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Abstract: Recently, the stereo imaging-based image enhancement approach has attracted increasing
attention in the field of video analysis. This paper presents a dual camera-based stereo image
defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the
initial disparity map is generated from the estimated optical flow. Next, an initial transmission
map is generated using the initial disparity map. Atmospheric light is then estimated using the
color line theory. The defogged result is finally reconstructed using the estimated transmission
map and atmospheric light. The proposed method can refine the transmission map iteratively.
Experimental results show that the proposed method can successfully remove fog without color
distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis
system and a high-end smartphone with a dual camera system.
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1. Introduction

Image analysis using multiple images has recently attracted growing attention in the fields of
autonomous driving, unmanned surveillance cameras, and drone imaging service. It is important to
acquire additional depth information as well as high-quality images in many sophisticated image
analysis applications. Another market-leading application is the dual camera in a smartphone.
The proposed stereo image-based defogging algorithm can be applied to an asymmetric dual camera
system in a smartphone with a proper geometric transformation to improve the visibility of the outdoor
foggy scene acquired by a smartphone. Specifically, fog component in the atmosphere decreases
contrast, and as a result, makes extracting features or recognizing objects in image analysis difficult.
Therefore, an image enhancement method to reduce the fog component is important to increase the
reliability of the image analysis system.

Fog particles absorb and scatter the light reflected from the object and then transmitted to the
camera. They also distort the original color and edge in a random manner. The amount of atmospheric
distortion increases with the distance between a scene point and the camera. This phenomenon can be
quantified using a transmission coefficient at each pixel. For this reason, the degraded foggy image
is modeled as a combination of the original reflectance of the scene, the atmospheric component,
and the transmission coefficient in a pixel-wise manner. Because of its importance in various image
analysis applications, the image defogging problem has been intensively studied in the field of image
processing and computer vision.

Narasimhan et al. corrected color distortion by estimating the distribution of fog according to the
distance [1,2]. They acquired multiple images of the same scene under different weather conditions
to construct a scene structure. Shwartz et al. and Schechner et al. proposed a defogging method
by measuring the distribution of fog using two different polarized filters in the same scene [3,4].
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These methods can successfully remove the fog component using a physically reasonable degradation
model at the cost of inconvenience to acquire multiple images of the same scene.

To solve these problems, various single image defogging methods were proposed. Tan proposed
a defogging method using the characteristics that a fog-free image has higher contrast than foggy
images and color distortion caused by fog increases proportionally to the distance from the camera [5].
Based on these two characteristics, the Markov random field model was estimated and a fog-free
image was obtained by maximizing the local contrast at the cost of contrast saturation and halo effect.
Fattal removed fog using the property that the surface reflectance of the object is constant and the
transmission depends on the density and depth information fog [6]. However, it is difficult to measure
the reflectance in a region of dense fog. He et al. proposed a method of estimating the transmission map
using the dark channel prior (DCP) [7]. The DCP theory is based on the observation that the minimum
intensity of one of the RGB channels in a fog-free region is close to zero. However, it cannot avoid color
distortion, since the transmission map is estimated using the color of the object. In addition, in order
to remove the blocking and the halo effects appearing in the process of estimating the transmission
map, a computationally expensive soft-matting algorithm is used. To solve this problem, Gibson et al.
replaced the soft-matting step with a standard median filter [8], Xiao et al. removed the blocking and
halo effects using a joint bilateral filtering [9], Chen et al. used a gain intervention refinement filter [10],
and Jha et al. used an l2 norm prior [11]. Yoon et al. proposed a defogging method using the multiphase
level set in the HSV color space and corrected colors between adjacent video frames [12]. Meng et al.
proposed a method to estimate the transmission map using a boundary constraint, and they refined
the transmission map through l1 norm-based regularization [13]. Ancuti et al. proposed a multiscale
fusion-based defogging algorithm using a Laplacian pyramid and a Gaussian pyramid, both of which
improved a single foggy image using white balance and contrast enhancement, respectively [14].
Berman et al. proposed a nonlocal-based defogging algorithm using an estimated transmission based
on color lines [15]. However, these methods are not free from color distortion, since they do not
consider the depth information. Recently, several learning-based defogging methods have been
proposed [16–19]. Chen et al. proposed a radial basis function (RBF) network to restore a foggy
image while recovering visible edges [16]. Cai et al. proposed a trainable end-to-end system to estimate
the medium transmission, called DehazeNet [17]. Eigen et al. proposed a convolutional neural network
(CNN) architecture to remove raindrop and lens dirt [19].

