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Abstract: In this study, we describe the fabrication of thermally conductive composites based on
a polyphthalamide (PPA) matrix by the exfoliation of hexagonal BN nanosheets (BNNs) via the
melt-mixing method. Boron nitride (BN) particles were hydroxyl groups surface-treated with sodium
hydroxide (NaOH). Compared with existing BN peeling experiments, we successfully produced
BNNs that are simpler, more economical, and have an excellent aspect ratio. For the same weight
content of BN and BNNs, PPA/BN composites surface-treated with high aspect ratio BNNs have a high
in-plane and through-plane thermal conductivity because of the intercalation of the hydroxyl group
surface treatments between BN and PPA, which not only increases the wettability but also provides a
good heat transfer path. Moreover, wide and thin BNNs are evenly dispersed inside the PPA/BN
composite to provide excellent heat transfer paths in both in-plane and through-plane directions.
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1. Introduction

One recent advancement indicating the tremendous progress in the field of electronics is the
miniaturization of transistors, which allows for the integration of a greater number of transistors into
a single device and improves device performance. However, the rise in temperatures accompanied
by this miniaturization is one engineering concern. The overheating of electronic devices can reduce
the life of a device by more than half [1–4]. Therefore, in order to ensure durability and stability, it is
essential to heat dissipation that it be integrated for the operation of next-generation electronic devices.
The reason why the heat conductivity between the heat sink and the electronic device is low, is due to
the interfacial characteristics of these two surfaces (i.e., interstitial gaps). Here, we show that by using
a thermally conductive boundary material (TIM) to adhere to the rough interface structure, we can
eliminate this crevice gap at the interface. Typically, TIM is used to induce excellent heat transfer by
minimizing the pores between the two interfaces [5–7].

Among of super engineering plastics, polyphthalamide (PPA) has excellent heat resistance,
melt stability, and mechanical properties (flexural modulus and flexural fatigue characteristics),
and it is widely used as an external material for electronic devices.PPA has excellent heat resistance,
melt stability, and mechanical properties (flexural modulus and flexural fatigue characteristics), and it
is widely used as an external material for electronic devices. Additionally, PPA has excellent insulation
properties, excellent molding processability, and also has excellent chemical properties. For these
reasons, PPA serves as an excellent matrix for polymeric materials. Unfortunately, most PPAs tend to
exhibit poor thermal conductivity (≈0.18 W m−1K−1). Several studies have focused on improving the
thermal conductivity of PPA by filling cost-effective thermal fillers [8,9].
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Thermally conductive fillers are primarily inorganic ceramics, such as alumina (Al2O3),
magnesium oxide (MgO), silicon carbide (SiC), aluminum nitride (AlN), and BN. In addition,
these also include carbonaceous materials, such as multiwalled carbon nanotubes (MWCNT),
carbon fiber, graphene, and metallic materials such as copper (Cu) and aluminum (Al). Among these,
the carbon-based materials exhibit the highest thermal conductivity. The theoretical thermal
conductivity of MWCNTs is greater than 3000 W/(m·K), whereas that of graphene is greater than
2000 W/(m·K) [10]. These figures are far higher than those of inorganic ceramic fillers.

Unfortunately, these figures are only theoretical as there are limitations. When these materials are
used as fillers in TIM, the thermal conductivity, as well as the electrical conductivity rises, which causes
device malfunction in miniaturized devices. The rise in conductivity occurs equally with the use of a
metal-based filler. Therefore, it is good to use ceramic fillers that have good electrical insulation and
improve the thermal conductivity of the composite. Ceramic powders, such as aluminum nitride, BN,
and silicon carbide, have excellent insulation, as well as high thermal conductivity and are suitable for
use as a composite material. In this study, we focused on hexagonal BN as a filler because it has a
price advantage and a high thermal conductivity. However, the surface of BN particles has strong
interaction and cohesive properties. Moreover, the composite is not friendly to the surface of the
polymer, and therefore, does not have an excellent effect when the composite is manufactured [11,12].

