
The bacterial endoribonuclease RNase E can cleave RNA in
the absence of the RNA chaperone Hfq
Received for publication, July 8, 2019, and in revised form, September 18, 2019 Published, Papers in Press, September 20, 2019, DOI 10.1074/jbc.RA119.010105

X Yu Mi Baek‡, Kyoung-Jin Jang‡, Hyobeen Lee‡, Soojin Yoon‡, Ahruem Baek‡, Kangseok Lee§,
and X Dong-Eun Kim‡1

From the ‡Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea and the §Department of Life
Science, Chung-Ang University, Seoul 06974, Korea

Edited by Patrick Sung

RNase E is a component of the RNA degradosome complex
and plays a key role in RNA degradation and maturation in Esch-
erichia coli. RNase E–mediated target RNA degradation typi-
cally involves the RNA chaperone Hfq and requires small guide
RNAs (sRNAs) acting as a seed by binding to short (7–12-bp)
complementary regions in target RNA sequences. Here, using
recombinantly expressed and purified proteins, site-directed
mutagenesis, and RNA cleavage and protein cross-linking
assays, we investigated Hfq-independent RNA decay by RNase
E. Exploring its RNA substrate preferences in the absence of
Hfq, we observed that RNase E preferentially cleaves AU-rich
sites of single-stranded regions of RNA substrates that are
annealed to an sRNA that contains a monophosphate at its
5�-end. We further found that the quaternary structure of RNase
E is also important for complete, Hfq-independent cleavage at
sites both proximal and distal to the sRNA-binding site within
target RNAs containing monophosphorylated 5�-ends. Of note,
genetic RNase E variants with unstable quaternary structure
exhibited decreased catalytic activity. In summary, our results
show that RNase E can degrade its target RNAs in the absence of
the RNA chaperone Hfq. We conclude that RNase E–mediated,
Hfq-independent RNA decay in E. coli requires a cognate sRNA
sequence for annealing to the target RNA, a 5�-monophosphate
at the RNA 5�-end, and a stable RNase E quaternary structure.

In all organisms, RNA decay is one of the important pro-
cesses for overall RNA metabolism and serves to determine the
intracellular RNA level. The rapid degradation of mRNA has to
be precisely controlled to modulate protein expression accord-
ing to the changing environment and to recycle ribonucleotides
for new RNA synthesis (1, 2). In contrast, rRNA and tRNA are
stably degraded only under some stress conditions or when
RNA are deficient (3). RNase E, the main component of RNA
degradosome in Escherichia coli, plays an important role in
mRNA degradation and RNA transcript processing (4, 5). It
recognizes and cuts single-stranded RNA with numerous AU
bases, thereby cleaving mRNA and rRNA into their functionally

active forms. This enzyme is also known to contribute to the
processing of noncoding RNA, such as tRNA, 16S rRNA pre-
cursors, and RNase P (6).

RNase E is the largest RNase (118 kDa), comprising 1,061
amino acids; it is encoded by the E. coli rne gene (7). RNase E
consists of two functionally distinct domains: the globular
N-terminal half (NTH;2 residues 1–529) and the C-terminal
half (CTH; residues 530 –1,061) (8). The RNase E-NTH has
been shown to contain a catalytic activity domain for RNA
cleavage, including a specific RNA binding site and a cleavage
site (9). Because RNase E-NTH has the RNA-processing activ-
ity, such as RNA recognition and degradation, recombinant
RNase E expressing amino acids 1–529 has been shown to be
sufficient for the catalytic activity (10). In contrast, the CTH
contains an arginine-rich domain, which is commonly involved
in protein binding (8). The RNase E-CTH provides a scaffolding
core for polynucleotide phosphorylase (PNPase), RNase heli-
case B, enolase, polyphosphate kinase, poly(A) polymerase,
GroEL, and DnaK, which cooperate together to direct RNA
toward the degradosome (11, 12). RNase E and PNPase allow
direct physical interactions with other components within the
degradosome complex to process the degradation of mRNA
(13).

Biochemical and structural analyses performed using X-ray
crystallography showed that RNase E is a homotetramer con-
stituted of a dimer of dimers, which is important in the forma-
tion of catalytic sites for RNA turnover (14, 15). The RNase
E-NTH catalytic domain is divided into several subdomains
consisting of a large domain (residues 1– 400), Zn-link (resi-
dues 401– 414), and a small domain (residues 415–529) (15).
The S1 RNA-binding domain in the large domain forms a sens-
ing pocket for the 5�-terminus of monophosphorylated RNA
and an arginine-rich RNA-binding channel for single-stranded
RNA (16). The RNase E selectively cleaves single-stranded
RNA, but not dsRNA; it prefers specific sequences enriched in
AU dinucleotides (4, 17, 18). RNase E is active toward single-
stranded RNA substrates (or targets) containing a 5�-mono-
phosphate and cleaves at the AU-rich sequences that are several
nucleotides apart from the 5�-terminus (19). Bacterial RNA
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5�-pyrophosphohydrolase (RppH) has been shown to readily
remove pyrophosphate from the 5�-end of triphosphorylated
mRNA to generate a 5�-monophosphate (20, 21). Once the
5�-end of the target RNA substrates is recognized by RNase E,
conformational changes are triggered that organize active sites
and stimulate cleavage rates, leading to the RNA cleavage
cascade.

Small noncoding RNA have been shown to be involved in the
regulation of mRNA stability and degradation of trans-encoded
target mRNA in conjunction with RNase E (22, 23). Small guide
RNA (sRNA) range from 50 to 300 nucleotides and contain a
short segment of 7–12 bp with a cognate region in the target
mRNA referred to as the “seed pairing” sequence. This is anal-
ogous to the cognate binding of microRNA in eukaryotes (10,
24). Bacterial sRNAs usually repress translation of target
mRNA by base-pairing with regions adjacent to or upstream of
the ribosome-binding site, resulting in the blocking of ribosome
entry and concomitant stimulation of the rapid decay of mRNA
by a RNA degradosome (22, 25). Bacterial sRNA also positively
regulate gene expression by pairing with mRNA; several sRNAs
have been shown to activate the translation of the � factor RpoS
by relieving the inhibitory secondary structure of the rpoS
mRNA leader form in the presence of the RNA chaperone Hfq
protein (26). The sRNA-induced mRNA decay is facilitated by
the formation of the ternary complex of RNase E, sRNA, and
sRNA chaperone Hfq that protects sRNA from degradation by
RNase E, in which Hfq promotes the annealing of sRNA to
mRNA before the involvement of RNase E (25, 27, 28). The
recruited RNase E in the ternary complex can then efficiently
cleave the target RNA at the preferred sites (10, 29), either prox-
imal (30) or distal (29) to the site of sRNA pairing.

