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Abstract: This study was conducted to determine the effect of beef peptide extract on oxidative stress
in the brains of spontaneously hypertensive rats (SHRs). A 3-kDa peptide extract was obtained from
beef myofibrillar protein using alkaline-AK (AK3K). Oxidative stress in SHR brains was measured by
assessing malondialdehyde (MDA) and reactive oxygen species (ROS) concentrations and superoxide
dismutase (SOD), catalase, and glutathione peroxidase (GPx) activity. The SHR brains treated with
the AK3K peptide extract (400 mg/kg body weight, AK3K400) showed a significant decrease in MDA
and ROS contents by 0.33 and 23.92 µM, respectively (p < 0.05) compared to the control. The SOD
activity for AK3K400 was 61.26%, around 20% higher than the control. Furthermore, the SHRs
treated with the AK3K peptide extract showed results similar to those obtained using captopril,
a hypertension drug, except for the MDA level. The study demonstrates that the beef peptide extract
inhibits the generation of oxidative stress in the SHR brain and could possibly be used for neuronal
hypertension therapy.
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1. Introduction

Hypertension is associated with increased oxidative stress in different organs such as the vascular
tissue, brain, and kidney [1,2]. Angiotensin converting enzyme (ACE) inhibitors, including captopril,
enalapril, and lisinopril, are mainly used in the treatment of cardiovascular diseases [3]. ACE inhibitors
reduce the level of oxidative stress (H2O2, malondialdehyde (MDA), and reactive oxygen species (ROS)
formation) and increase anti-oxidative activity in rats with hyperglycemia, diabetes, hepatic fibrosis,
and hypertension [4–6].

Oxidative stress leading to the production of ROS is considered one of the risk factors for
the development of cardiovascular disease, including hypertension, heart failure, and stroke [7–9].
Because oxidative stress is closely related to hypertension, decreasing oxidative damage may lead to
a reduction in blood pressure and vasodilation [10]. Oxidative stress factors such as lipid peroxide,
ROS, and superoxide dismutase (SOD) have been investigated in hypertensive patients and animal
studies [11,12]. Experimental studies in rodent models and humans have revealed that the exogenous
administration of antioxidants attenuates the hypertensive effect of ROS, resulting in an improvement
in vascular function and a reduction of blood pressure [13,14]. The current review suggests that
brain health is an important factor in late stage hypertensive disease because of the correlation of
hypertension with the aging of the brain [15,16]. A previous study showed long-lasting activity of
ACE inhibitors as hypertension agents in spontaneous hypertensive rat (SHR) brains [17].

There has been a growing interest in foods for healthy living, and there have been several reports
about bioactive peptides as functional materials. Bioactive peptides derived from food proteins have
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been studied to show different beneficial effects including those of the antioxidant, ACE inhibitory,
neuroprotective, anti-microbial, anti-inflammatory, and anti-tumor types [18–21]. Specifically, the
administration of peptides derived from food sources exerts anti-hypertensive effects on SHRs [22–24].
Our previous studies also showed that peptides obtained from beef myofibrillar protein have ACE
inhibitory activity and anti-hypertensive effects on SHRs and neuroprotective effects on human neuronal
cells [25–27]. However, the relationship between oxidative stress in the SHR brain and ACE inhibitory
peptide from beef myofibrillar protein has not been reported extensively. Therefore, the purpose of
this study was to investigate the effect of peptide extract from beef myofibrillar protein on oxidative
stress in SHR brains.

2. Materials and Methods

2.1. Materials

All chemicals and reagents were of analytical grade. The lipid oxidation, ROS, reactive nitrogen
species (RNS), SOD, and catalase activity kits were purchased from Cell Biolabs (San Diego, CA, USA).
The glutathione peroxidase (GPx) assay kit was purchased from Abcam (Cambridge, UK). Phosphate
buffered saline (PBS), heparin, ethylenediaminetetraacetic acid (EDTA), tris, butylated hydroxytoluene
(BHT) and sodium chloride were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Preparation of Peptide Extract

The peptide extract was obtained according to the methods of a previous study (Lee and Hur, 2017).
Briefly, the hydrolysate obtained from beef myofibrillar protein was processed using alkaline-AK, which
activated an enzyme reaction under pH 11 at 60 ◦C for 8 h. The hydrolysate was then heated under
60 ◦C for 8 h to stop the enzyme reaction. Then, the hydrolysate was subjected to ultrafiltration using
Amicon®Ultra with a molecular mass cut-off of <3 kDa (Millipore, Billerica, MA, USA). The peptide
extract with <3 kDa using alkaline-AK (AK3K) was lyophilized at −80 ◦C for 72 h and stored at −20 ◦C.

