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Update of parameter matrices of the
dynamic system using the least-squares
approach

Eun-Taik Lee1 and Hee-Chang Eun2

Abstract
Model-based responses rarely coincide with the actual responses owing to modeling and measurement errors, dete-
rioration of structural performance, and presence of damages in the structure. The parameter matrices should be
updated for successful subsequent analysis and design efforts. This study derives the mathematical forms of variations in
the parameter matrices between the actual system and the analytical model. A method using the least-squares principle
constrained by the measured modal data is presented. The method is directly derived by minimizing the performance
indices expressed by the norm of the variation in the parameter matrices between the actual system and the analytical
model. The proposed update methods predict the updated parameter matrices depending on the prescribed weighting
matrices and detect damages from the predicted parameter matrix variations. Examples compare the methods depend-
ing on the established weighting matrices, the number of measurement data sets of the first modal data only and the
lowest two modal data. This study also investigates the effect of external noise contained in the measured data.
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Introduction

It is difficult to accurately describe the responses of an
actual system using the structural model established at
the design stage because of inaccurate constructions,
inhomogeneous properties of the structural materials,
environmental effects, and measurement errors. The
inaccurate utilization of the parameter matrices, such
as the mass and stiffness matrices of the dynamic sys-
tem, leads to the responses being deviated from the ini-
tial responses. Such inaccuracies should be minimized
for successful subsequent analysis and design.

Numerous studies pertaining to the handling of
updated parameter matrices of a finite-element model
using only measured data have been reported. The
updated parameter matrices can also be utilized as evi-
dence to determine the defect in dynamic systems. The
parameter matrices are primarily corrected using the

least-squares methods and the parameter sensitivity
methods.

The parameter-updating methods are used for
obtaining responses that are as close as possible to the
experimental and actual responses. Wang et al.1 com-
pared the modal parameter–based and flexibility-based
damage-identification methods by optimizing the objec-
tive functions of a weighted function of the frequency
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and mode shapes and modal flexibility residue, respec-
tively. Schommer et al.2 discussed the difference
between stiffness and the flexibility matrix for structural
health monitoring based on vibrational measurements.
They found that the flexibility-based quantification and
localization of damage are more difficult. Lekidis et al.3

developed a finite-element model-updating method
based on an incomplete set of modal frequencies and
mode shapes. Basxağa et al.4 proposed an updating algo-
rithm for the uncertain parameters for each mode by
minimizing the difference between the analytical and
experimental natural frequencies. Fuentes5 introduced
and compared analytical methods that combine the
mode-shaped expansion methods and the update meth-
ods of the stiffness parameters. Rim et al.6 predicted the
updated forms of the parameter matrices based on the
estimated mode shape data. Chen and Tee7 presented
the optimized solutions in the least squares from the dif-
ference in the structural parameters between the finite-
element model and the associated tested structure.
Sheinman8 provided an analytical algorithm for dam-
age detection and for updating parameter matrices
using the minimum static and/or dynamic measured
modes and preserved the connectivity. Pokharkar and
Shrikhande9 provided an updated time-domain least-
squares method to identify the structural stiffness and
mass matrices using the condensed model. Sung et al.10

presented a damage-detection approach for cantilever
beam-type structures using the deflection estimated by
the modal flexibility matrix. Rainieri et al.11 provided
dynamic identification techniques for the non-
destructive evaluation of heritage structures.

Katebi et al.12 obtained a damage-identification
method using changes in the sensitivity matrix and the
measured flexibility data. Chen and Nagarajaiah13

derived the structural parameter optimization method
by minimizing the Frobenius norm of the change in the
flexibility matrix and the Gauss–Newton method for
solving the optimization problem. Li et al.14 presented
a method for detecting reduction in the stiffness para-
meters of a structure using a generalized flexibility
matrix and changes in natural frequencies. Yang and
Sun15 proposed a damage-detection method based on
the best achievable flexibility change to localize and
quantify damages. Cao et al.16 proposed a model-
updating method based on the residual flexibility
mixed-boundary substructure method. Using the linear
relationship between the flexibility matrix element and
the structural parameter, Yang et al.17 introduced the
modal parameter and damage coefficient and provided
a flexibility-based method for identifying the location
and extent of the damage. Lacidogna et al.18 investi-
gated the damage propagation process using the acous-
tic emission technique and the extraction of resonance
frequencies. They also evaluated the damage mechan-
isms for the stress-dependent damage progress using