Therefore, many studies have been working on improving the interfacial affinity between BN
particles and polymers. Moreover, the surface treatment of BN is not economical due to its weak
result of polymer composites thermal conductivity and the time and high cost of surface treatment.
Taking other studies as an example, the surface treatment of cured silane on BN resulted in attachment
to only a single edge of h–BN and a very slight increase in thermal conductivity. However, polymer
composites using BN nanosheets (BNNs) prepared by the exfoliation of BN in the form of a thin
nanosheet, showed impressive increases in mechanical strength and thermal conductivity when their
thickness and plate surfaces were controlled. The most widely used method for the exfoliation of BN is
peeling using ultrasonication. Although these methods are simple due to the power of ultrasonication,
the BN is peeled off and the plate is broken as well, which creates disadvantages in making BNNs
with a wide plate shape. When combined with polymers, BNNs have a thinner and higher surface
area with higher aspect ratios, and even higher thermal conductivity when combined with polymers.
Therefore, the exfoliation of BN by ultrasonication, limits the production of excellent BNNs. For this
reason, studies are underway to exfoliate thin nanosheets while minimizing the damage of BN flakes.
In this study, a surface treatment of the hydroxyl group on the BN surface and a simple method of
exfoliation without destroying particles of BN flakes were studied [13–15].

The PPA composites were fabricated using a twin extruder via a melt-mixing method. Structural
differences were studied using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron
spectroscopy (XPS) after NaOH-treated surface modification. We used atomic forces microscopy (AFM),
transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM) to
identify the BNBN exfoliation. To investigate the effect of the improvement of the surface modification
of PPA and BN on the thermal conductivity, a thermal conductivity analysis was performed using
laser flash analysis (LFA). To measure the mechanical strength of PPA/BN composites according to the
surface treatment of BN, the storage modulus was tested using a Dynamic mechanical analysis (DMA).
All the PPA/BN composites used in the experiment were used for the melt-mixing process, using the
optimal temperature and processing method.

2. Materials and Methods

2.1. Materials

Hexagonal BN (ESK Ceramics/3M, Kempten, Germany) powder with a particle size of 12–15 µm
and 0.8–1 nm was used in this study. The PPA was purchased from SK chemicals (Gyeonggi-do,
Korea). Sodium hydroxide (NaOH) and ethanol (C2H5OH) were obtained from Daejung Chemicals
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(Seoul, Korea). Acetone (CH3COCH3) and iso-propanol (C3H8O) were purchased from Duksan Science
(Gyeonggi-do, Korea). The DI water used in the experiment was directly purified and filtered through
the equipment.

2.2. Surface Modification of BN

BN particles were dissolved in 5 M NaOH at 120 ◦C for 24 h to attach hydroxide functional
groups to the BN surface. Since BN particles have relatively few surface functionalities, most of the BN
particles that reacted in the hot NaOH solvent were submerged in the solvent, but some floated on
the NaOH solvent to form a foam. After hydroxide modification, which separated BN and BN-OH,
the particles were rinsed with deionized (DI) water and filtered several times to achieve a neutral pH.
The resulting NaOH-treated BN particles were dried in a furnace at 80 ◦C for 24 h and stored in a
desiccator [16].

2.3. Exfoliation of BNs

The exfoliation of BN was produced by three different methods. Firstly, in the case of the BN
foam, two types of samples were produced according to the presence of additional exfoliation by
ultrasonication or not. These fillers are called BNNs–A and BNNs–B, and are illustrated in Scheme 1 to
facilitate understanding. Precipitated BN–OH was produced by BNNs–C through separation using
ultrasonication. The ultrasonication used in this experiment reacted during 10 h.
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Scheme 1. A schematic diagram of boron nitride (BN) surface treatment and Boron nitride
nanosheets (BNNs–X).

2.4. Preparation of PPA-Based Composites

PPA/BN composites were prepared by a melt-mixing method using a twine extruder (model BA–11,
L/D ratio = 40, Bau Technology, Seoul, Republic of Korea) at specific temperature ranges. PPA, raw-BN,
BN–OH, and BNNs–X (BNNs–A, BNNs–B, BNNs–C, and BNNs–D) were dried at 60 ◦C for 24 h
under vacuum prior to melt mixing. The temperatures of the denoted “feeding zone”, “melting zone”,
“mixing zone_1”, “mixing zone_2” and “exit die” were 170, 200, 220, 220, and 200 ◦C, respectively.
The feed rate of the materials and the extrusion speed were held constant at 100 g/min and 80 rpm,
respectively. The composites were fabricated with the same rate at 100 g/min and 80 rpm, of material
supply and extrusion. The composites and pellets were dried to minimize the pores generated during
the manufacturing process and dried for 60 ◦C for 24 h in the vacuum oven. The specimens for thermal
diffusivity testing were prepared by pouring the mixture into a mold and placing it into a compression
molding machine (model BA–915, Bau Technology, Seoul, Korea) at a pressure of 12 MPa. The mixture
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was mixed at 180 ◦C for 2 min and cooled at room temperature for 1 min after injection. After Molding,
each analytical device was analyzed after drying at 80 ◦C for 24 h before measuring.