Many defogging methods were proposed using the depth information. Caraffa et al. proposed a
depth-based defogging method using Markov random field model to generate the disparity map using
a stereo image pair [20]. Lee et al. estimated the scattering coefficient of the atmosphere in the stereo
image [21]. Park et al. estimated the depth in the stereo image pair and removed the fog by estimating
the atmospheric light in the farthest region [22]. However, accurate estimation of the transmission map
is still an open problem, since the features for obtaining the disparity map are generally distorted in
the foggy image.

To improve the problem of existing single-image-based defogging algorithms, this paper presents
a novel image defogging algorithm using a stereo foggy image pair. The proposed defogging algorithm
removes fog by estimating the depth information from the stereo image pair and iteratively improving
the depth information. The disparity of an input stereo foggy image pair is first obtained using the
optical flow, and the depth map is generated using the disparity. Next, the transmission map is
estimated using the generated depth map to remove the foggy component. The optical flow and
transmission map estimation steps repeat until the defogged solution converges. The proposed
stereo-based defogging algorithm is suitable for dual cameras embedded in high-end smartphone
models that were recently released on the consumer market.

The paper is organized as follows: Section 2 describes a physical degradation model for foggy
image acquisition, and Section 3 presents the proposed stereo-based defogging algorithm based on
the degradation model. Section 4 summarizes experimental results, Section 5 presents an application
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of the proposed defogging algorithm to an asymmetric dual camera system, and Section 6 concludes
the paper.

2. Physical Degradation Model of Foggy Image Acquisition

Figure 1 shows the physical degradation model of foggy image acquisition. The light reflected by
the object is absorbed and scattered by fog particles in the atmosphere, and arrives at the camera sensor.
Therefore, the greater the distance between the object and the camera is, the greater the atmospheric
degradation becomes. The foggy image g is defined according to the Koschmieder model [23] as

g(x, y) = f (x, y)t(x, y) + A(1− t(x, y)), (1)

where (x, y) represents the pixel coordinate, f (x, y) the fog-free image, and the constant A the global
atmospheric light. t(x, y) represents the transmission coefficient at pixel (x, y), and can be expressed as

t(x, y) = e−β·d(x,y), (2)

where β represents the scattering coefficient of the atmosphere, and d(x, y) the depth between the
scene point and the camera. From (1) , an intuitive estimation of the fog-free image is given as

f̂ (x, y) = (g(x, y)− A)/ max(t(x, y), t0) + A, (3)

The defogged image f̂ (x, y) is obtained by substituting the estimated A and t(x, y) into (3). t0 is
the lower bound of t(x, y), which is set to an arbitrary value to avoid the zero in the denominator.

Figure 1. Illustration of the foggy image formation model.

3. Image Defogging Based on Iteratively Refined Transmission

Most existing defogging algorithms estimate the disparity map from the stereo foggy image pair,
and then obtain the defogged image by estimating the transmission map using (2). However, it is
difficult to detect the feature to estimate the disparity map, since the foggy image is distorted by the
fog component. To solve this problem, the proposed algorithm estimates an accurate transmission
map by iteratively improving the disparity map. The disparity map is generated by estimating optical
flow from the stereo foggy image pair, and the initial transmission map is generated by the disparity.
Atmospheric light A is estimated using the color line theory [24], and each stereo foggy image is
restored using (3). By repeating the set of optical flow estimation, transmission map generation and
defogging steps, a progressively improved transmission map and better defogged image are obtained.
This process repeats until the absolute difference between the kth and (k− 1)th defogged images is less
than a pre-specified threshold τ. Figure 2 shows the block diagram of the proposed algorithm.
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Figure 2. Block diagram of the proposed defogging algorithm: For s ∈ {L, R}, gs is the input stereo
image pair, As is the global atmospheric light, dk

s , tk
s , and f̂ k

s , respectively, are the disparity map, the
transmission map, and the defogged image at the k-th iteration.