the acoustic emission and dynamic identification
techniques.19

Existing modal identification methods require exten-
sive interaction and computational efforts. There have
been research efforts for automated modal identifica-
tion and tracking procedure. Rainieri and Fabbrocino20

presented a literature review on automated operational
modal analysis and developed algorithm aiming at fully
automated output-only modal identification. They also
investigated the validity of the automated output-only
modal parameter estimation algorithm.21 Rainieri
et al.22 proposed the use of second-order blind identifi-
cation to estimate modal property.

The dynamic systems can be modeled by a system of
fractional differential equations (FDEs). Using the
operational matrix for fractional integral operator
based on Chebyshev polynomials, a system of linear
algebraic equations is derived and the numerical
approximation can be obtained by solving system of
Mittag–Leffler non-singular FDEs. Efficient numerical
methods to solve a system of Mittag–Leffler non-
singular FDEs have been considered.23–28

This article presents the mathematical forms of the
updated parameter matrices to satisfy the flexibility
matrix and eigenfunction established by the measured
modal data using the least-squares approach. The
update method is straightforwardly derived by mini-
mizing the objective functions to satisfy the measured
modal data. The parameter matrices take different
mathematical forms depending on the prescribed
objective functions and the weighting matrices. The
numerical examples exhibit that the stiffness matrix
as the weighting matrix indicates more accurate dam-
age information than the mass matrix despite the
external noise. It is found that the sensitivity to exter-
nal noise contained in the measured mode shape data
disappears in the use of accumulated data through
repeated numerical simulations. The resulting method
can be extended for detecting damages using the
finite-element method. Furthermore, the predicted
parameter matrices compare the validity of the pro-
posed methods depending on the measured number
of lowest modal data sets.

The structure of this article is as follows: In section
‘‘Estimation of updated stiffness and mass matrices,’’
we derive the mathematical forms to update stiffness
matrix as well as mass matrix, and the corresponding
example is presented to illustrate the validity of the pro-
posed methods and to compare the numerical results
depending on the presumed weighting matrices. In sec-
tion ‘‘Estimation of updated stiffness matrix,’’ the
mathematical forms to correct stiffness matrix are pro-
vided under the assumption of constant mass matrix. A
numerical example is presented to validate the derived
methods. In section ‘‘Conclusion,’’ the results of this
study are summarized.
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Formulations and examples

Estimation of updated stiffness and mass matrices

The dynamic equation for an undamped dynamic sys-
tem of free vibration with n degrees of freedom (DOFs)
can be expressed by

M€q+Kq= 0 ð1Þ

where M and K denote the n 3 n mass and stiffness
matrices, respectively; €q and q are the n 3 1 acceleration
and displacement vectors, respectively. The equation
describes the dynamic responses in the time domain.

The characteristic equation of the dynamic system
may be written as

Kf=LMf ð2Þ

where f and L represent the n 3 n mode shape
matrices and L=diag(v2

i ) is the eigenmatrix and
vi (i= 1, 2, . . . , n) is the ith modal frequency. The stiff-
ness matrix K and the flexibility matrix Q may be
expressed by Li et al.29

K=
Xn

i= 1

Mv2
i fif

T
i M ð3Þ

Q=K�1 =fL�1fT =
Xn

i= 1

fif
T
i

v2
i

ð4Þ

where the mode shape vectors are taken utilizing the
mass normalization fTMf= I, and fi is the ith mode
shape vector. The modal contribution to the flexibility
matrix in equation (4) decreases as frequency increases
and the flexibility rapidly converges to a good approxi-
mation within the lowest few modes.

Taking the lowest l(l\n) modes from the entire
modes, the following equations from equations (2)–(4)
can be derived by

K M½ � fL�1fT f
0 �fL

� �
= I 0½ � ð5Þ

where the matrix I is an n 3 n identity matrix, 0 is an
n 3 l zero matrix, and L is l 3 l diagonal eigenmatrix.

The matrix
fL�1fT f

0 �fL

� �
should be rank-

deficient because the eigenmatrix of a few modes is
taken. Thus, the updated parameter matrices M and K

cannot be directly obtained by the inverse of equation
(5).