RNase E initiates RNA decay via two pathways. First, in the
5�-end– dependent pathway, the 5�-monophosphate of the
RNA interacts with the 5�-sensor pocket of RNase E, which
stimulates the cleavage of the substrate. Thus, RNA is cleaved
more efficiently when it is 5�-monophosphorylated, a form that
is often generated from primary transcripts by pyrophosphohy-
drolase RppH or other RNases. The second pathway, direct
entry, has been suggested for sRNA-induced mRNA decay,
in which mRNA with a single-stranded region and no
5�-monophosphate are degraded by RNase E stimulated with
sRNA/mRNA cognate pairing (10, 31). This model envisages
that specific signals invoked by a cognate sRNA seed pairing to
a certain target RNA sequence would trigger RNase E to cleave
at the preferred sites in the mRNA coding sequence. Several
studies have shown the presence of sRNA-induced cleavage
sites in the coding sequence of target RNAs, including mRNA
for sodB, fumA, iscS, and ompD (29, 32). In addition, controlled
cleavage of ompD mRNA by sRNA MicC has been shown to be
caused by the recruitment of RNase E activated by a monophos-
phate group at the 5�-end of the sRNA cognate-pairing seed
(10). Because RNase E contains a 5�-monophosphate–sensing
pocket that can interact specifically with a 5�-monophosphor-
ylated sRNA, binding of the sRNA to RNase E prompts the
cleavage of the mRNA at the preferred sites in the coding
sequence of the mRNA (33). However, recent studies have
shown that RNase E can recognize specific RNA structural ele-
ments without requiring the 5�-sensing route (34).

Numerous studies have shown that RNase E and the RNA
chaperone Hfq act together in many cases of sRNA-mediated
mRNA decay. In contrast, the Hfq RNA chaperone has been
shown to not always be required in the RNase E–mediated
mRNA degradation process, as mRNA paired with sRNA is
sufficient for triggering target mRNA cleavage by RNase E. By
varying the pairing status as well as chemical identity of sRNA,
we explored the sRNA-induced target RNA degradation by
RNaseEintheabsenceofHfqRNAchaperone.The5�-monophos-
phorylated blunt end of the sRNA/target RNA duplex can trig-
ger RNase E to cleave target RNA at the single-stranded region
at distal sites, once the sRNA paired with the target RNA is
anchored at the 5�-sensing pocket. In the absence of the RNA
chaperone Hfq, RNase E with an intact quaternary structure
can still cleave target RNA at both the proximal and distal sites
to the monophosphorylated 5�-end of sRNA that are base-
paired with the target RNA.

Results

RNase E cleaves target RNA paired with sRNA in an Hfq-
independent manner

It has been previously reported that RNase E cleaves single-
stranded RNA (ssRNA) with 5�-monophosphate (i.e. 5�-P), but
not with 5�-hydroxyl (i.e. 5�-OH) or triphosphate group (15,
19). To examine whether the group at the 5�-terminus of the
RNA substrate can affect the cleavage activity of RNase E, we
tested this general principle using ssRNA with different chem-
ical groups at the 5�-end (Fig. 1A). These experiments used 47-
and 25-mer ssRNA substrates containing AU-rich sequences
preferable for RNA cleavage by RNase E (35). The 47- and
25-mer ssRNA substrates that were predicted to be devoid of
secondary structure were 32P-labeled either at the 5�-end
nucleotides as [�-32P]ATP or at internal nucleotides as
[�-32P]UMP. Radioactive phosphate labeling instead of other
fluorescent modifications at the 5�-end was used to ensure that
the 5�-sensing pocket in the RNase E catalytic domain was not
disturbed. The ssRNAs containing triphosphates at the 5�-end
were prepared using in vitro transcription, mimicking authen-
tic mRNA in E. coli. When the 25- and 47-mer ssRNAs with
5�-monophosphate were incubated with recombinant RNase E,
digestion products of similar size (shorter than 10 nt) were
observed after 30 min of incubation. The substrate RNA cleav-
age by RNase E required Mg2� ion, but did not need ATP
or ATP hydrolysis energy (i.e. AMP-PNP, nonhydrolyzable
ATP analogue). This indicates that RNase E cleaves substrate
ssRNA at the AU-rich sequences close to the 5�-end mono-
phosphate regardless of substrate RNA length. In contrast,
RNA cleavage patterns were not detected when control ssRNA
containing either triphosphates or hydroxyl groups at the
5�-end were used (Fig. 1A). Thus, RNase E senses the chemical
status at the 5�-end of substrate RNA, and the 5�-P is a prereq-
uisite for RNA cleavage by RNase E. When the blunt-ended
duplex RNA formed by the annealing of the 5�-32P–labeled
47-mer ssRNA (R0) to complementary 5�-32P–labeled 47-mer
ssRNA (cR0) was reacted with RNase E, RNA cleavage was not
observed (Fig. 1A), indicating that RNase E can cleave only sin-
gle-stranded regions of RNA substrates harboring 5�-P.
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In E. coli, target mRNA-paired small RNAs guide and mod-
ulate the rates of translation initiation and target mRNA deg-
radation through base-pairing, which is likely facilitated by the
RNAchaperoneHfqprotein(10).Totestwhether5�-monophos-
phorylated sRNA alone could guide recombinant RNase E to
cleave a target RNA in the absence of Hfq, artificial sRNAs
(25-mer R1) with 5�-P were designed and annealed to the target
RNA (47-mer R0; Fig. 1B). When the duplex RNA substrate
consisting of the target RNA and cognate sRNA with 5�-P was
incubated with RNase E, the target RNA was readily cleaved by
RNase E at the single-stranded region of R0 RNA close to the
5�-end of the sRNA in the absence or presence of Hfq (Fig. 1B).
RNA cleavage products shorter than 25 nt were not observed,
indicating that the artificial 5�-monophosphorylated sRNA acts
in trans to stimulate RNase E–mediated cleavage of the target
RNA that is tethered by base-pairing. This result suggests that
radioactive bands appearing between 25- and 47-mer result
from the partial cleavage of the RNA substrate by RNase E,
which is stimulated by 5�-monophosphorylated sRNA, in the
absence of Hfq RNA chaperone. In both the case of RNase E
alone and RNase E plus Hfq, RNA cleavage products accu-
mulated as a function of time, and product accumulation was
quantified and fitted to an exponential function to compare
the catalytic efficiency of RNA cleavage (graph in Fig. 1A).
The rate for duplex RNA cleavage was 0.20 and 0.12 min�1

for RNase E plus Hfq and RNase E alone, respectively, indi-
cating that there is little statistically significant difference for
RNA cleavage by RNase E in the absence and presence of
Hfq. Thus, we suggest that 5�-monophosphorylated sRNA

and RNase E are sufficient for target RNA cleavage with
moderate efficiency, and RNA chaperone Hfq is not a pre-
requisite for duplex RNA stabilization.

