestimation of individual SNP effect and model frequency [20]. Therefore, a window
approach, which accumulates the effects of adjacent SNPs for each 1-Mb region, has been implemented
in GenSel4R software, and this 1-Mb window approach was used to identify informative genomic
regions accounting for LD. Initial values for genetic and residual variances for BayesB were estimated
using a linear mixed model implemented in ASREML (Table 1). All procedures were performed using
GenSel4R software [18]. In total, 2452 consecutive non-overlapping 1-Mb windows across the whole
genome were included in the GWAS.

2.5. Identification of Significant Window Regions and Single Nucleotide Polymorphism Markers

An additive genetic variance of 1.0%, which was estimated as a fraction of the total genetic
variance explained by all SNPs, was used as the significance level of putative informative 1-Mb window
region. Unlike the single marker regression approach, there is no P-value for significance of SNP
marker in Bayesian approaches. Therefore, the posterior probability of inclusion of each SNP marker
into the model (model frequency) in MCMC cycles is mostly used as a criterion for detecting QTLs [21].
Bayes factor (BF) derived from model frequency was used to determine the SNP with a significant
association within this region.

BF =
p̂i/(1− p̂i)

(1−π)/π

where, π is the prior probability and p̂i is the posterior probability of the fraction of times the SNP was
distributed. Following the definitions of Kass et al. [22] for the strength of an association based on
their range of values, the SNP markers with BF > 3.2, > 20, and > 100 were considered “suggestive,”
“strong,”, and “decisive” evidence, respectively.

2.6. Association Weight Matrix Construction

The AWM consists of rows representing genes and columns representing the additive effect of
each trait based on the results of the GWAS [6]. Before construction, we selected a “weakly” significant
criterion of Bayes factor of ≥ 3.2 [22], and BFAT was used as a key phenotype among the seven traits.
Firstly, SNPs that were significantly associated with BFAT or associated with at least two phenotypes
were selected. Secondly, the SNPs satisfying the distance information of SNPs to the nearest annotated
coding region of the gene were additionally filtered, i.e., those that were either <2500 bp or >1.5 Mb
away from the nearest gene were eliminated. Finally, only one SNP was selected to represent the gene
(the first criterion was the number of statistically significant traits to the SNP and the second was more
significant to the key phenotype). The partial correlation and information theory (PCIT) algorithm was
used to identify a significant interaction among the genes and SLP-related traits using the PCIT library
in R [23]. The hierarchical clustering option in PermutMatrix software [24] was used to visualize the
AWM. To visualize the network of the AWM genes, every significant co-associated gene was applied in
Cytoscape, and the network density of each gene was obtained using the MCODE sub-package [25].



Genes 2019, 10, 293 5 of 14

2.7. Network Analysis Using Transcription Factor and Target Gene Information

To provide in silico validation of the gene-gene interactions and validate the whole network, among
various available methods, we used bio-informatics analysis that predicts TFs and their target genes [6].
To determine whether a gene is a TF or not, it was compared with the pig and human transcription
factor database list sets [26]. The genes identified as TFs required motif information. Sus scrofa motif
information from the CisBP database [27] was mainly used, and vertebrate data from JASPAR [28] were
used to supplement missing information. We extracted the flank region sequence (upper 2000 bp)
of every gene in the whole network from the Ensembl BioMart database [29]. To identify locally
overrepresented TF binding sites (TFBS), the FIMO tool [30] was used. It detected all the TFBS and
extracted the significant clusters (P < 0.001) by calculating their score functions [31]. The top three TFs
were chosen to satisfy the maximum coverage as previously reported [7]. The classification analysis of
the function of node gene was analyzed by inputting the list of gene ensemble ID into the Panther
classification system [32].