The parameter matrices are derived by the least-
squares method to minimize the performance index. In
this study, the objective functions were utilized by com-
bining the objective functions utilized by Berman and
Nagy30 and Caeser and Pete31 as

D1= M̂
�1=2

K̂� K
� �

M̂
�1=2

ð6aÞ

D2= M̂
�1=2

M̂�M
� �

M̂
�1=2

ð6bÞ

D3= K̂
�1=2

K̂� K
� �

K̂
�1=2

ð6cÞ

D4= K̂
�1=2

M̂�M
� �

K̂
�1=2

ð6dÞ

where ‘‘^’’ indicates the analytical parameter matrices.
It is shown that the analytical mass and stiffness
matrices are utilized as the weighting matrices.

This study compares the mathematical forms to
describe the updated stiffness and mass matrices
depending on the selected performance indices. Four
different cases that combine the performance indices in
equation (6) for predicting the stiffness and mass
matrices are considered; (a) Case 1: D3 +D4, (b) Case
2: D3 +D2, (c) Case 3: D1 +D2, (d) Case 4: D1
+D4. The updated parameter matrices are indepen-
dently derived according to the weighting matrices in
the performance index. The performance index corre-
sponding to Case 1 can be written by

D= K̂
�1=2

K̂� K
� �

K̂
�1=2

+ K̂
�1=2

M̂�M
� �

K̂
�1=2

ð7Þ

To utilize the performance index of equation (7) into
equation (5), equation (5) is modified as

K̂
1=2

K̂
�1=2

KK̂
�1=2

K̂
1=2

K̂
�1=2

MK̂
�1=2

h i
R1 =P ð8Þ

where R1=
K̂

1=2
fL�1fT K̂

1=2
f

0 �K̂
1=2

fL

" #
and P= I 0½ � .

Solving equation (8) with respect to

½K̂
1=2

K̂
�1=2

KK̂
�1=2

K̂
1=2

K̂
�1=2

MK̂
�1=2 �, it can be derived

by

K̂
1=2

K̂
�1=2

KK̂
�1=2

K̂
1=2

K̂
�1=2

MK̂
�1=2

h i
=PR+

1 +Y I� R1R
+
1

� �
ð9Þ

where ‘‘+ ’’ denotes the Moore–Penrose inverse, and Y

is an n 3 2n arbitrary matrix.
Inserting the condition to minimize equation (7) into

equation (9) and solving the result with respect to the
arbitrary matrix, we obtain

Y=PR+
1 + K̂

1=2
M̂K̂

�1=2
h i

I� R1R
+
1

� �
+HR1R

+
1

ð10Þ

where H is another n 3 2n arbitrary matrix.
Substituting equation (10) into equation (9) and arran-
ging the result, it can be expressed by
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K̂
1=2

K̂
�1=2

KK̂
�1=2

K̂
1=2

K̂
�1=2

MK̂
�1=2

h i
=PR+

1 + K̂
1=2

M̂K̂
�1=2

h i
I� R1R

+
1

� �
ð11Þ

Post-multiplying both sides of equation (11) by

K̂
1=2

0

0 K̂
1=2

" #
, the resulting stiffness and mass matrices

can be derived by

K M½ �= PR+
1 + K̂

1=2
M̂K̂

�1=2
h in

I� R1R
+
1

� �
g K̂

1=2
0

0 K̂
1=2

" #
ð12Þ

Equation (12) represents the mathematical forms of
the parameter matrices that minimizes the performance
index defined in equation (7). By the similar process as
Case 1, the other cases can be similarly derived depend-
ing on the performance indices as