2.5. Charaterization

FT-IR (Thermofisher Scientific, Nivolet iS5, Waltham, MA, USA) and XPS were used to confirm
the successful surface modification of BN including aniline trimer. FT-IR spectra were recorded at a
resolution of 4.0 cm−1 and scanned over a range of 4000–400 cm−1. The XPS analysis was performed
using a Kα+ Thermofisher Scientific (Seoul, Korea) X-ray spectrophotometer. The cross-sectional
images of PPA/BN composites and h-BN, BNNS particles were confirmed by a field emission scanning
electron microscope (FE-SEM, Sigma, Carl Zeiss, Oberkochen, Germany). High-resolution transmission
electron microscopy (HR-TEM, JEM-3010, Tokyo, Japan) was used to analyze the images of the h-BN
and BNNS particles. The method of calculating the thermal diffusion rate was measured through the
time scale from the rear to the upper layer where the heat transfer begins, and the thermal conductivity
can be derived by using the following equation:

K = α × ρ × Cp

where K,α, ρ, and Cp are the thermal conductivity (W/(m·K)), thermal diffusivity (m2/s), density (kg/m3),
and specific heat capacity (J/(kg·K)) of the composites, respectively. The thermal diffusivity and
thermal conductivity of all samples were analyzed by laser flash analysis (LFA) measurement
equipment, which was carried out using a Netzsch 467 nanoflash (Garanti Bank, Atatürk Osb, Turkey).
The storage modulus of the PPA/BN composites was measured by a dynamic mechanical analysis
(DMA, Triton instrument, Trition DMTA) at a constant frequency of 1 Hz.