3. Results and Discussion

3.1. Genome-Wide Association Study Using Single Nucleotide Polymorphisms Markers with
Illumina PorcineSNP60

We performed a GWAS using SNP markers on Illumina PorcineSNP60 based on several parameters
estimated by the BayesB method (i.e., the absolute SNP marker effect, model frequency, and the genetic
variances explained by SNP markers). Bayesian GWAS applies the threshold for the significance
of SNP markers based on the derivative of model frequency (i.e., BF) [21]. However, a single QTL
could spread the effects over multiple SNPs when using high-density SNP panel as a high linkage
disequilibrium (LD) within adjacent SNP markers. These results may lead to an increase in the
probability of false positives and false negatives [19]. To overcome these problems, we used two
thresholds: (i) additive genetic variance by accumulating within 1-Mb chromosomal regions and (ii)
BF based on the model frequency. The results of the GWAS of growth, productive, and reproductive
traits including chromosomal and window location (Mb), the percentage variance of 1-Mb genome
windows, SNP, physical genome position (Mb), additive effect of the significant SNP marker within
these regions, and BFs in Yorkshire pigs are presented in Tables 2 and 3. In this study, the threshold of
percentage variance of 1-Mb genomic region and BF used to identify associations with traits were >

1.0% and 20, respectively. The Manhattan plots for the analyzed traits are shown in Figure 1.
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Table 2. Informative 1-Mb genome windows and single nucleotide polymorphisms (SNPs) within windows associated with growth rate (ADG and DAYS) and
production (BFAT and PCL) traits in Yorkshire pigs from the GWAS using markers on Illumina PorcineSNP60.

Trait 1 SSC_Mb 2 GV% Informative
SNP rs Number Position (Mb) Effect BF 3 Region

Annotation Gene Annotation

BFAT

2_162 3.51
ASGA0084103 rs81341288 162.15 0.092 57.2 intronic COX8H, IFITM2, IFITM3
ASGA0085784 rs81328276 162.3 0.085 49.58 intronic IFITM2, IFITM3

2_76 2.87
MARC0048160 rs81239450 76.09 −0.076 41.77 intergenic GNA11(dist = 3121), THOP1(dist = 278492)
MARC0030590 rs81224732 76.32 −0.056 28 intergenic GNA11(dist = 227056), THOP1(dist = 54557)

2_0 2.68
ASGA0097367 rs81317307 0.37 0.132 141.12 intergenic IRF7(dist = 63158), PHLDA2(dist = 62536)
ASGA0098481 rs81318741 0.92 0.039 34.24 intergenic NAP1L4(dist = 452192), FADD (dist = 644399)

15_132 2.31 INRA0050241 rs339585634 132.56 0.126 244.75 intergenic LOC100738836(dist = 879831), ARPC2(dist = 791438)
5_65 2.15 ALGA0114229 rs81343150 65.63 0.146 304.09 intergenic MFAP5(dist = 49502), CD163L1(dist = 347959)
14_142 1.13 ALGA0082467 rs80835167 142.22 −0.084 126.1 intergenic MCMBP (dist = 953163), FGFR2(dist = 277982
8_11 1.08 MARC0034108 rs81227701 11.32 0.04 40.69 intergenic CD38(dist = 542438), QDPR (dist = 1008577)
14_4 0.89 ALGA0074404 rs80792287 4.23 0.078 136.21 intergenic SYK (dist = 1355883), LPL (dist = 230942)
16_79 0.93 ALGA0091967 rs81462835 79.94 −0.077 133.5 intergenic TNIP1(dist = 1618306)

ADG

17_17 1.88 INRA0052808 rs342665431 17.55 0.03 298.75 intergenic BMP2(dist = 135846), HAO1(dist = 1265868)
5_93 1.4 DRGA0006163 rs345168974 93.83 0.025 209.22 intergenic SOCS2(dist = 113304), BTG1(dist = 1259303)
10_28 1.1 ALGA0057938 rs81422478 28.94 −0.02 89.32 intergenic TNNI1(dist = 728658), ADIPOR1(dist = 328094)
1_177 1.03 ALGA0006599 rs80799429 177.01 0.015 54.25 intergenic SERPINB10(dist = 1651991), RNF152(dist = 58137)
2_2 0.89 M1GA0002244 rs81362590 28.34 −0.017 103.16 intronic CPT1A

DAYS
17_17 2.22 INRA0052808 rs342665431 17.55 −0.065 764.87 intergenic BMP2(dist = 135846), HAO1(dist = 1265868)
5_93 1.12 DRGA0006163 rs345168974 93.83 −0.032 111.06 intergenic SOCS2(dist = 113304), BTG1(dist = 1259303)

PCL

2_162 5.87
ASGA0085784 rs81328276 162.3 −0.212 154 intronic IFITM2, IFITM3
ASGA0084103 rs81341288 162.15 −0.13 61.09 intronic COX8H, IFITM2, IFITM3