2.3. Animals

The SHR model is considered to be the standard animal model for studying oxidative stress in the
brain [28,29]. The SHR model was established by selective inbreeding of Wistar Kyoto rats (WKY).
A total of 60 male SHR/Izm (Izumo) (10 weeks old, 20 mice/per experiment) rats were purchased from
Central Lab, Animal Inc. (Seoul, Korea). All animals were housed four per cage with food and water
available ad libitum and maintained on a 12 h light/dark cycle. All animal experiments were performed
following the animal care ethics guidelines with protocols approved by the Animal Care Committee of
the KPC Research Co., Ltd. of Korea (P182019). The in vivo experiments were conducted in triplicate.
After 1 week of adaptation, the SHRs were randomly divided into four groups, with five rats in each
treatment group: T1) Control (distilled water); T2) captopril as the hypertension drug (20 mg/kg body
weight); T3) <3 kDa peptide extract obtained by alkaline-AK at 400 mg/kg body weight in distilled
water (AK3K400); and T4) <3 kDa peptide extract obtained by alkaline-AK at 800 mg/kg body weight
in distilled water (AK3K800). All animals were orally administered drugs in a 1 mL solution using a
disposable plastic syringe.

2.4. Determination of Antioxidant Enzyme Activities

2.4.1. Analysis of Lipid Oxidation Using the Thiobarbituric Acid-Reactive Substance (TBARS) Assay

The brain samples were homogenized in PBS (pH 7.4) including heparin and 1X BHT for
the determination of MDA levels. The MDA in the brains was measured using the Oxiselect
thiobarbituric acid-reactive substance (TBARS) assay kit containing thiobarbituric acid-reactive
substances (Cell Biolabs, San Diego, CA, USA). Each sample was expressed as micromoles per
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mg protein according to the manufacturer’s instructions. The total protein concentration was measured
before the MDA assay using the Pierce®BCA Protein Assay kit (Thermo, Rockford, USA).

2.4.2. Analysis of ROS Generation

The brain samples (50 mg/mL) were homogenized in PBS (pH 7.4). Then, the samples were
centrifuged at 10,000 x g for 5 min, and the tissue lysate supernatant was collected. An Oxiselect In Vitro
ROS/RNS Assay kit (Cell Biolabs, San Diego, CA, USA) was used to measure the ROS concentration in
the brains of the rats according to the manufacturer’s instructions. The ROS or RNS in samples were
measured fluorometrically (2′,7′-Dichlorodihydrofluorescein converted to 2′,7′ dichlorofluorescein)
against a hydrogen peroxide.

2.4.3. Analysis of SOD Activity

The brain samples were homogenized in a 1X lysis buffer (10 mM Tris, pH 7.5, 150 mM NaCl,
0.1 mM EDTA). Then, the samples were centrifuged at 1000 x g at 4 ◦C for 10 min, and the tissue lysate
supernatant was collected. The SOD activity in the brain was determined using the OxiSelect SOD
Assay kit (Cell Biolabs, San Diego, CA, USA).

2.4.4. Analysis of Catalase Activity

The brain samples were homogenized in PBS (pH 7.4) including 1 mM EDTA. Then, the samples
were centrifuged at 10,000x g at 4 ◦C for 15 min, and the tissue lysate supernatant was collected.
The catalase activity in the brain was measured using the OxiSelect Catalase Assay kit (Cell Biolabs,
San Diego, CA, USA).

2.4.5. Analysis of GPx Activity

The brain samples were homogenized in a cold assay buffer. Then, the samples were centrifuged
at 1000x g at 4 ◦C for 15 min, and the tissue lysate supernatant was collected. The GPx activity in the
brain was determined using the GPx Assay Kit (Cell Biolabs, San Diego, CA, USA).

2.5. Statistical Analyses

All data are presented as the mean ± standard deviation (SD). All statistical analyses were
performed using a one-way analysis of variance using SPSS 20.0 (IBM, Armonk, NY, USA). Tukey’s
multiple comparisons test was used to determine the significance of differences between means of
different experimental groups, and a p value of less than 0.05 was considered statistically significant.

3. Results and Discussion

This study was conducted to determine the anti-oxidative stress effect of the peptide extract from
beef myofibrillar protein on the SHR brain by examining different oxidative stress factors such as MDA,
ROS, SOD, catalase, and GPx activity.