3.1. Atmospheric Light Estimation

Most single-image-based defogging algorithms set the atmospheric light A to an arbitrary constant
or to the brightest pixel value in the image under the assumption that the fog color is white [5–7].
Since these methods do not estimate the accurate atmospheric light, the quality of defogged images is
degraded. In this paper, the atmospheric light A is estimated using the color line-based estimation
method that was originally proposed by Sulami et al. [25].

In (1), the fog-free image f (x, y) can be expressed as

f (x, y) = l(x, y)R(x, y), (4)

where surface shading l(x, y) is a scalar value indicating the magnitude of the reflected light,
and surface albedo R(x, y) is an RGB vector representing the chromaticity of the reflected
light. In general, when a natural image is divided into small patches, the surface albedo and
transmission of each image patch are approximately constant. Therefore, using this characteristic
and (4), the foggy image formation model in (1) can be expressed as follows:

g(x, y) = ti(x, y)l(x, y)Ri(x, y) + A(1− ti), (5)

where ti(x, y) represents the transmission value of the i-th image patch, R(x, y) the surface albedo
of the patch. To create color lines in the RGB color space using image patches with the same surface
albedo and transmission, image patches satisfying (5) are selected using principal component analysis
(PCA). The strongest principal axis of the image patch should correspond to the orientation of the color
line, and there should be a single significant principal component. Additionally, the color line of the
image patch should not pass the origin in RGB space, and the image patch should not contain an edge.
The color lines are generated using image patches that satisfy these conditions, and the orientation and
magnitude of vector A is estimated.

3.2. Stereo Image Defogging

To generate the transmission of a stereo image pair, the disparity map is estimated using the
combined local–global approach with total variation (CLG–TV) [26]. The CLG–TV approach integrates
Lucas–Kanade [27] and Horn–Schunck [28] models to estimate motion boundary-preserved optical
flow using a variational method. The `1 norm error function of the Horn–Schunck model is defined as

EHS =
∫

Ω

[
λr(u, v)2 +

(
|∇u|2 + |∇v|2

)]
, (6)

where r(u, v) represents the residual between the left and right images as

r(u, v) = gR(x + u0)− gL (x) + (u− u0)
T∇gR(x + u0) ∼= 0 , (7)

where u = (u, v) : Ω → R2 is the optical flow to estimate with the initial value u0, and the left and
right images are respectively given as
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gL (x) = gR(x + u) = gR(x + u0 + u− u0) ∼= gR(x + u0) + (u− u0)
T∇gR(x + u0) , (8)

where x = (x, y) ∈ Ω ⊂ R2, EHS can be minimized by solving the Euler–Lagrange equation using
Jacobi iteration. To make the estimated optical flow as uniform as possible in a small region, the residual
r(u, v) in (6) is substituted by the Lucas–Kanade error function

ELK = ∑
window

w·r(u, v)2, (9)

where w represents the weighting factor. ELK is minimized solving a least-squares problem. Based on
the Lucas–Kanade model, the total error of the same window is minimized. The following error
function combines Horn–Schunck and Lucas–Kanade models.

ECLG−HS =
∫

Ω

[
λ

(
∑

window
r(u, v)2

)
+
(
|∇u|2 + |∇v|2

)]
(10)

To solve the over-smoothing problem in motion boundaries regions, the `1 norm is minimized
instead of the `2 norm.

ECLG−TV =
∫

Ω

[
λ

(
∑

window
r(u, v)2

)
+ (|∇u|+ |∇v|)

]
(11)

To minimize the CLG–TV error function, we use an alternative Horn–Schunck model [29]
where ECLG−TV is decomposed into three terms, as shown below.

ECLG−TV =
∫

Ω

[
λ

(
∑

window
r(u, v)2

)
+ 1

2β (u− û)2 + 1
2β (v− v̂)2

]
(12)

ETV−u =
∫

Ω

[
1

2β (u− û)2 + |∇u|
]

(13)

ETV−v =
∫

Ω

[
1

2β (v− v̂)2 + |∇v|
]

(14)

ECLG−TV is minimized in the point-wise manner, whereas ETV−u and ETV−v are minimized using
the procedure proposed by Chambolle [30]. In this paper, we calculated the disparity map for only u
from the stereo image.