The 5�-monophosphorylated sRNA can guide RNase E to
preferred site cleavage in target RNA in the absence of Hfq

Because Hfq did not markedly affect the RNA cleavage activ-
ity of RNase E, we examined the effect of Mg2� ion or ATP
when 5�-P sRNA guides target RNA cleavage by RNase E in the
absence of Hfq protein. We used duplex RNA substrate
(P47R0/P25R1) formed by annealing of 5�-32P–labeled target
RNA to the 5�-32P–labeled sRNA for radiometric detection of
cleaved target RNA using urea-PAGE. When the duplex RNA
substrate was incubated with RNase E in the presence of Mg2�

ion, bands corresponding to partially cleaved duplex RNA were
observed (native PAGE in Fig. 2A). Consistent with the results
shown in Fig. 1A, RNase E needs neither ATP nor ATP hydro-
lysis energy for the cleavage of duplexed substrate RNA in the
absence of Hfq. RNA products cleaved by RNase E were
resolved by heating, and the reaction products were analyzed
for the presence of ssRNA components (urea-PAGE in Fig. 2A).
RNA cleavage products consisted of shortened target RNA
(�47 nt) and 25-mer sRNA, suggesting that RNase E cleaved
single-stranded regions in the target RNA complementary to
the 5�-monophosphorylated sRNA in the absence of Hfq.
Importantly, the sRNA (R1) used in the experiment was not
cleaved and remained protected from RNase E digestion.

To pinpoint cleavage sites for RNase E in the absence of Hfq,
the preferred site for RNase E cleavage in the target RNA was
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Figure 1. Cleavage of RNAs by RNase E in the absence or presence of Hfq. A, cleavage of RNAs with different chemical groups at the 5�-end (monophos-
phorylated ssRNAs, hydroxylated ssRNA, triphosphorylated ssRNA, and blunt-ended dsRNA). Top, monophosphorylated ssRNAs of two different lengths (25
and 47 nt for 25R1 and 47R0, respectively) were reacted with RNase E under different conditions (lanes a, b, c, and d; shown in table). Each reaction was
performed by incubating 10 nM

32P-labeled RNA substrate in the absence (i.e. 0 min) or presence of RNase E (0.1 �M) for 30 min. Bottom, RNase E reactions were
performed by incubating 10 nM

32P-labeled RNA substrates, such as triphosphorylated ssRNA (3P-47R0), 5�-end– hydroxylated ssRNA (HO-47R0), or blunt-
ended duplex RNA (47R0/47cR0) with RNase E (0.1 �M) for increasing time (0 to 30 min). RNA cleavage products were resolved on 15% native PAGE and
visualized using a phosphorimager. Asterisks represent 32P-labeled nucleotides. Lane c, size control for RNA of 47 and 25 nt. B, cleavage of sRNA (25R1)-guided
target RNA (47R0) by RNase E in the absence or presence of Hfq. The partial duplex RNA (47R0/25R1, 10 nM) was incubated with RNase E (0.1 �M) in the absence
or presence of Hfq (0.1 �M) for 0, 2, 4, 10, 20, and 40 min. RNA cleavage products were resolved on 15% native PAGE and visualized using a phosphorimager.
Kinetic analysis results of cleaved RNA products, which were quantified using densitometry from the gel, were plotted and fitted to an exponential function.
Mean values of triplicate independent experiments and S.D. (error bars) are shown. The difference between RNase E plus Hfq and RNase E alone was determined
to be statistically insignificant by Student’s t test (p � 0.079).
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identified by mapping the cleavage sites in the duplex 47-mer
R0 RNA annealed to sRNA using alkaline hydrolysis and RNase
T1 digestion (Fig. 2B). The duplex R0/R1 RNA was cleaved by
RNase E at positions �29, �31, �35, and �37, which are the
downstream cleavage sites proximal to the 5�-end of the sRNA.
Interestingly, we observed that the “A” nucleotide is a more
preferred base than the “U” nucleotide in the target RNA
guided by the sRNA for RNase E cleavage. When a 47-mer
target RNA (R0) is present in the reaction without sRNA, the
major cleavage products are short RNAs (�10 nt) resulting
from degradation at the upstream cleavage sites by RNase E
stimulated by the 5�-P (Fig. 1A). Thus, the 25-mer sRNA form-

ing a duplex region resists cleavage by RNase E, resulting in
preferred cleavage patterns in the unpaired region ranging from
26 to 47 nt. Based on these results, we suggest that RNase E can
only cleave the preferred sites of single-stranded regions in the
targetRNAthataretetheredbybase-pairingwith5�-monophos-
phorylated sRNA.

The 5�-end status and pairing region of sRNA affect target RNA
cleavage by RNase E

Subunit organization in RNase E is presumed to be required
for the cooperative activities of 5�-P sensing and RNA cleavage
(36). The RNA-cutting site and 5�-sensing site residing at each
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Figure 2. RNase E–mediated degradation of the single-stranded region in target RNA paired with 5�-monophosphorylated sRNA. A, RNase reaction of
47-mer target RNA paired with 5�-monophosphorylated sRNA by RNase E. The partial duplex RNA substrates (10 nM) were reacted with or without RNase E (0.1
�M) under different conditions (lanes a, b, c, and d; shown in table). RNase E reaction products were simultaneously resolved on 15% native and denaturing (12%
polyacrylamide in 8 M urea) PAGE, in which 32P-labeled RNA were visualized using a phosphorimager. B, mapping of RNase E cleavage sites in the single-
stranded region of the partial duplex RNA substrate. The 32P-labeled dsRNA substrate (30 nM, P47R0/P25R1 shown as RNA sequences) was incubated with or
without RNase E (0.25 �M, lanes 6 and 7, respectively) at 37 °C for 30 min. For comparison as RNA ladders, the 5�-end 32P-labeled single-stranded RNA (30 nM;
P47R0) was mixed with alkaline hydrolysis buffer at 25 °C for 10 or 5 min (lanes 1 and 2, respectively). RNase T1 (10, 5, or 1 unit; lanes 3, 4, and 5, respectively) was
incubated with P47R0 RNA for 15 min. Cleavage sites after guanine residues are indicated in the RNA sequences (underlined Gs). All reactions were quenched
with an equal volume of loading buffer and analyzed on 15% denaturing (8 M urea) PAGE and visualized using a phosphorimager. RNA fragments generated
using RNase E cleavage at adenine residues in single-stranded regions are indicated with A and the nucleotide position with arrows. Dashed line, spliced part of
two gel images for size controls (25- and 47-mer).
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protomer constitute the principal dimers in the RNase E homo-
tetramer (15). Thus, two RNA cleavage sites, located at each
principal dimer, exist in the interlaced quaternary structure of
RNase E. Based on this conjecture of RNase E structural orga-
nization, we hypothesized that the recognition of 5�-P in sRNA
might simultaneously trigger the cleavage of target RNA in
trans at two active sites created by the association of four sub-
units of RNase E catalytic domains. To test this hypothesis, we
investigated the cleavage patterns of several dsRNA substrates
by RNase E in the presence of different seed regions and 5�-P
and 5�-OH forms in the sRNA (Fig. 3). First, sRNA with or
without 5�-P was paired with 47-mer target RNA (R0) at the
5�-site, and the resulting duplex RNA substrates were subjected
to RNase E cleavage reaction (Fig. 3A). Target RNA was readily
cleaved at the 3�-tail site, which was close to the phosphorylated
5�-end of the sRNA in trans (lanes for substrates 1 and 3 in Fig.
3A). When the 5�-OH sRNA was paired with the 5�-phosphor-
ylated target RNA, the target RNA was significantly cleaved at
the 3�-tail site, although to a lesser extent (substrate 2 in Fig.
3A). This result shows that RNase E can cleave the 47-mer RNA
with 5�-P when it is paired with 5�-OH sRNA, which results
from cleavage at the sites that are 30 nt apart from the 5�-