3. Results

As portrayed in Scheme 1, four kinds of BN nanosheet were fabricated according to the presence
of BN layer separation and ultrasonic treatment in NaOH solvent. For the exfoliation of the BNNs,
5M NaOH was used to introduce hydroxyl groups onto the surface of the BN. In our recent study,
this method was an active method for the introduction of BN hydroxyl groups. Interestingly, after
48 h of surface treatment, the hexagonal BN was divided into two layers of 5 M NaOH solvent [16].
Theoretically, because the density of the hexagonal BN is 2.1 g/cm3, it has a density twice as high as
that of the Di water, so it must sink in NaOH solution. Nevertheless, some BN formed as foam on the
upper part of the NaOH solvent. The BN foam has greater densities than the NaOH solvents, but the
BN foam has a wide plate area and lower thicknesses. The exfoliation of BN by sonication is a very
popular method because it is simple and safe [17,18]. However, due to the force of sonication, the large
plate phase is broken with the separation of BN. In order for the BNN to have excellent properties,
it requires a large surface area and a thin thickness. In order to confirm the surface treatment of the
BNNs fabricated with the BN foam and sonication, we observed the BN used by FT-IR. The FT-IR
spectra of raw BN, BN–OH, BNNs–A, and BNNs–B are shown in Figure 1. Since raw BN without
hydroxylated surface treatment are neat states, it confirmed that there was only a simple BN peak at
1400 cm−1 and 800 cm−1. Additionally, BNNs–A, BNNs–B and the BN–OH surface treated with NaOH
all showed a simple peak at 3200–3700 cm−1, although there was a slight difference in each –OH peak,
and the peak of the BN foam-type BNNs–A was the largest. Since the ceramic flake size was smaller,
the wider the area that could be surface-treated, the more successful the surface modification [19].
Furthermore, exfoliation through sonication led to the destruction of the BN particles that had been
introduced with the hydroxyl group. Because the edge of the BN formed by the broken was not
surface-treated, the separation of BN using sonication had a relatively small amount of –OH functional
groups. To further confirm the surface treatment of BN particles, we characterized the samples with
XPS. Figure 2 shows the XPS spectra of raw BN, BN–OH, BNNs–A, B, C and D; the latter exhibits
various peaks corresponding to BN. The XPS spectra corresponding to the B 1s region of raw BN,
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BN–OH, and BNNs–A, BNNs–B, BNNs–C are shown in Figure 2; the binding energies ranged from
195 to 187 eV. The raw BN and BNNs-D had a simple B 1s peak, and BNNs–A, BNNs–B, BNNs–C,
and BN–OH exhibited multiple features at 192 eV, which were deconvoluted. The peak located at
192 eV represents the B–O bond, which was proportional to the FT-IR data [20,21].
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After confirming the successful surface treatment of BN Foam, we analyzed the particle sizes of
BNNs–A, BNNs–B, and BNNs–C using FE-SEM, TEM, and AFM as shown in Figure 3. A particle
image of untreated raw BN and surface-modified BN–OH was confirmed. After checking the raw BN
particles, it was evident that BN plates of various sizes were placed on the BN surface of the micro-sized
BN. However, the surface of the BN–OH particles treated by NaOH was relatively sleeker than that of
the raw BN. Because BN–OH had been reacting for a long time at a high temperature, it was partly
peeled off by the surface-treated hydroxyl group. Thus, BN particles that have been surface-treated and
deviate from the micro BN plates float in the NaOH solvent and form a foam. Figure 4 shows FE-SEM
images for comparing the shapes of BNNs–A, B, C and D. BNNs–A, BNNs–B, and BNNs–C were all
found to have a thin plate-like structure, except for the unbaked BNNs–D in bulk form. BNNs–A had
the broadest plate form, but all BNNs–X were aggregated and it was difficult to accurately compare
the size and thickness of the plate using only the FE-SEM image. Therefore, for precise comparison
and analysis, BNNs were compared using TEM and AFM, and were analyzed through a grid after
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being dispersed in a solvent. BNNs–D, which was relatively thick, was not suitable for the analysis
of TEM and AFM, and was therefore excluded from the measurement. Figure 5 is a TEM image of
BNNs–A, BNNs–B, and BNNs–C. The BNNs were completely transparent to an electron beam image
due to the extremely thin shape. All the BNNs were identified as having multiple layers rather than a
single layer. This means that the more transparent the BNNs, the thinner the layers in the pile. First, for
BNNs–A, a thin BN layer structure with a large area was identified. By comparison, BNNs–B and
BNNS–C had a relatively smaller surface area than BNNs–A. Because of the energy of the ultrasonic
treatment used for the BN exfoliation, the BN particles were partially destroyed. BNNs–B were
thinner and smaller compared with BNNs–C using micro-sized BN particles because of the additional
separation of foam-type BNNs–A with ultrasonication. However, due to the energy of ultrasonication,
the surface area was greatly reduced compared with BNNs–A. BNNS–A, BNNs–B, and BNNs–C were
measured using AFM for a more accurate measurement of the width and thickness of each nanosheet.
Each nanosheet was measured with AFM through noncontact mode, and was compared with a well
dispersed single plate for more accurate measurement. In Figure 6, the thickness and width of each of
the three types of BNNs can be seen. BNNs–B and BNNs–C prepared by ultrasonication were 3.5 nm
and 6.2 nm thick, respectively, and very thin nanosheets were fabricated. Surprisingly, the thickness of
the foam-type BNNs–A, which was prepared only with NaOH treatment without using ultrasonication,
was 4.5 nm thick, similarly to other BNNs prepared by ultrasonication (shown below), including the
AFM data in Figure 6. As a result, the BN foam without ultrasonication could produce nanosheets
with a high aspect ratio, as well as introduce hydroxyl groups through the NaOH solvent.
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After confirming the successful exfoliation of BNNs, we measured the change in mechanical
strength and thermal conductivity of PPA through a combination of different methods of BNNs–X with
PPA. The thermal conductivity of the PPA/BN composites according to the weight fraction (10–40%) of
each raw BN, BN–OH, and BNNs–X are shown in Figure 7a. As for through-plane thermal conductivity,
the thermal conductivity of the raw PPA was approximately 0.18 W/(m·K), and the through-plane
thermal conductivity of the BNNs-A composites increased from 2.89 W/(m·K), which was 44% that of
PPA/raw–BN. Other BNNs composites also showed an increased thermal conductivity. Moreover, the
successful peeling exfoliations of BNNs–A, BNNs–B, and BNNs–C composites showed an excellent
increase in thermal conductivity. These results were the same for in-plane thermal conductivity. As for
in-plane thermal conductivity, as shown in Figure 7b, PPA/BNNs–A, which has the highest in-plane
thermal conductivity, showed an approximately 2.31-fold higher thermal conductivity than that of
PPA/BN combined with conventional raw BN. As such, exfoliation BNNs with PPA composites could
lead to a higher thermal conductivity than the micro-size BN [22,23]. Since the successfully peeled BN
nanosheets had excellent dispersibility among the PPA matrix, the heat flowed inside the composite
much more smoothly. Moreover, in the case of BNNs–A, which had the highest hydroxyl group
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introduction, the interfacial affinity with the PPA matrix increased, which reduced the air gap between
the BN particles and the PPA matrix, and formed much better composites.
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The mechanical strength of the PPA composite was analyzed by DMA, which was measured
by the difference of storage modulus. The temperature range of 30–200 ◦C was measured at 1 Hz,
which is sufficiently used for the range of PPA matrix shown in Figure 8. At any given temperature,
the storage modulus of the PPA composites increased in the following order: raw PPA < PPA/raw–BN <