Case 2

D= K̂
�1=2

K̂� K
� �

K̂
�1=2

+ M̂
�1=2

M̂�M
� �

M̂
�1=2

ð13aÞ

K M½ �= PR+
2 + K̂

1=2
M̂

1=2
h in

I� R2R
+
2

� �
g K̂

1=2
0

0 M̂
1=2

" #
ð13bÞ

R2 =
K̂

1=2
fL�1fT K̂

1=2
f

0 �M̂
1=2

fL

" #

Case 3

D= M̂
�1=2

K̂� K
� �

M̂
�1=2

+ M̂
�1=2

M̂�M
� �

M̂
�1=2

ð14aÞ

K M½ �= PR+
3 + K̂ M̂

�1=2
M̂

1=2
h i

I� R3R
+
3

� �n o
M̂

1=2
0

0 M̂
1=2

" #
ð14bÞ

R3 =
M̂

1=2
fL�1fT M̂

1=2
f

0 �M̂
1=2

fL

" #

Case 4

D= M̂
�1=2

K̂� K
� �

M̂
�1=2

+ K̂
�1=2

M̂�M
� �

K̂
�1=2

ð15aÞ

K M½ �= PR+
4 + K̂M̂

�1=2
M̂K̂

�1=2
h i

I� R4R
+
4

� �n o
M̂

1=2
0

0 K̂
1=2

" #
ð15bÞ

R4 =
M̂

1=2
fL�1fT M̂

1=2
f

0 �K̂
1=2

fL

" #

Equations (12)–(15) represent the established perfor-
mance indices and the corresponding mathematical
forms to describe the updated parameter matrices. The
parameter matrices take different forms depending on
the weighting matrices. The numerical comparison is
performed in the example.

Example 1. The correction methods of the parameter
matrices proposed in this study are compared depend-
ing on the objective functions in the finite-element
model of a fixed-end beam, as shown in Figure 1,
whose applicability in the detection of damaged ele-
ments is examined. The beam length is 1 m, the length
of each beam element is 20 mm, and the beam is
modeled by 50 beam elements. The nodal points and
elements are numbered in the figure. Each node has
two DOFs of vertical displacement and slope, but the
slope is neglected because it exhibits difficulty in col-
lecting the rotational responses in the actual structure.
The beam has an elastic modulus of 2:1 3 105 MPa, its
gross cross-section is b 3 h= 50 mm3 12 mm, and its

Figure 1. A fixed-end beam structure model.
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damage section is established as b 3 h= 50 mm3

10:5 mm. This example compares the numerical results
of the four cases of equations (12)–(15), depending on
the number of measurement data by only the first
entire modal data and the lowest two entire modal data
sets. We assume multiple damages of 20% section loss
at elements s18 and s43.

The difference between the analytical and actual
stiffness matrices at the damaged state is plotted in
Figure 2. It is observed that, where the abrupt change
in the parameter matrices is located at the damaged
elements.

The parameter matrices are updated using the noise-
free first modal data only as the measurement data.
The plots in Figure 3 represent the differences between
the analytical and estimated parameter matrices. The
proposed methods do not accurately describe the para-
meter matrices. The plots in Figure 3 compare the para-
meter matrices of the four cases estimated using the
noise-free first modal data only. The variations in the
stiffness and mass matrices exhibit different values
depending on the weighting matrices. It is observed that
the difference in the parameter matrices is decreased in
using the analytical stiffness matrix as the weighting
matrix rather than the analytical mass matrix, as shown
in the updated stiffness and mass matrix plots in Case 1
(Cases 1-K and 1-M), updated stiffness matrix plot in
Case 2 (Case 2-K), and updated stiffness matrix plot in
Case 2 (Case 2-K). The damaged elements are located
at the elements to exhibit the abrupt change in the para-
meter matrices. The updated stiffness and mass
matrices exhibit significant differences when the analy-
tical mass matrix is used as the weighting matrix, so the
variation plots rarely provide the damage information,
as listed in Figure 3.

Figure 4 lists the differences between the parameter
matrices predicted using the lowest two modal data sets
as the measurement data; noise-free measurement data
are assumed. The plots considering the analytical stiff-
ness matrix as the weighting matrix show that the para-
meter matrices yield more accurate results with an
increase in the number of mode shapes that participate
in updating them. It is expected that the estimation of
the updated parameter matrices gradually approaches
the actual ones with an increase in the measured mode
number.

Table 1 lists the suitability of the weighting matrix to
update the parameter matrices synthesizing the results
listed in Figures 3 and 4, where ‘‘s/A’’ and ‘‘X/B’’ indi-
cate the suitability and unsuitability of matrices A and
B as the weighting matrices, respectively. It is observed
that the utilization of the stiffness matrix provides more
reasonable results.