monophosphorylated end. Thus, the RNA cleavage site is likely
separated from the 5�-P pocket site, which might reside at the
other subunit of the principal dimer. In contrast, RNase E can-
not cleave the 47-mer RNA with the 5�-OH form when it is
paired with 5�-OH sRNA (Fig. S1), indicating that the presence
of 5�-P is a prerequisite for target RNA cleavage by RNase E.
Thus, we suggest that the recognition of 5�-P in sRNA in trans
and/or target RNA in cis can trigger the cleavage of target RNA
at two active sites created by the association of the four subunits
of RNase E catalytic domains. One active site close to the 5�-P
pocket site (i.e. the proximal site) might cleave the target RNA
with higher efficiency than the other active site that is further
from the 5�-P pocket site (i.e. the distal site), likely residing at
the other subunit of the principal dimer.

When the 5�-phosphorylated 47-mer target RNA (47R0) was
paired with sRNA at the 3�-terminal region, RNase E cleaved
the single-stranded 5�-tail of the target RNA (substrate 1 in Fig.
3B). RNA cleavage of 5�-monophosphorylated RNA generated
fragments shorter than 10 nt. Because the 5�-phosphorylated
target RNA that was paired with sRNA with 5�-OH was also
readily cleaved to generate the 5�-phosphorylated RNA frag-
ments (substrate 2 in Fig. 3B), the RNA cleavage observed was
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likely caused by the 5�-P in the target RNA rather than by the
sRNA lacking 5�-P. RNase E also cleaved the 47-mer RNA with
5�-OH when the target RNA was paired with 5�-phosphorylat-
ed sRNA (substrate 3 in Fig. 3B), which resulted from cleavages
at the 5�-tail of the target RNA by RNase E. The 5�-monophos-
phorylated sRNA was not degraded by RNase E, indicating that
it indeed guides RNase E to the cleavage sites on the target
RNA, which are separated from the 5�-end of the sRNA. Thus,
this result suggests that sensing of 5�-P in sRNA and cleavage of
target RNA in trans occur simultaneously at the two distant
sites (i.e. the 5�-P–sensing pocket and the RNA cleavage site,
respectively) that are present in the RNase E homotetramer.

We also evaluated whether sRNA can guide RNase E to the
preferred cleavage sites on the target RNA when it is paired in
the middle of the target RNA, leaving two tails at the 5�- and
3�-ends (Fig. 3C). RNase E cleaved the 5�-terminal region of
47-mer RNA (47R0) that was paired with sRNA, in which sRNA
was not degraded, generating fragments of 5�-monophosphor-
ylated RNA shorter than 10 nt (substrates 1 and 2 in Fig. 3C).
Taken together, these results suggest that RNase E can degrade
single-stranded regions of a target RNA that is paired with
monophosphorylated sRNA at the proximal active sites close to
the 5�-P pocket site as well as at the distal active sites apart from
the 5�-P pocket site.

RNase E prefers to cleave RNA at the single-stranded region
proximal to the 5�-P of guide oligonucleotides

Next, we investigated the catalytic efficiency of RNA cleavage
by RNase E, depending on the presence of a 5�- or 3�-tail in the
target RNA (Fig. 4A). Duplex RNA substrates were designed to
allow RNA cleavage at the 5�- or 3�-tail region, which was stim-
ulated by either 5�-P sRNA in trans (substrates 1 and 3 in Fig.
4A) or 5�-P end of the target RNA in cis (substrates 2 and 4 in
Fig. 4A). When the duplex RNA contained 5�-phosphorylated

target RNA, the 5�-end of the sRNA was unphosphorylated.
When the duplex RNA substrates had a 3�-tail (substrates 1 and
2), RNA cleavage was readily observed at the single-stranded
tail regions of the 47-mer target RNA (Fig. 4A). This result
indicates that RNA cleavage was stimulated by either proximal
5�-P of sRNA or distal 5�-P of target RNA itself. Similarly,
duplex RNA substrates having a 5�-tail were also significantly
cleaved by RNase E at the single-stranded regions of the 47-mer
RNA, which was stimulated by either the distal 5�-P of sRNA
(substrate 3) or proximal 5�-P of target RNA itself (substrate 4).

RNA cleavage products accumulated as a function of time,
and each cleavage product was quantified and fitted to an expo-
nential function to compare the catalytic efficiency of RNA
cleavage (Fig. 4B). The accumulation of the cleaved products as
a function of time was affected by the position of the single-
stranded RNA region. RNase E more preferentially cleaved the
3�-tailed duplex RNA than the 5�-tailed RNA substrates (circles
versus triangles in Fig. 4B). In addition, RNA cleavage was more
efficient at the single-stranded RNA region proximal to the 5�-P
of either sRNA or target RNA than at the single-stranded RNA
region distal from the 5�-P of sRNA and target RNA (i.e. sub-
strates 2 and 3). Thus, we suggest that the 5�-P of sRNA and
5�-P of target RNA can stimulate RNA cleavage owing to the
5�-sensor near the active site and distant from the active site,
respectively, which is located at the other dimer in the RNase E
homotetramer.

Several RNase H family members have been reported to
cleave single-stranded RNA of RNA-DNA hybrids (37).
Because RNase E contains the RNase H domain, we determined
whether the 5�-monophosphorylated small complementary
DNA (i.e. sDNA) can guide RNase E to cleave a target RNA that
was cognately paired with sDNA. Duplex RNA/DNA hybrid
substrates with a 5�- or 3�-tail were designed that were exactly
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sRNA-induced RNA cleavage by RNase E

16470 J. Biol. Chem. (2019) 294(44) 16465–16478



the same as the duplex RNA substrates (Fig. 4A), except that the
sRNA was replaced with sDNA. When the duplex RNA-DNA
hybrid substrates were subjected to RNA digestion with RNase
E, RNA cleavage preference was observed (Fig. 4C and Fig. S2)
that was similar to the results obtained with the duplex RNA
substrates. The small guide DNA with 5�-P readily stimulated
the cleavage of the RNA strand at both the proximal and distal
sites (substrates 5 and 7 in Fig. 4C). When the target RNA was
annealed to either sRNA or sDNA, the kinetics of RNA cleavage
was similar irrespective of the nucleotides in the guide oligonu-
cleotides (Fig. 4, B and D). Thus, the digestion of an RNA strand
with RNase E only requires 5�-P in either RNA or DNA beyond
seed pairing of target RNA.