2_0 4.48 ASGA0097367 rs81317307 0.37 −0.287 1268.4 intergenic IRF7(dist = 63158), PHLDA2(dist = 62536)
2_76 1.49 MARC0048160 rs81239450 76.09 0.053 25.2 intergenic GNA11(dist = 3121), THOP1(dist = 278492)
15_132 1.37 INRA0050241 rs339585634 132.56 −0.078 77.91 intergenic LOC100738836(dist = 879831), ARPC2(dist = 791438)
5_65 1.28 ALGA0114229 rs81343150 65.64 −0.362 214.29 intergenic MFAP5(dist = 49502), CD163L1(dist = 347959)
6_157 1.15 M1GA0009131 rs81394508 157.39 −0.175 221.8 intergenic GUCA2B (dist = 903014), MIR30C-1(dist = 85847)
14_4 1.06 ALGA0074404 rs80792287 4.23 −0.121 281.92 intergenic SYK (dist = 1355883), LPL (dist = 230942)
7_18 0.99 MARC0003814 rs80894864 18.13 0.15 205.05 intergenic ID4(dist = 1948801), PRL (dist = 284338)
4_42 0.86 INRA0013856 rs337241703 42.84 0.131 110.57 intronic CPQ

1 BFAT = backfat thickness; ADG = average daily gain; DAYS = days to 90-kg body weight; PCL = lean percent; 2 SSC_Mb = Sus scrofa chromosome_megabase-pair; 3 Bayse factor.
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Table 3. Informative 1-Mb genome windows and single nucleotide polymorphism (SNPs) within windows associated with reproduction traits in Yorkshire pigs from
the GWAS using markers on Illumina PorcineSNP60.

Trait 1 SSC_Mb 2 GV% Informative
SNP rs Number Position (Mb) Effect BF 3 Region

Annotation Gene Annotation

LTTNB

16_78 1.45 ASGA0074339 rs81462568 78.56 0.057 79.31 iIntergenic TNIP1 (dist = 236491)

1_9 1.13 DIAS0003564 rs80972878 9.86 −0.044 53.1 iIntergenic SOD2 (dist = 373282),
TAGAP (dist = 183449)

16_44 1.1
MARC0073405 rs81259195 44.88 0.031 34.12 intergenic RGS7BP (dist = 1268524)
ASGA0073217 rs81459064 44.83 0.02 20.38 intergenic RGS7BP (dist = 1315507)

LTNBA 1_177 1.38 ASGA0004992 rs80843328 177.74 0.034 23 intergenic RNF152 (dist = 679283),
MC4R (dist = 808927)

WEI 12_57 1.96 ASGA0092942 rs81311789 57.41 −0.024 100.2 intergenic NTN1 (dist = 349904),
GLP2R (dist = 32195)

1 LTTNB = lifetime total number of born; LTNBA = lifetime number of born alive; WEI = weaning to estrus interval; 2 SSC_Mb = Sus scrofa chromosome_megabase-pair; 3 Bayse factor.
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Figure 1. Manhattan plot of genome-wide association study result of 18 porcine autosomes. The y-
axis indicates window variance (%) and x-axis represents the pig autosomal chromosome physical 
map. The red dot horizontal lines represent the threshold of the percent variance of 1-Mb genomic 
region used was above 1.0% to identify associations with traits: (a) backfat thickness (BFAT), (b) 
average daily gain (ADG), (c) days to 90-kg body weight (DAYS), (d) lean percent (PCL), (e) lifetime 

Figure 1. Manhattan plot of genome-wide association study result of 18 porcine autosomes. The y-axis
indicates window variance (%) and x-axis represents the pig autosomal chromosome physical map.
The red dot horizontal lines represent the threshold of the percent variance of 1-Mb genomic region
used was above 1.0% to identify associations with traits: (a) backfat thickness (BFAT), (b) average daily
gain (ADG), (c) days to 90-kg body weight (DAYS), (d) lean percent (PCL), (e) lifetime total number of
born (LTTNB), (f) lifetime number of born alive (LTNBA), and (g) weaning to estrous interval (WEI).
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3.2. Growth-Related Traits