MDA quantification is frequently used as an indicator of lipid peroxidation by oxidative stress
using the TBARS method [30]. The concentrations of MDA were measured as an indication of lipid
oxidation in the SHR brain. As shown in Figure 1, the MDA concentration in SHR brains treated with
the AK3K peptide extracted at 400 and 800 mg/mL was 0.33 ± 0.09 and 0.40 ± 0.10 µM, respectively,
which was significantly lower than that of the control and captopril treatment groups (p < 0.05).

Hypertension can be assessed in the brain because the pathogenesis of hypertension is affected by
the activation of the sympathetic nervous system and oxidative stress in the brain [31,32]. Angiotensin
II(AngII)increases blood pressure by binding to the Ang II receptor type 1 (AT1 receptor), which induces
vasoconstriction [33]. In addition, Ang II enhances intracellular oxidative stress, such as increased
lipid peroxide, by activating macrophage-mediated oxidation via the AT1 receptor [34]. The markers
of oxidative stress such as nitrotyrosine, nuclear factor-κB p65 (NF-κB p65), neutrophil cytosol factor
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1 (p47phox), and 8-hydroxy-29-deoxyguanosine are significantly elevated in SHRs compared with
WKYs [35,36]. In addition, TBARS is increased in the brains of SHRs [37]. Kishi et al. (2004) showed
that TBARS levels were significantly higher in different brain tissues, such as the whole brain, rostral
ventrolateral medulla, and the nucleus of the solitary tract, compared with the levels in the tissues of
WKYs [38].

Figure 1. Thiobarbituric acid-reactive substance (TBARS) concentration (µmoL malondialdehyde;
MDA) in the spontaneously hypertensive rat (SHR) brain. The groups were the control (distilled water),
captopril (20 mg/kg body weight), AK3K400 (400 mg/kg body weight), and AK3K800 (800 mg/kg
body weight). Data are presented as the mean ± standard deviation (SD). a-b Different letters indicate
statistically significant differences (p < 0.05) in the different groups.

Previous studies have found that ACE inhibitors, including captopril, quinapril, and enalapril,
decreased lipid peroxidation and Ang II activation via the thiol group of the ACE inhibitor structure
that had free radical scavenging activity [34,39]. Our previous study found that the hydrolysate
from myofibrillar protein could chelate the iron in the ACE active center via the carboxylate anion
at the C-terminal peptide, resulting in ACE inhibitory and free radical scavenging activity [27].
However, captopril failed to elevate antioxidant properties or inhibit lipid peroxidation in the presence
of myoglobin/H2O2 or iron chloride/ascorbate [40,41]. The reason was speculated to be that it may
have stimulated peroxidation in the presence of iron chloride by reducing Fe3+ to the Fe2+ [40], and the
thiol group can produce lipid peroxidation in the presence of Fe3+ [42]. Moreover, our previous
study also suggested that the MDA level in serum was higher in SHRs treated with AK3K400 than
captopril; additionally, the overall results were similar. Therefore, although the mechanism is not exact,
the decrease in lipid oxidation in the AK3K peptide extract-treated SHR brain can be explained by the
inhibition of Ang II as well as unaffectedness for the presence of iron environment resulting from the
ACE inhibitory activity and free radical scavenging activity of AK3K.

The ROS content was measured to confirm the anti-oxidative stress effect of the AK3K peptide
extract on the SHR brain. As shown in Figure 2, the ROS content of SHR brains treated with captopril
and AK3K peptide extracts at 400, 800 mg/mL was 23.92 ± 4.56, 23.12 ± 1.00, and 21.71 ± 4.16 µM,
respectively. The decrease in ROS content in the SHR brain was significantly greater in the AK3K
peptide extract treatment groups compared to that in the control group (p < 0.05).
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Figure 2. Reactive oxygen species (ROS) generation in the SHR brains. The groups were the control
(distilled water), captopril (20 mg/kg body weight), AK3K400 (400 mg/kg body weight), and AK3K800
(800 mg/kg body weight). Data are presented as the mean ± SD. a-b Different letters indicate statistically
significant differences (p < 0.05) in the different groups.