Tetrameric RNase E favors RNA cleavage at both the proximal
and distal 5�-P–sensing sites

Maintenance of the quaternary structure of RNase E has been
reported to be important for the RNA cleavage activity (15).
RNase E contains a conserved cysteine motif (residues 404 and
407) that coordinates the Zn2� ion in the Zn2�-link (residues
404 – 411), which is shared by two protomers at the dimer inter-
face. In addition, small domains are responsible for maintaining
the tetrameric structure of RNase E by interlacing two principal
dimers (15). To determine whether the quaternary structure of
RNase E is required for RNA cleavage at the sites either proxi-
mal or distal to the 5�-P in the duplex RNA substrate, we pre-
pared two mutant constructs of RNase E that could affect the
formation of the tetrameric structure. We generated and puri-
fied truncated WT RNase E, named RNase EMT(499), in which a
part of the small domain (residues 500 –529) was removed, and
a mutant RNase E, named RNase EMT(C/S), in which two cys-
teines at positions 404 and 407 were exchanged with Ser to
block Zn2� ion coordination. To characterize the oligomeric
state of these proteins, we determined the molecular weight of
the three RNase E proteins by using analytical size exclusion
chromatography (Fig. 5A). We observed significant differences
in the elution profiles between WT RNase E and the mutant
proteins. RNase E showed a single major peak corresponding to
the molecular weight of tetrameric RNase E, whereas the two
mutant proteins showed a decreased tetrameric peak and an
increased monomeric peak. As shown in the elution profile of
RNase EMT(C/S), Zn2� ion coordination was likely involved in
the stabilization of the tetrameric structure of RNase E. In addi-
tion, the small domain was required to maintain the tetrameric
structure of RNase E, because the RNase EMT(499) mutant
showed fewer tetramers and enhanced accumulation of di-
mers and trimers. Consistent with the result obtained for
size determination in RNase E, chemical cross-linking also
showed a difference in multimerization of RNase E and
RNase EMT(C/S) (Fig. S3A), in which cross-linking of RNase E
subunits occurred regardless of the presence or absence of
the RNA substrate. RNase E protein readily formed dimers
and multimers, whereas RNase EMT(C/S) could efficiently
form dimers, but not multimers.

Next, we investigated how the tetrameric assembly of RNase
E is needed for the efficient cleavage of target RNAs, which is
stimulated by either the proximal 5�-P of sRNA or the distal
5�-P of target RNA (Fig. 5B and Fig. S3B). WT RNase E cleaved

target RNA equally efficiently at both the proximal and distal
5�-P constructs of duplex RNA substrates. However, RNase
EMT(499) mutant showed decreased RNA cleavage of the duplex
RNA substrate containing the distal 5�-P of target RNA,
whereas RNA cleavage with the proximal 5�-P of sRNA was not
affected. In contrast, the RNase EMT(C/S) mutant showed signif-
icantly diminished RNA cleavage activity at both the proximal
and distal 5�-P constructs of duplex RNA substrates. Based on
these results, we concluded that tetrameric RNase E facilitates
RNA cleavage at both the proximal and distal 5�-P–sensing
sites. Importantly, RNA cleavage at the distal active site likely
requires an intact tetrameric structure composed of two inter-
laced principal dimers. In addition, Zn2� ion coordination in
the tetrameric RNase E structure is necessary for efficient RNA
cleavage.

The 5�-phosphorylated guide RNA attenuates target gene
expression via RNA degradation by RNase E in vivo

Next, we investigated whether guide RNA-stimulated target
RNA cleavage by RNase E can decrease the expression of a
target gene in E. coli. To this end, rne-deleted E. coli strain,
which can be complemented by plasmid-borne rne gene under
the control of an arabinose gene promoter, was transformed by
two plasmids encoding RNase E and GFP as a target gene. A
5�-phosphorylated guide RNA that can pair with an RNA tran-
script of GFP with proximal site 5�-P was designed and pre-
pared. When the 5�-P GFP target guide RNA was transfected
into E. coli expressing GFP during incubation at 37 °C, the GFP
expression was significantly decreased (Fig. 6A). When the
5�-phosphorylated RNA that does not target GFP mRNA was
used in the transfection, GFP expression was not decreased,
and GFP fluorescence intensity was similar to that of the nega-
tive control (i.e. no transfection). The GFP fluorescence signal
was normalized with the bacterial mass during the incubation,
because there was not any change in bacterial growth after
sRNA transfection. After a 6-h incubation of E. coli expressing
GFP with the sRNA, GFP fluorescence decreased by about 40%.
Next, we designed and prepared 5�-phosphorylated guide RNA
targeting GFP mRNA with distal site 5�-P. After a 6-h incuba-
tion of the E. coli transfected with the sRNA with a distal 5�-site
(i.e. distal GFP target RNA), the GFP fluorescence was de-
creased to the same extent as when the proximal GFP target
RNA was used (Fig. 6B).

Next, we examined steady-state mRNA levels to test whether
the decrease in GFP mRNA transcript is consistent with an
increase in GFP mRNA transcript decay. Real-time quantitative
PCR was performed using bacterial cDNA prepared from RNA
from the E. coli used in the experiment (Fig. 6B), and decreased
GFP mRNA expression was observed in both the proximal and
distal 5�-sites of the guide RNA targeting the GFP mRNA (Fig.
6C). Thus, attenuated GFP gene expression with low GFP fluo-
rescence resulted from the decreased steady-state GFP mRNA
transcript level, suggesting enhanced decay by RNase E with
sRNA in E. coli. Furthermore, when artificial guide DNA that is
equivalent to the sRNA was introduced in E. coli, the target
gene repression was similarly observed (Fig. S4).

To further examine the decrease of target gene expression
with sRNA-guided target RNA cleavage by RNase E in an Hfq-
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independent manner, we prepared the WT E. coli strain
MG1655 (i.e. WT) and Hfq-deletion type MG1655 strain (i.e.
�Hfq). Each E. coli strain was transformed with plasmid DNA
encoding GFP, and guide RNA transfections were performed
by using the same sRNA as in Fig. 6A. As a result, GFP expres-
sion was significantly reduced when the 5�-P GFP target guide
RNA was transfected into E. coli expressing GFP in both strains
(Fig. 6, D and E). When the 5�-phosphorylated RNA that is not
targeting the GFP mRNA was used in the transfection, GFP
expression was not decreased, and GFP fluorescence intensity
was similar to the control group. We next investigated whether
the decreased GFP expression in both WT and Hfq deletion
type E. coli was indeed caused by the decay of the GFP mRNA
transcript. The experiment was conducted in the same manner
as in Fig. 6C. Decreased GFP mRNA expression was observed in

both the proximal and distal 5�-sites of the guide RNA targeting
the GFP mRNA (Fig. 6F). These results indicate that the de-
crease in target gene expression is a result of the quantitative
decrease in target gene mRNA transcripts by 5�-P GFP target
guide RNA combined with RNase E in an Hfq-independent
manner.

To further confirm that the 5�-P guide RNA attenuates
GFP expression through RNA degradation by RNase E in
E. coli, the in vitro synthesized target GFP RNA was paired
with the guide RNA and was subsequently incubated with
RNase E. When the RNase E was incubated with the guide
RNA and the GFP RNA transcript, RNA cleavage was readily
observed, as revealed by the decrease in the remaining RNA
measured by primer extension and quantitative RT-PCR
(Fig. 6, G and H). In contrast, when the GFP target transcript
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without guide RNA was incubated with RNase E, RNA cleav-
age was not observed.