In the present study, the most informative 1-Mb window region was detected on SSC17 at 17 Mb,
which explained 1.88% and 2.22% of additive genetic variances for ADG and DAYS traits, respectively.
Furthermore, the most significant QTL was found at 17.55 Mb on SSC17 (rs342665431) with the highest
BF: 298.75 and 764.87 for ADG and DAYS traits, respectively. A previous study [20] reported that the
most significant SNP (rs342665431) was from the BMP2 gene on SSC17, which is consistent with our
results. The BMP2 gene is a member of the bone morphogenetic protein family that regulates early
myogenesis. We also found identical informative 1-Mb window regions between the growth-related
traits and SNP located at the 93-Mb position of SSC5 (rs345168974) with 1.40% and 1.12% additive
genetic variances for ADG and DAYS traits, respectively.

3.3. Production-Related Traits

We found 15 significant QTLs within 12 informative chromosomal regions (significance level >

1.0% additive genetic variance or BF > 20) on SSCs 2, 4, 5, 6, 7, 8, 14, 15, and 16 for BFAT and PCL.
The most significant 1-Mb window region explaining 3.51% and 5.87% of additive genetic variances
was captured on SSC2 at 162 Mb, including two SNPs (rs81341288 and rs81328276) in BFAT and PCL.
The QTL window located on SSC at the beginning, which explained 2.68% and 4.48% of additive genetic
variances, included SNPs (rs81317307 and rs81318741) for BFAT and PCL. Furthermore, rs81317307 was
the most significant SNP based on BF (1268.40) associated with PCL. Van Laere, et al. [33] reported that
the IGF2 gene on SSC2 has an important role in the development of skeletal muscle and BFAT as well
as postnatal muscle regeneration and hypertrophy. Other QTL windows were also detected on SSC2 at
76 Mb, which explained 2.87% and 1.49% of additive genetic variances for two production-related
traits. The most significant SNP located on SSC5 at 65 Mb (rs81343150) was identified based on BF
(304.09) for BFAT.

3.4. Reproduction-Related Traits

Some candidate chromosomal regions and QTLs associated with reproduction-related traits were
identified. We found six significant QTLs within five informative chromosomal regions on SSCs 1, 12,
and 16 for reproduction-related traits. Among those genes, the superoxide dismutase 2 (SOD2) gene has
been reported to have one polymorphism associated with male infertility [34]. Considering the results
of the GWAS, a few QTLs for LTTNB, LTNBA, and WEI but no QTL were identified for NPW, which
might be due to low heritability (Table 1) and relatively smaller sample size for detecting significant
QTL regions. Another reason for this result might be high criteria of significance. Because of the high
cut-off criteria for the significance level of the traditional single trait GWAS strategy, it is difficult to
determine the useful QTL on those reproduction-related traits [35].

3.5. Co-Association Network Based on Association Weight Matrix

The constructed AMW consisted of 215 (211 genes and 4 SNPs) × 7 (traits), and each cell represents
their z-value normalized additive effect (Figure 2a). To visualize this, Permutmatrix software [24] was
used. There were three main obvious findings in the visualized matrix. First, the genes had strong
effects on both of body-related traits (PCL and BFAT) and growth-related traits (DAYS and ADG).
Second, PCL and BFAT, and DAYS and ADG pairs, respectively, were almost the compensate tendency
by the effects of the genes. This was an obviously understandable deduction from the meaning of the
traits (e.g., meat percentage information versus fat information for PCL and BFAT). Another finding
is that it was difficult to identify the specific tendency of the effect on reproductive traits (LTTNB,
LTNBA, and WEI) because it was quite different from that on the traits of the two groups mentioned
above and it had a weak effect (relatively dark compared to other groups). Therefore, research on those
reproduction-related traits is limited by the traditional GWAS method [35] and AWM-based approach
has recently emerged as a useful option [6,10].
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Figure 2. Functional gene network from the genome-wide association study using association weight
matrix (AWM). (a) Visualizing the AWM using permutmatrix software. Each cell (i, j) is the z-score
normalized additive effect of ith-trait on jth-SNP. (b) Entire network: The nodes represent 226 genes
and the 6,921 edges represent significant correlations between the nodes. The color scale corresponds to
the MCODE score, where the red nodes represent a high network density. (c) A subset of the network
showing the top three transcription factors in the in silico validated targets. The diamond-shaped
nodes are transcription factors.
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The whole network created by the PCIT analysis based on AWM information consists of 226 nodes
and 6921 edges (Figure 2b). The rectangle node indicates seed on the network and the diamond node
is uncluttered based on the MCODE analysis of Cytopscape application. Based on the comparison
with the TF database, ARID3B, ATF6B, DMTF1, GCM1, GLI2, ISL1, KDM5B, KLF17, NFYC, NPAS3,
and WDHD1 were identified as TFs. Among them, five TFs (ARID3B, GCM1, GLI2, ISL1, and NFYC)
had motif information. Each TF and its target gene network were matched using FIMO tool analysis
and, finally, the top trio network consisting of 43 genes and centered on ARID3B, GCM1, and GLI2
was constructed (Figure 2c).