Figure 3 shows the result of the transmission map estimation and fog removal using a stereo input
image pair. Since the disparity map is generated using the distorted features by foggy component,
the initially estimated transmission map is not sufficiently clear.

Figure 3. Results of defogging using the initial transmission map. (a) A stereo pair of input foggy
images; (b) initial transmission maps; and (c) defogged results.
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3.3. Iterative Refinement of Transmission Map

In this subsection, an iterative process is performed to refine the transmission map. The disparity
map is estimated again on the defogged image f̂s(x, y), estimated by using the initial transmission
map ts(x, y), and the transmission map is updated. The kth defogged image f̂ k

s (x, y) is obtained by the
updated transmission map tk

s(x, y).
Figure 4 shows the estimated transmission map and the result of fog removal through the iterative

process. As shown in Figure 4, color distortion in the sky region is gradually reduced.
Figure 5 shows the iteratively refined transmission maps and the correspondingly defogged

results using the FRIDA3 dataset (Foggy Road Image DAtabase) [20]. As the fog is removed in the
distant region, the transmission map is gradually improved in the iterative process. As a result, the red
circle region is iteratively improved and the initially invisible vehicle appears.

Figure 4. Iterative refinement process of transmission map. (a–c) The 1-st, 3-rd, and 5-th refined
transmission maps; and (d–f) the 1-st, 3-rd, and 5-th defogged results.

Figure 5. Defogging results of synthetic stereo image. (a–c) Input, 4-, and 7-th defogged images;
(d–f) enlarged version of (a–c); and (g–i) corresponding transmission maps.
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Figure 6 shows the iteratively defogged results using real-world videos [31]. We extracted two
adjacent frames in a video and assumed a situation of acquiring images using a dual camera. In the
iteration process, the transmission map is gradually refined, and the defogged result is improved.

Figure 6. Defogging results using real-world videos from [31]. (a) Input foggy images; (b) defogged
results after three iterations; and (c) defogged results after five iterations. Corresponding transmission
maps are shown below each image.

4. Experimental Results

To evaluate the performance of the proposed defogging method, experimental results are
compared with those of the state-of-the-art defogging algorithms. Figure 7a shows a set of test foggy
images, Figure 7b–f respectively shows results of He’s method [7], Ancuti’s method [14], Meng’s
method [13], Berman’s method [15], and the proposed method.

In Cityscape, River1, and River2 results, Figure 7b,d shows that color distortion and low saturation
artifacts occur in the sky region because the atmospheric light is not accurately estimated. Figure 7c
shows that the color of the sky region is distorted and the color around the building is faded because
the same amount of fog is removed without considering spatially different depth information. Figure 7e
shows a slight amount of color distortion since the initial transmission map is regularized by using
Gaussian Markov random fields with only local neighbors. Figure 7f shows that the defogged result is
clearer than any other method in the sky region, and the color contrast is increased.
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Figure 7. Experimental results of various defogging methods. (a) Input foggy images; (b) He et al. [7];
(c) Ancuti et al. [14]; (d) Meng et al. [13]; (e) Berman et al. [15]; (f) the proposed method.

In Road1 and Road2 results, Figure 7c shows that the color around the road is faded and distorted
because it does not consider depth information. Figure 7e shows that the color tends to be oversaturated
when the atmosphere light is significantly brighter than the scene. Figure 7b,d shows excellent
defogging results because the color of artificially added fog is mostly white, so the transmission
map is well estimated by the DCP-based defogging algorithm. Figure 7f shows a well-defogged result
without color distortion or saturation. Experimental results demonstrated that the proposed algorithm
outperforms existing algorithms in terms of both fog removal and color preservation.