The crystal structure of the tetrameric catalytic domain of
RNase E has been solved (15), and the length of the tetramer
comprising the dimer– dimer complex is about 125 Å. Based on

the structural model of RNase E organization, we hypothesized
that RNA cleavage with sRNA having the distal 5�-P is likely to
occur between the 5�-phosphate–sensing site at one dimer and
the remote cleavage site at the other dimer. To test this hypoth-
esis, we prepared a partial duplex RNA with a longer duplex
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region (Fig. 6I); 72-mer RNA annealed to 47-mer RNA with a
dsRNA region of 47 bp, which is longer than the length of tetra-
meric RNase E. The duplex RNA harboring a longer duplex
region did not show any indication of RNA degradation after 60
min of incubation with RNase E (Fig. 6I). In contrast, when the
same RNA substrate was annealed with a shorter sRNA, result-
ing in a short duplex RNA region about 25 bp, it was completely
degraded in 30 min (Fig. S5). Thus, we suggest that RNA decay
is only feasible for the target RNA with an appropriate duplex
length within the distance between the 5�-P–sensing site of one
dimer and the cleavage site of another dimer.

Discussion

Our experimental results showed that target RNA degrada-
tion by RNase E does not necessarily require the activity of the
RNA chaperone Hfq (Fig. 1B). We observed that 5�-monophos-
phorylated sRNA alone could guide recombinant RNase E to
cleave a target RNA that was cognately seed-paired with the
sRNA. When the duplex RNA substrate consisting of target
RNA and cognate sRNA with 5�-P was incubated with RNase E
without other accessory proteins, the target RNA was cleaved at
the single-stranded A/G-rich region close to or far from the
5�-end of the sRNA. Thus, the 5�-monophosphorylated trans-
acting sRNA was sufficient to stimulate RNase E–mediated
cleavage of target RNA in the absence of Hfq RNA chaperone.

RNase E degrades cis- as well as trans-acting RNA with a
monophosphorylated 5�-end and readily cleaves ssRNA with
5�-P regardless of substrate RNA length (Fig. 1). When ssRNA
containing a triphosphate or hydroxyl group at the 5�-end
or blunt-ended duplex RNA was incubated with the enzyme, no
RNA cleavage was observed. These results underline that
RNase E selectively degrades single-stranded RNA with 5�-P, as
is known from previous studies. Further, the RNase E catalytic
activity for RNA degradation was not detected in the absence of
Mg2� ions and required neither ATP nor ATP hydrolysis
energy (Fig. 1).

The RNA cleavage activation occurring via the sensing of the
5�-P in sRNA by RNase E is likely to trigger a conformational
change in the enzyme, resulting in the cleavage of the target
RNA within 10-mer from the 5�-P (10). Thus, a certain distance
exists between the sensing pocket for the 5�-end and the RNA
cleavage site in the quaternary structure of RNase E. We
observed that RNase E cuts short-stranded AU-rich regions of
ssRNA apart from the 5�-monophosphate by 25-mer or more as
well as those within 10-mer from the 5�-P (Fig. 4A). These
results suggest that the 5�-P of sRNA is recognized by one dimer
of the tetramer structure of RNase E, and subsequent cleavage
of RNA is likely to occur at the active site present in the other
dimer that is distant from the 5�-end sensing pocket. Con-
versely, RNase EMT(499) and RNase EMT(C/S), RNase E mutant
proteins with an incomplete tetramer structure, showed a
marked decrease in cleavage activity of distal 5�-P substrates
compared with that of the WT RNase E (Fig. 5B). Hence, the
intact tetrameric structure of RNase E is a prerequisite for RNA
cleavage of the target RNA annealed with sRNA having a distal
5�-P. However, RNase E did not cleave a partial duplex RNA
with a long dsRNA region that is longer than the tetrameric
RNase E (Fig. 6I). Thus, the decay of target RNA occurs at the

single-stranded region present either near to or away from the
RNA cleavage site residing in one dimer, in which the distance
between the 5�-P and ssRNA cleavage site in the target RNA
should not be longer than that between the 5�-P–sensing
pocket and the RNA decay active site in RNase E.

To assess the sRNA-mediated translational control at the
5�-region of a given target mRNA in vivo, we used the GFP
plasmid (Fig. 6), as previously used for the depression of target
gene expression by RNase E (39). Urban and Vogel (39) intro-
duced the plasmid encoding sRNA for suppressing GFP-tagged
target gene expression in E. coli cells and showed the decreased
expression level of GFP, but not the translational control. In our
system, we directly transfected sRNA targeting GFP mRNA and
examined both protein and mRNA levels to explore how RNase
E regulates a target mRNA in vivo. We found that the amount of
GFP fluorescence and GFP mRNA decreased only when the
sRNA (proximal or distal P) targeting GFP mRNA was trans-
fected. In addition, we observed that the amount of GFP fluo-
rescence and GFP mRNA was diminished by transfection of
sRNA in E. coli, and this change in fluorescence was indepen-
dent of the presence of Hfq (Fig. 6). To our knowledge, this is
the first attempt to suppress target gene expression in bacteria
by the administration of artificial RNA. More importantly,
designing the artificial guide RNA for suppressing target gene
expression in bacteria is very simple. The guide RNA requires
only 5�-P and cognate sequences for target RNA binding. In
addition, sRNA can be alternatively substituted with DNA for
target RNA decay, as shown in our study (Fig. 4B). Thus, this
strategy can be used for selective knockdown of bacterial genes
in vivo.

Based on the results obtained in this study, we suggest a path-
way in which RNase E having a quaternary structure efficiently
degrades target RNA annealed with trans-acting sRNA harbor-
ing 5�-monophosphorylated ends both proximal and distal
from the cleavage site (Fig. 7). In the model, the duplex formed
between trans-acting sRNA and target RNA directs the 5�-end
of a trans-acting RNA into the 5�-sensing pocket, allowing the
cleavable sites in the cognate single-stranded RNA formed in
the duplex to be accommodated in the enzyme active site. In the
dimers of RNase E, the two large domains constitute two sepa-
rate enzyme active sites that interact with RNA substrates by
recognizing the 5�-P of the RNA substrate and subsequently
cleaving the AU-rich sequences of target RNA (15). Thus, the
5�-P–sensing pocket is necessary to increase the affinity of
RNase E for RNA substrates and plays a role in distinguishing
monophosphorylated RNA from triphosphorylated RNA (40,
41). A detailed structural study of this complex with a bound
sRNA/mRNA pair at the atomic level would be warranted to
elucidate our suggested pathway of RNA cleavage by RNase E.