PPA/BN–OH < PPA/BNNs–D < PPA/BNNS–A < PPA/BNNs–C < PPA/BNNS–B. This result was slightly
different from the LFA data, with the highest exfoliation BNNs–B having the best storage modulus.
In particular, BN nanosheets have the largest surface area in contact with PPA matrix, which shows the
greatest improvement in storage modulus. One of the reasons is that PPA matrix on the surface of BN
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particles loses its liquidity, which causes an improvement in the storage modulus of the composite.
Therefore, BN nanosheet composites with the widest surface area of mass ratio have the best storage
modulus. Finally, the composite with the thinnest, finest strips, BNNs-B–had the best storage modulus.
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In Figure 9, the surface of BN particles and the PPA matrix have a low interfacial affinity,
which indicates that an air gap exists between the surface of pure BN particles and the PPA matrix.
It is well known [16] that the surface of BN is highly friendly with the other BN particles, and it is
known that physical and chemical treatment is very difficult. However, in the case of the PPA/BN–OH
and PPA/BNNs–X composites, it is evident that the interfacial affinity between PPA and BNNs was
excellent due to the surface treatment of hydroxyl groups. Furthermore, BNNs composites with PPA
can be well dispersed in the PPA matrix without destroying the particles.
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4. Discussion

BN is a two-dimensional material with a high thermal conductivity. However, because it has a
layered structure, the anisotropic property can be maximized when peeled off and manufactured in the
form of nanosheets. In this study, we made BNNS through a simple solution reaction, which was applied
to polymer composites and showed an effective thermal conductivity improvement. The method
established in this study can be used for future research using BNNS.

5. Conclusions

In this study, we successfully succeeded in stripping BN in nanosheets using only a simple
introduction of a hydroxyl group without using ultrasonication. This method minimizes the destruction
of BNNs and confirms successful hydroxyl groups surface treatment. The effects of the surface treatment
of BN with NaOH were investigated. The chemical functionalities of raw–BN, BN–OH, and BNNs–X
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were revealed by FTIR and XPS. To confirm successful BNNs–X exfoliations, FE–SEM, HR–TEM,
and AFM were used to analyze the width and thickness of each BNNs–X. The in-plane thermal
conductivity and through-plane thermal conductivity of the PPA/BNNs–A composites were the highest.
The highest value in-plane of thermal conductivity was 2.89 W/(m·K), which is a 16-fold increase over
pristine PPA. The mechanical properties of the resulting composites were tested to determine the
storage modulus used by DMA. The storage moduli of the composites with PPA/BNNs–B were higher
than those of PPA/BNNs–A because it was peeled off with the smallest size, and the fluidity of the PPA
matrix was minimized. Furthermore, BNNs–X exfoliation through the hydroxide introduction showed
an improved interfacial affinity with PPA compared to the conventional BN, thereby minimizing the
air gap and improving the dispersibility.