The AT-rich interaction domain 3B (ARID3B) encodes a member of the AT-rich interaction domain
(ARID) family of DNA-binding proteins [36]. Studies have reported that the ARID3B gene affects
the regulation of limb development [37]. However, the function of the ARID3B gene in pigs has not
been studied comprehensively. The ARID3B has 13 in silico validated target genes (CTTNBP2, DRC1,
ENSSSCG00000017864, FAM134C, ICA1L, KIAA1324L, LOC100038019, LOC100155829, LOC100518725,
MMP1, PARS2, PDE4B, and POLR2G), most of which (six out of 13 genes, DRC1, ENSSSCG00000017864,
LOC100518725, PARS2, PDE4B, and POLR2G) are involved in the cellular process (Figure 2c). Many of
them were essential genes for survival. For example, DRC1 is essential for motile cilia function in
algae and humans, and POLR2G encodes the RNA polymerase II subunit G [38,39]. Moreover, PARS2
encodes a putative member of the class II family of aminoacyl-tRNA synthetases and those with
mutations in PARS2 could have Alpers syndrome [40].

The second member of the trio TF, GCM1, is a well-known TF involved in the regulation of
expression of placental growth factor (PGF) and other placenta-specific genes [41]. Within the top trio
network, GCM1 targets 20 genes (AATF, ADAM33, ALS2CL, CHRNA3, CLSTN2, CTTNBP2, DRC1,
EPC2, FAM134C, GUCY1A2, ICA1L, KIAA1324L, KIRREL3, LOC100523745, LOC100626814, LRFN2,
MAP3K14, PLAT, PPP6R3, and RGL1). Among them, three (CLSTN2, MAP3K14, and KIRREL3) were
involved in developmental process, similar to GCM1.

Finally, GLI2 functions as a transcription regulator in the Hedgehog (Hh) pathway. Sonic Hh
(Shh) functions as a conserved morphogen in the development of various organs in metazoans—from
Drosophila to humans [42]. It has also been reported that GLI2 is required for the proper development of
placental labyrinth [43]. Among the 20 target genes of GLI2 (ADAM33, ALS2CL, ARHGAP39, CHRNA3,
DAB1, ENSSSCG00000027019, EPC2, GUCY1A2, KIAA1324L, KIRREL2, LOC100155825, LOC100515685,
LRFN2, OXNAD1, PKM, PPFIBP1, PPP6R3, SMARCD1, STAG1, and TNS3), two (DAB1 and KIRREL2)
were related to the developmental process. The GCM1 and GLI1 modules shared eight target genes
(ADAM33, CHRNA3, LRFN2, GUCY1A2, EPC2, PPP6R3, ALS2CL, and KIAA1324L).

4. Conclusions

This study not only provides a list of chromosomal regions and SNPs associated with economically
important traits, but also their candidate associated genes. The information about the SNP markers and
chromosomal regions associated with the studied traits could be considered as prior information in a
genomic selection model. Additionally, to the best of our knowledge, this is the first study to propose
a BF-based regulatory gene network, unlike AWM with p-value information reported previously.
This co-association regulatory network created using BFAT as a key trait, would facilitate the validation
of the genetic understanding of other economically important traits in pigs. These biologically
non-similar traits network could be very useful for the development of improved breeding strategies
in the future. Further studies are needed to clarify the specific molecular or cellular processes of
interaction among the TF trios and their target gene networks predicted to determine economically
important traits in pigs.
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