Table 1 shows two quantitative measures for objective evaluation, including no-reference image
quality metric for contrast distortion (NIQMC) [32] and entropy for measuring contrast of the defogged
results. The higher NIQMC value indicates superior color contrast and edge of the image. A high
entropy value indicates that the average amount of information in the image is high. In other words,
a greater amount of information about the edges or features results in better color contrast. Based on
Table 1, the highest values in each image are shown in bold and the proposed method performs better
than other existing methods.
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Table 1. Quantitative results for each method using stereo images. NIQMC: no-reference image quality
metric for contrast distortion.

Foggy Image Cityscape River1 River2 Road1 Road2 Average

NIQMC

He et al. [7] 5.1098 5.6812 5.3248 4.3460 4.0199 4.8963
Ancuti et al. [14] 4.8153 5.2894 5.2402 4.3295 4.4500 4.8248
Meng et al. [13] 5.3644 5.6608 5.2500 3.9786 3.7448 4.7997

Berman et al. [15] 4.9471 5.0327 5.4835 4.4345 4.8695 4.9534
Proposed method 4.9757 5.1463 5.6014 4.1673 4.9004 4.9582

Entropy

He et al. [7] 7.2919 7.7846 7.4451 4.2163 4.2776 6.2031
Ancuti et al. [14] 7.1363 7.4826 7.4117 3.0374 4.0065 5.9594
Meng et al. [13] 7.5326 7.6925 7.5026 4.1155 4.1647 6.2015

Berman et al. [15] 7.6657 6.7250 6.6159 4.4345 4.4563 5.9594
Proposed method 7.1546 7.2941 7.7196 4.5470 5.5631 6.4556

5. Application to Asymmetric Dual Camera System

The proposed stereo-based defogging algorithm is particularly suitable for a dual camera system
that has attracted increasing attention in the field of robot vision, autonomous driving, and high-end
smartphones. Figure 8 shows the block diagram of the proposed defogging algorithm applied
to an asymmetric dual camera system. To estimate the depth information, features in the stereo
foggy image pair are first matched, and the scale of the longer focal length image is then corrected.
The proposed defogging method is applied to the overlapped regions of two images with different
focal lengths. To remove the fog in the non-overlapping region, a single image-based defogging method
is first used, and color distortion is then corrected using histogram matching with reference to the
overlapped region.

Figure 8. Block diagram of the proposed defogging algorithm applied to an asymmetric dual camera system.

Figure 9 demonstrates that the proposed algorithm can be applied to an asymmetric dual camera
system. For the experiment, Figure 9b is obtained by cropping the center region of Figure 9a. As a
result, Figure 9a,b can be considered as a stereo pair of input foggy images with different focal lengths.
Figure 9c shows the defogged result of Figure 9a by the single image defogging method. Figure 9d
shows the defogged result of Figure 9b by the stereo image defogging method proposed in this paper.
Figure 9e shows the stitching result of Figure 9c,d. Based on the result, the proposed stereo-based
method can remove fog while preserving the original color information in the asymmetric dual
camera system.

Figure 9. Cont.



Sensors 2017, 17, 2861 10 of 12

Figure 9. Defogging results using a simulated pair of dual camera images. (a) An input foggy image;
(b) simulated longer focal length; (c) defogged version of (a) using a single-image-based method;
(d) defogged version of (b) using the proposed stereo-based method; (e) stitched result of (c,d).

6. Conclusions

In this paper, a stereo defogging algorithm is proposed to accurately estimate the transmission map
based on the depth information. The major contribution of this work is twofold: (i) The stereo-based
iterative defogging process can provide greatly enhanced results compared with existing
state-of-the-art methods; and (ii) the framework of the stereo-based algorithm is particularly suitable
for a dual camera system that is embedded in a high-end consumer smartphone. The proposed
method first obtains the disparity map by estimating optical flow from the stereo foggy image pair,
and generates the initial transmission map using the disparity. The defogged image is restored by
generating the transmission map and estimating atmospheric light A based on the color line theory.
By repeating the set of optical flow estimation, transmission map generation, and defogging until
convergence, significantly improved defogged results were obtained. Experimental results show that
the proposed method successfully removed fog without color distortion, and the transmission map
and the defogged image were iteratively refined. The proposed method can be used as a pre-processing
step for an outdoor image analysis function in an intelligent video surveillance system, autonomous
driving, and asymmetric dual camera in a high-end smartphone.
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