Our results suggest that mRNA paired with sRNA is suffi-
cient for triggering target mRNA cleavage by RNase E without
requiring an Hfq chaperone. We explored sRNA-induced
target RNA degradation by RNase E in the absence of the Hfq
RNA chaperone. The 5�-monophosphorylated blunt end of
sRNA/target RNA duplex could trigger RNase E to cleave target
RNA at the single-stranded region at distal sites. In the absence
of the RNA chaperone Hfq protein, RNase E with an intact
quaternary structure can cleave target RNA at sites both prox-
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imal and distal to the monophosphorylated 5�-end of sRNA
that are base-paired with the target RNA (Fig. 7). Thus, we
suggest that Hfq-independent RNA decay by RNase E requires
these factors for efficient target RNA decay in bacteria: the 5�-P
in sRNA, cognate sRNA sequence for annealing to target RNA,
and a stable quaternary structure of RNase E. Given that sRNA
can be designed to facilitate seed pairing, small guide oligonu-
cleotides can be further explored for their application in selec-
tive gene knockdown in bacteria in vivo.

Experimental procedures

Purification of RNase E proteins and RNA chaperone Hfq

The rne-deleted E. coli strain KSL2000 and a previously
described pNRNE4 plasmid (42) were used without further
modification. The WT NTH of E. coli RNase E (residues 1–529,
RNase E), mutant RNase E 499 aa (residues 1– 499, RNase
EMT(499)), and mutant C404S and C407S (residues 1–529,
RNase EMT(C/S)), all of which contain a His6 tag at the N termi-
nus, were expressed in BL21 (DE3) cells. Each strain was grown
in Luria–Bertani (LB) medium (2.0 liters), supplemented with
100 �g/ml ampicillin, 100 �g/ml kanamycin, 5 �g/ml chloram-
phenicol, 5 �g/ml tetracycline, and 10 �M IPTG. Protein
expression was induced by the addition of 0.1 mM IPTG, and
cells were grown at 37 °C to an A600 of 0.5– 0.6. After harvesting,
cell pellets were resuspended in lysis buffer (50 mM NaH2PO4,
pH 8.0, 300 mM NaCl, and 10 mM imidazole) supplemented

with 1 mg/ml lysozyme and 10 mg/ml RNase A, and then the
resuspended cells were disrupted on ice by sonication. The
lysate was clarified by centrifugation, and the soluble fraction
was loaded onto a nickel-nitrilotriacetic acid HisTrap column
(GE Healthcare), washed extensively with washing buffer (50
mM NaH2PO4, pH 8.0, 300 mM NaCl, and 20 mM imidazole),
and eluted with a gradient of elution buffer (50 mM NaH2PO4,
pH 8.0, 300 mM NaCl, and 250 mM imidazole). The eluants were
further purified using size-exclusion column chromatography
(Superdex 200 column, Amersham Biosciences). Purified pro-
tein samples were concentrated with centrifuge-based ultrafil-
tration (Amicon� Ultra centrifugal filters, molecular weight
cutoff 30,000; Merck).

The plasmid pGSO146 (43) encoding Hfq RNA chaperone
protein was kindly provided by Dr. Yong-Hoon Lee (Korea
Advanced Institute of Science and Technology). RNA chap-
erone Hfq was overexpressed in E. coli BL21 (DE3) cells har-
boring pGSO146 plasmid by growing the cells in LB medium
(1.0 liter) supplemented with 100 �g/ml ampicillin. The
overexpressed Hfq protein was purified using a nickel-nitri-
lotriacetic acid HisTrap column as described previously (44).
Purified protein samples were concentrated using pressure-
based ultrafiltration (Amicon� stirred cells, Merck). All
purified proteins were 
95% pure based on SDS-PAGE
results. Proteins were aliquoted and mixed with 50% glycerol
for storage at �20 °C. Protein concentration was determined
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using the Bradford method (Bio-Rad protein assay) with BSA
as the standard.

Site-directed mutagenesis

The cysteine residues at positions 404 and 407 in recombinant
RNase E were changed to serine residues using a Muta-DirectTM

site-directed mutagenesis kit (iNtRON Biotechnology) with gene-
specific primers, according to the manufacturer’s protocol. The
oligonucleotides used were 5�-CCA GTC ATC ACG TTA GTC
CGC GTA GTT CTG GTA CTG GC-3� and its reverse comple-
ment 5�-GCC AGT ACC AGA ACT ACG CGG ACT AAC GTG
ATG ACT GG-3� (changes introduced into serine codons are
underlined). These mutations in the corresponding ex-
pression construct pNRNE4 were confirmed using DNA
sequencing (Macrogen).

Oligonucleotide preparation and 32P labeling

Sequences of oligonucleotide substrates used for RNA cleav-
age by RNase E are shown in Table 1. Oligoribonucleotides for
RNA cleavage enzymatic assays were chemically synthesized
(ST Pharm Co.). For 5�-end labeling with 32P, RNA or DNA
oligonucleotides were incubated with T4 polynucleotide kinase
(10 units; Takara) and 1 �l of [�-32P]ATP (3,000 Ci/mmol; GE
Healthcare) in 50 �l of reaction buffer containing 50 mM Tris-
HCl, pH 8.0, 10 mM MgCl2, and 5 mM DTT at 37 °C for 1 h. The
labeled RNA strands were subsequently purified using Micro
Bio-SpinTM columns (Bio-Rad). Internally radiolabeled RNA
was produced by performing in vitro transcription in the pres-
ence of [�-32P]UTP (3,000 Ci/mmol; GE Healthcare) according
to a standard protocol. Internally 32P-incorporated RNAs were
purified on 10% polyacrylamide gel with 8 M urea. RNA
duplexes were prepared by annealing two RNA oligonucleo-
tides as follows. RNA or DNA oligonucleotides were mixed
with annealing buffer (10 mM Tris-HCl, pH 7.5, 100 mM NaCl,
and 1 mM EDTA), boiled at 85 °C for 5 min, and then annealed
at 25 °C for 20 min.

RNA cleavage assays

RNA cleavage assays were performed in the reaction
buffer (5 mM Tris-HCl, pH 7.5, 10 mM NaCl, 10 mM KCl, 2

mM MgCl2, 0.2 mM DTT, and 0.2 units/�l RNase inhibitor)
containing each RNA substrate (duplex or single-stranded
RNA). For the RNA cleavage reaction, 10 nM RNA substrate
mixed with 20 nM guide sRNA, in which RNAs were mixed
with a trace amount of 32P-labeled RNA (substrate RNA
and/or guide RNA), was incubated with 0.1 �M RNase E per
10-�l reaction at 37 °C for 30 min. The time course reactions
were stopped with quenching buffer (0.5 mg/ml protease K
in 100 mM Tris-HCl, pH 7.5, 12.5 mM EDTA, 150 mM NaCl,
0.05% bromphenol blue, 0.05% xylene cyanol FF, and 10%
glycerol), and the quenched reaction mixture was loaded on
a native polyacrylamide gel. For denaturing PAGE analysis,
reaction quenching was performed by adding RNA-loading
dye (8 M urea, 3% Ficoll 400, 0.05% bromphenol blue, and
0.05% xylene cyanol FF) in TBE buffer to the reaction mix-
ture, and whole samples were loaded on polyacrylamide gels
with 8 M urea after denaturation at 95 °C for 3 min. Radioac-
tive RNAs in gel were visualized and quantified on a Cyclone
phosphorimager (PerkinElmer Life Sciences).