Author Contributions: Conceptualization, S.R.; methodology, S.R.; software, H.O.; validation, S.R.; formal analysis,
S.R.; investigation, S.R.; resources, H.O.; data curation, S.R.; Writing—Original Draft preparation, S.R.;
Writing—Review and Editing, H.O.; visualization, J.K.; supervision, J.K.; project administration, J.K.;
funding acquisition, J.K.; Data curation, S.R.; Writing—Original Draft preparation, S.R.; Writing—Review
and Editing, H.O.; supervision, J.K.; project administration, J.K.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No.2017R1A2A2A05069858).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, K.; Kim, J. Core-shell structured BN/PPS composite film for high thermal conductivity with low filler
concentration. Compos. Sci. Technol. 2016, 134, 209–216. [CrossRef]

2. Zhang, Q.; Xu, X.; Li, H.; Xiong, G.; Hu, H.; Fisher, T.S. Mechanically robust honeycomb graphene aerogel
multifunctional polymer composites. Carbon 2015, 93, 659–670. [CrossRef]

3. Wang, S.; Cheng, Y.; Wang, R.; Sun, J.; Gao, L. Highly thermal conductive copper nanowire composites with
ultralow loading: Toward applications as thermal interface materials. ACS Appl. Mater. Interfaces 2015,
34, 19251–19259. [CrossRef] [PubMed]

4. Yao, Y.; Zeng, X.; Guo, K.; Sun, R.; Xu, J.B. The effect of interfacial state on the thermal conductivity of
functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos. Part A Appl. Sci. 2015,
1, 49–55. [CrossRef]

5. Zhao, Y.H.; Zhang, Y.F.; Bai, S.L. High thermal conductivity of flexible polymer composites due to synergistic
effect of multilayer graphene flakes and graphene foam. Compos. Part A Appl. Sci. 2016, 85, 148–155.
[CrossRef]

6. Wang, L.; Bisoyi, H.K.; Zheng, Z.; Gutierrez-Cuevas, K.G.; Singh, G.; Kumar, S.; Bunning, T.J.;
Li, Q. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by
mesogen-functionalized graphene. Mater. Today 2017, 20, 230–237. [CrossRef]

7. Renteria, J.; Legedza, S.; Salgado, R.; Balandin, M.P.; Ramirez, S.; Saadah, M.; Kargar, F.; Balandin, A.A.
Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management
applications. Mater. Design 2015, 88, 214–221. [CrossRef]

8. Zheng, H.; Lei, X.; Cheng, T.; Liu, S.; Zeng, X.; Sun, R. Enhancing the thermal dissipation of a
light-converting composite for quantum dot-based white light-emitting diodes through electrospinning
nanofibers. Nanotechnology 2017, 26, 265204. [CrossRef] [PubMed]

9. Eveloy, V.; Rodgers, P.; Diana, A. Performance investigation of thermally enhanced polymer composite
materials for microelectronics cooling. Microelectr. J. 2015, 46, 1216–1224. [CrossRef]

10. Ahn, K.; Kim, K.; Kim, J. Fabrication of surface-treated BN/ETDS composites for enhanced thermal and
mechanical properties. Ceram. Int. 2015, 41, 9488–9495. [CrossRef]

11. Yuan, C.; Duan, B.; Li, L.; Xie, B.; Huang, M.; Luo, X. Thermal conductivity of polymer-based composites
with magnetic aligned hexagonal boron nitride platelets. ACS Appl. Mater. Interfaces 2015, 23, 13000–13006.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.compscitech.2016.08.024
http://dx.doi.org/10.1016/j.carbon.2015.05.102
http://dx.doi.org/10.1021/am500009p
http://www.ncbi.nlm.nih.gov/pubmed/24716483
http://dx.doi.org/10.1016/j.compositesa.2014.10.027
http://dx.doi.org/10.1016/j.compositesa.2016.03.021
http://dx.doi.org/10.1016/j.mattod.2017.04.028
http://dx.doi.org/10.1016/j.matdes.2015.08.135
http://dx.doi.org/10.1088/1361-6528/aa72d6
http://www.ncbi.nlm.nih.gov/pubmed/28498823
http://dx.doi.org/10.1016/j.mejo.2015.10.015
http://dx.doi.org/10.1016/j.ceramint.2015.04.006
http://dx.doi.org/10.1021/acsami.5b03007
http://www.ncbi.nlm.nih.gov/pubmed/25996341