The ROS level is as an indicator of oxidative stress, and it is implicated in cardiovascular
disease, including hypertension; in addition, ROS can increase the blood pressure in the heart, brain,
vessels, and kidneys [43]. Previous studies focused on Ang II mechanisms revealed that ROS are
critical intracellular signaling molecules in cardiovascular diseases such as hypertension [44,45].
Zimmerman and Davisson (2004) also discussed that ROS in the central neural system is implicated in
neuro-dysfunction, and the mediation of hypertension depends on Ang II activation [46]. Moreover,
neurogenic hypertension depends on Ang II enhancing the messenger RNA (mRNA) and protein
of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, which leads to ROS
production in the rostral ventrolateral medulla [47,48]. Apocynin, which is known as an NADPH
oxidase inhibitor, aids in preventing the generation of superoxide in humans and protection against
oxidative stress in the rostral ventrolateral medulla, resulting in a decrease in blood pressure in SHRs or
neurogenic hypertension mediated by Ang II [49]. Tanriverdi et al. (2017) presumed that the possible
reason for the effect of apocynin on neuronal hypertension by oxidative stress can be explained by
its antioxidant activity [50]. In addition, antioxidants play an important role in reducing ROS and
inhibiting NADPH oxidase, and they can be used as hypertension agents [48,51]. Previous studies
have reported that peptides and hydrophobic amino acids decrease ROS generation via antioxidant
activities such as free radical scavenging and the inhibition of neuronal nitric oxide synthase (NOS) [52].
In our previous studies, peptide from myofibrillar protein was shown to inhibit the ROS level in
H2O2-damaged neuronal cells, which was likely the result of antioxidant activities of the hydrophobic
or acidic amino acids. Fisher et al. (2018) reported that the phospholipase A2 inhibitory peptide, which
was comprised of hydrophobic amino acid residues, inhibited phospholipase A2 activity, which is
responsible for the activation of NADPH oxidase type 2 (Nox2) via strong binding to cell membrane
phospholipids in Ang II-treated lungs [53]. Therefore, in this study, the decrease in ROS content in the
SHR brain might be closely related to blocking the NADPH oxidase-derived ROS production through
the inhibition of Ang II activation by antioxidant activities and the permeability of hydrophobic amino
acids in AK3K peptide extracts.

As shown in Figure 3, the SOD activity in SHR brains was significantly increased by treatment
with AK3K400 and captopril compared to the control (p < 0.05). However, the SOD activity of the SHR
brain treated with AK3K800 was not significantly different from that in the control group. Previous
studies reported that treatment with an excessive concentration could cause toxicity in cell lines
through numerous pathways such as the over activation of mechanism receptors or genotoxicity
and mutagenicity [54,55]. The oxidative stress induced by toxicity, whether persisting or very high,
may cause protein degradation and protein oxidation such as peptide bond cleavage and amino acid
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oxidation; furthermore, initial antioxidant enzymes also may be damaged [56,57]. Even though the
reason for for the lower SOD activity in AK3K800 than AK3K400 has still not been found, we considered
that toxicity or oxidative stress by the high concentration treatment may affect the decrease in SOD
activity or biological change by the structure change of the AK3K peptide extract.

Figure 3. Superoxide dismutase (SOD) activity in the SHR brains. The groups are the control (distilled
water), captopril (20 mg/kg body weight), AK3K400 (400 mg/kg body weight), and AK3K800 (800 mg/kg
body weight). Data are presented as mean ± SD. a-b Different letters indicate statistically significant
differences (p < 0.05) in the different groups.

The catalase activity in the SHR brain was also determined in this study (Figure 4); it did not show
any significant differences between treatment groups. As shown in Figure 5, the GPx activity was also
not significantly different between groups.

Figure 4. Catalase activity in the SHR brains. The groups are the control (distilled water), captopril
(20 mg/kg body weight), AK3K400 (400 mg/kg body weight), and AK3K800 (800 mg/kg body weight).
Data are presented as mean ± SD.
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Figure 5. Glutathione peroxidase (GPx) activity in the SHR brains. The groups are the control (distilled
water), captopril (20 mg/kg body weight), AK3K400 (400 mg/kg body weight), and AK3K800 (800 mg/kg
body weight). Data are presented as mean ± SD.

SOD, catalase, and GPx are known as representative antioxidant enzymes which are able to
regulate oxidative stress and free radicals. SOD plays an important role in catalyzing the decomposition
of the highly reactive superoxide anion (-O2