Sequence analysis of cleaved RNA

The site of RNA cleavage by RNase E was identified by
sequence analysis of the cleaved RNA. The 32P-labeled dsRNA
substrate (30 nM, P47R0/P25R1) in the reaction buffer (50 �l)
was incubated with or without RNase E (0.25 �M) at 37 °C for 30
min. The alkaline hydrolysis and RNase T1 (Ambion) cleavage
assays were performed as a control for RNA-Seq. For this,
5�-end 32P-labeled single-stranded RNA (30 nM, P47R0) was
mixed with alkaline hydrolysis buffer at 25 °C for 5 or 10 min.
RNase T1 (1, 5, or 10 units) was incubated with P47R0 RNA at
25 °C for 15 min. All reactions were quenched with an equal
volume of RNA loading dye in TBE buffer, and RNA sequences
were analyzed on 15% denaturing polyacrylamide gel (8 M urea)
and visualized using a phosphorimager.

Analytical size-exclusion chromatography

The oligomeric state of proteins was determined by conduct-
ing size-exclusion chromatography. Purified RNase E, RNase
EMT(C/S), and RNase EMT(499) were dialyzed with gel-filtration
running buffer (25 mM Tris-HCl, pH 8.0, and 300 mM NaCl) at

Table 1
Sequences of single-stranded oligonucleotides used in this study

No. Oligonucleotide name Sequence (5�3 3�)

1 R0/47 GGAAAAUGUAAAUGACAUAGGCGCGCUGAAAGGGAGAAGUGAAAGUG
2 cR0/47 CACUUUCACUUCUCCCUUUCAGCGCGCCUAUGUCAUUUACAUUUUCC
3 R1/25 CGCGCCUAUGUCAUUUACAUUUUCC
4 R2/25 CACUUUCACUUCUCCCUUUCAGCGC
5 R3/25 CUCCCUUUCAGCGCGCCUAUGUCAU
6 D1/25 CGCGCCTATGTCATTTACATTTTCC
7 D2/25 CACTTTCACTTCTCCCTTTCAGCGC
8 GFP target sRNA (proximal) GGCUACGUCCAGGAGCGCACC
9 GFP target sRNA (distal) UGAAGUUCGAGGGCGACACCC
10 GFP target sDNA (proximal) GGCTACGTCCAGGAGCGCACC
11 GFP target sDNA (distal) TGAAGTTCGAGGGCGACACCC
12 RR0/72 GGAAAAUGUAAAUGACAUAGGCGCGCUGAAAGGGAGAAGUGAAAGUGGGAAAAUGUAAAUGACAUAGGCGCG
13 RR1/65 GGAAAAUGUAAAUGACAUAGGCGCGCUGAAAGGGAGAAGUGAAAGUGGGAAAAUGUAAAUGACAU
14 RNase E C404S/C407S forward primer CCAGTCATCACGTTAGTCCGCGTAGTTCTGGTACTGGC
15 RNase E C404S/C407S reverse primer GCCAGTACCAGAACTACGCGGACTAACGTGATGACTGG
16 GFP forward primer AAGTGCCACCTGACGTCTAA
17 GFP reverse primer CACAACATACGAGCCGGAAG
18 RNase E forward primer TCCAGCGTGAAGTCCGTCTG
19 RNase E reverse primer GTCCTGACGAGTTTCAATGG
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4 °C overnight. The proteins (typically 300 �g) were subjected
to analytical size-exclusion chromatography (Superdex 200
10/300 GL; GE Healthcare). The column was equilibrated with
running buffer and calibrated using a molecular weight marker
kit for gel-filtration chromatography (Bio-Rad). The column
was run with the same running buffer, and 0.3-ml fractions
were subsequently collected and analyzed using spectropho-
tometry at 260-nm absorbance.

Transcription suppression by using guide sRNA in bacteria

The pNRNE4 plasmid encoding RNase E and the pUCBB-
eGFP plasmid were sequentially introduced into rne-deleted
E. coli strain KSL2000. The E. coli K-12 MG1655 strain and
the Hfq mutant strain were kindly provided by Dr. Y. Lee
(KAIST; Korea Advanced Institute of Science and Technol-
ogy). The pUCBB-eGFP plasmid was introduced into these
two strains. The transformed cells were further transfected
with 5 �M phosphorylated GFP target sRNA (with proximal
or distal site) or phosphorylated GFP nontarget control
sRNA using an electroporation method (38) and Gene Pulser
XcellTM electroporation systems (Bio-Rad). The sRNA-
transfected cells were grown in LB medium supplemented
with 100 �g/ml ampicillin, 100 �g/ml kanamycin, 5 �g/ml
chloramphenicol, 5 �g/ml tetracycline, and 10 �M IPTG at
37 °C. Untransfected cells were also incubated as a negative
control. Cell growth was monitored by measuring absor-
bance at 595 nm, and the GFP fluorescence was measured
using a spectrofluorometer (excitation wavelength of 485
nm and emission wavelength of 535 nm; VICTOR X3 Mul-
tilabel Plate Reader, PerkinElmer Life Sciences) every hour.
The GFP fluorescence, which was normalized to cell growth
absorbance, was shown in the graph as relative to the unity
value at the starting point (time 0).

Total RNA was extracted from E. coli using TRIzol (Invitro-
gen) according to the manufacturer’s protocol at 6 h after the
transfection of small guide RNA. Total RNA (1 �g) was reverse-
transcribed by using a PrimeScript first strand cDNA synthesis
kit (Takara). PCR amplification of cDNA was performed using
500 nM specific primers and a Rotor-Gene SYBR� Green PCR
kit (Qiagen). Cycling conditions were 95 °C for 10 s and 60 °C
for 45 s, and real-time amplified SYBR Green signals were
observed using Rotor-Gene Q (Qiagen). The mRNA levels of
GFP were normalized with those of RNase E. Data are pre-
sented as the mean 	 S.D., n � 3.

Chemical cross-linking assay

The chemical cross-linking reagent dimethylsuberimidate
(DMS) was used to investigate the multimerization of RNase E.
DMS was dissolved in chilled triethanolamine (TEA/HCl;
0.15 M, pH 8.2) to a concentration of 5 mg/ml, and pH was
adjusted to 8.2. The RNase E (2, 5, and 10 �M) was preincu-
bated with 50 mM TEA buffer containing 50 mM NaCl and 5
mM EDTA for 10 min at 25 °C, and cross-linking was initi-
ated by adding DMS (10 mg/ml). After incubation for 3 h at
25 °C, the cross-linking reaction was quenched by adding an
equal volume of 1 M glycine. The quenched samples were
analyzed using 4 –12% gradient SDS-PAGE and stained with
Coomassie Brilliant Blue.
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Small RNA-induced mRNA degradation achieved through both transla-
tion block and activated cleavage. Genes Dev. 25, 385–396 CrossRef
Medline

30. Afonyushkin, T., Vecerek, B., Moll, I., Bläsi, U., and Kaberdin, V. R. (2005)
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