Polymers 2019, 11, 1628 11 of 11

12. Ashton, T.S.; Arden, L.M. Foam-like hierarchical hexagonal boron nitride as a non-traditional thermal
conductivity enhancer for polymer-based composite materials. Int. J. Heat Mass Transf. 2017, 115, 273–281.
[CrossRef]

13. Cho, H.B.; Nakayama, T.; Suematsu, H.; Suzuki, T.; Jiang, W.; Niihara, K.; Song, E.; Eom, N.S.A.; Seil, K.;
Choa, Y.H. Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely
packed boron nitride nanosheets. Compos. Sci. Technol. 2016, 129, 205–213. [CrossRef]

14. Li, Q.; Zhang, G.; Liu, F.; Han, K.; Gadinski, M.R.; Xiong, C.; Wang, Q. Solution-processed ferroelectric
terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride
nanosheets. Energy Environ. Sci. 2015, 8, 922–931. [CrossRef]

15. Wang, J.M.; Wu, Y.P.; Xue, Y.; Liu, D.; Wang, X.B.; Hu, X.; Bando, Y.; Lei, W.W. Super-compatible functional
boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal
conductivity for thermal management. J. Mater. Chem. C 2018, 6, 1363–1369. [CrossRef]

16. Ryu, S.; Kim, K.; Kim, J. Silane surface modification of boron nitride for high thermal conductivity with
polyphenylene sulfide via melt mixing method. Polym. Adv. Technol. 2017, 28, 1489–1494. [CrossRef]

17. Fan, D.; Feng, J.; Liu, J.; Gao, T.; Ye, Z.; Chen, M.; Lv, X. Hexagonal boron nitride nanosheets exfoliated by
sodium hypochlorite ball mill and their potential application in catalysis. Ceram. Int. 2016, 42, 7155–7163.
[CrossRef]

18. Das, S.K.; Bedar, A.; Kannan, A.; Jasuja, K. Aqueous dispersions of few-layer-thick chemically modified
magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci. Rep. 2015, 5, 10522. [CrossRef]

19. Huang, K.Y.; Jhuo, Y.S.; Wu, P.S.; Lin, C.H.; Yu, Y.H.; Yeh, J.M. Electrochemical studies for the electroactivity
of amine-capped aniline trimer on the anticorrosion effect of as-prepared polyimide coatings. Eur. Polym. J.
2009, 45, 485–493. [CrossRef]

20. Kim, K.; Ju, H.; Kim, J. Vertical particle alignment of boron nitride and silicon carbide binary filler system for
thermal conductivity enhancement. Compos. Sci. Technol. 2016, 123, 99–105. [CrossRef]

21. Kim, K.; Kim, J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity
enhancement via external magnetic field. Int. J. Therm. Sci. 2016, 100, 29–36. [CrossRef]

22. Wang, F.; Zeng, X.; Yao, Y.; Sun, R.; Xu, J.; Wong, C.P. Silver nanoparticle-deposited boron nitride nanosheets
as fillers for polymeric composites with high thermal conductivity. Sci. Rep. 2016, 6, 19394. [CrossRef]
[PubMed]

23. Wang, J.; Zhao, D.; Zou, X.; Mao, L.; Shi, L. The exfoliation and functionalization of boron nitride nanosheets
and their utilization in silicone composites with improved thermal conductivity. J. Mater. Sci. Mater. Electron.
2017, 28, 12984–12994. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.08.047
http://dx.doi.org/10.1016/j.compscitech.2016.04.033
http://dx.doi.org/10.1039/C4EE02962C
http://dx.doi.org/10.1039/C7TC04860B
http://dx.doi.org/10.1002/pat.4026
http://dx.doi.org/10.1016/j.ceramint.2016.01.105
http://dx.doi.org/10.1038/srep10522
http://dx.doi.org/10.1016/j.eurpolymj.2008.10.033
http://dx.doi.org/10.1016/j.compscitech.2015.12.004
http://dx.doi.org/10.1016/j.ijthermalsci.2015.09.013
http://dx.doi.org/10.1038/srep19394
http://www.ncbi.nlm.nih.gov/pubmed/26783258
http://dx.doi.org/10.1007/s10854-017-7130-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Surface Modification of BN 
	Exfoliation of BNs 
	Preparation of PPA-Based Composites 
	Charaterization 

	Results 
	Discussion 
	Conclusions 
	References