−) to less reactive hydrogen peroxide and oxygen [58].
Catalase is also known to catalyze the conversion of hydrogen peroxide into water and oxygen.
GPx, which converts alcohols or free hydrogen peroxide into water, is important for the protection
of organisms from oxidative stress [59]. The results of a previous study indicated a relationship
between hypertension and antioxidant enzymes [60]. Shou et al. (1997) found that the SOD,
GPx, and catalase activity levels in SHRs were lower than those in normal rats, and an ACE
inhibitor decreased oxidative stress and increased SOD, GPx, and catalase activity levels in the
tissues [61]. Recently, Beltrán-Barrientos et al. (2018) indicated [62] that captopril and food materials
did not cause any significant differences in anti-hypertensive effects but did result in a significantly
different oxidative stress level compared with the control group. Alternately, in the present study,
the catalase and GPx activities of the SHR brains treated with the AK3K peptide extract and captopril
were similar to those in the control group. The antioxidant peptide gp91ds, which selectively
inhibits group of NAD(P)H oxidase, such as cysteine-arginine-proline-proline-arginine (CRPPR)
and cysteine-serine-histidine-methionine-alanine-arginine-threonine-lysine-cysteine (CSHMARTKC)
reduced superoxide production stemming from the inhibition of incorporation of NADPH
oxidase, resulting in anti-hypertensive activity in stroke-prone SHRs [63]. Similarly, captopril,
a sulfhydryl-containing ACE inhibitor, may potentiate antioxidant enzymes by free radical scavenging
activity [64]. Carnosine, comprising the amino acids beta-alanine and histidine, has been proven to be
a therapeutic candidate for the treatment of degenerative diseases because it can scavenge superoxide
and increase superoxide dismutase activity by the metal-ion chelating action [65]. The peptides derived
from food protein are composed of hydrophobic amino acids at the N-terminus, which may affect their
ability to quench the superoxide radical (O2

−) and hydrogen (H2O2) [66,67]. We previously reported
that the peptides with higher hydrophobic amino acid (leucine and methionine) content showed higher
SOD activity and protective effects against H2O2-treated neuronal cells [25]. In addition, the peptide
used in this study had effective anti-hypertensive activity in SHRs and could be used as a therapeutic
treatment for cardiovascular disease [26]. Previous studies have reported that the AK3K peptide
fraction contains hydrophobic amino acids (valine, leucine, isoleucine), and further AK3K peptide
sequences such as threonine–glutamine–lysine–lysine–valine–isoleucine–phenylalanine–cysteine
and leucine-isoleucine–valine–glycine-isoleucine–isoleucine–arginine–cystein–valine were mainly
identified. This study indicates that the content of other enzymes such as GPx and catalase may not
influence the inhibition of oxidative stress in the SHR brain and the treatment of neuronal hypertension.
On the other hand, SOD activity in the SHR brain treated with the AK3K peptide extract may have an



Foods 2019, 8, 455 8 of 12

influence on the regulation of vasoconstriction and the oxidative state, which are mediated by neuronal
hypertension. The change in SOD activity in the SHR brain might be due to the interaction of the residue
charges of the hydrophobic or acidic amino acids in the AK3K peptide extract, which have a similar
mechanism to SOD, such as the reduction and oxidation of the active site of SOD, resulting in a synergy
effect by converting the superoxide anion to hydrogen peroxide. Furthermore, the AK3K peptide
extract might not further react in the enzymatic defense process because of the lack of interaction
between amino acids and these enzymes (GPx and catalase). However, the detailed role of antioxidant
enzymes in inhibiting oxidative stress-induced hypertension is still unclear, and it may be affected by
amino acid composition or sequence. The results of this study were in agreement with our previous
finding that the AK3K peptide (1.25 mg/mL) significantly increased SOD activity, whereas the catalase
level was not significantly affected [25]. Ighodaro and Akinloye (2018) also referred to SOD as an
important major antioxidant enzyme for protection against neurological disease and hypertension in
both humans and animals [68].

Therefore, SOD plays a key role in controlling oxidative stress in the SHR brain via the inhibition
of ROS and MDA production. Furthermore, this study showed that the peptide extract from beef
myofibrillar protein could help to reduce neuronal hypertension through the inhibition of oxidative
stress in the brain.

4. Conclusions

This study showed that the peptide extract from beef myofibrillar protein obtained using
alkaline-AK has an anti-oxidative stress effect related to hypertension in the SHR brain. The SHRs
treated with AK3K peptide extracts showed a significant decrease in the MDA level and ROS
generation compared to the control. The SOD activities in SHRs treated with AK3K peptide extract
(400 mg/mL) and captopril were significantly higher compared to those in the other treatment groups.
However, the catalase and GPx activities in SHRs treated with each sample were not significantly
different between groups. Based on the results of this study, we assume that the anti-oxidative stress
property of the AK3K peptide extract can alleviate neuronal hypertension. Furthermore, the AK3K
peptide extract could possibly be used in neuronal hypertension therapy.
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