This study also investigates the effect of external
noise contained in the measured mode shapes. The
errors included in the measured data lead to some
deviations from the analytical results. A simulated data
set is established by adding a series of random numbers
to represent errors in the calculated mode shape data.
The ith measured mode shape vector ϕm

i can be calcu-
lated from the analytical mode shape vector ϕ0

i as

ϕm
i =ϕ0

i 1+asð Þ ð16Þ

where a denotes the relative magnitude of the error and
s is a random number variant in the range ½�1, 1�.

Figure 5 lists the variations in the stiffness and mass
matrices estimated using the lowest two modal data sets
contaminated by 2% noise level in equation (16), where
‘‘Case}� b’’ indicates the case number (} = 1, 2, 4)
and the updated parameter matrices (M = K and M).
The analytical stiffness matrix is utilized as the weight-
ing matrix from the results listed in Table 1. The irregu-
lar variations in the parameter matrices indicate the
existence of the external noise. This example detects the
damage based on the stiffness and mass variations
mixed with the noise.

Figure 5 shows the variation matrix between the ana-
lytical and updated parameter matrices estimated using
the lowest two modal data sets of 2% noise level. It dis-
plays the stiffness and mass curves corresponding to the
diagonal elements in the parameter matrices and their
curvature in Figure 5, respectively, using a central dif-
ference approximation

Ci+ 1 =
Dai � 2 Dai+ 1ð Þ+Dai+ 2

h2
, i= 1, 2, . . . , 47,

Dai =M i, ið Þ � M̂ i, ið Þ or K i, ið Þ � K̂ i, ið Þ
ð17Þ

Figure 2. Variation between actual and analytical stiffness
matrices.
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where Ci is the second derivative of the ith flexural
dimension corresponding to the diagonal elements in
the parameter variation matrices, and h is the distance
between two successive nodes.

The effect of 2% noise level is investigated consid-
ering the cases listed in Table 1. The variation curves
in the stiffness and mass matrices exhibit an abrupt
change at the damaged elements in Figure 6(a), (c),

(e), and (g). Similarly, the curvature curves in
Figure 6(b), (d), (f), and (h) provide information on
the damaged elements. A comparison of the variation
curves indicates that the utilization of the updated
stiffness matrix in Figure 5(a) and (e) provides more
accurate damage information than the updated mass
matrix in Figure 6(c) and (g) despite the external
noise.

Figure 3. Variations in parameter matrices estimated using noise-free first modal data only.
The labels in the x and y axes indicate the row and column in the stiffness and mass matrices, respectively.
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Estimation of updated stiffness matrix

Assuming the invariant mass M= M̂ and lowest
m(m\n) modal data sets as the measurement data,
equation (4) can be approximately written in the matrix
form as

KQ= I ð18Þ

where L=
Pm

i= 1 v2
i , Q=

Pm
i= 1 (1=v2

i )fif
T
i , and I is

the n 3 n identity matrix. Equation (18) can be regarded
as the constraint condition to describe the dynamic
characteristics of the system. The matrix Q in equation
(18) should be rank deficient.

The updated stiffness matrix K in equation (18) is
derived by minimizing the performance index as

Figure 4. Variations in parameter matrices estimated using two noise-free measured modal data.
The labels in the x and y axes indicate the row and column in the stiffness and mass matrices, respectively.

Table 1. Comparison of the suitability of weighting matrices.

Estimated parameter matrices Case 1 Case 2 Case 3 Case 4

M s X X s

K s s X X

‘‘s/A’’ and ‘‘X/B’’ indicate the suitability and unsuitability of the matrices A and B as the weighting matrices, respectively.
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P= K̂
�1=2

K̂� K
� �

K̂
�1=2

ð19Þ

As indicated in the previous example, the analytical
stiffness matrix K̂ is utilized as the weighting matrix.

The constraint equation (18) is not related to the
specific mode independently but is established by the
modal data accumulated in the specific mth mode.
Thus, the constraint interdependently affects the modal
data within the mth mode. The stiffness variation
matrix is derived by inserting the constraint condition
of equation (18) into the performance index.

To insert the condition to minimize the performance
index of equation (19), equation (18) is modified as

K̂
1=2

K̂
�1=2

KK̂
�1=2

R= I ð20Þ

where R= K̂
1=2

Q.
Solving equation (20) with respect to

K̂
1=2

K̂
�1=2

KK̂
�1=2

using the generalized inverse solution
yields

K̂
1=2

K̂
�1=2

KK̂
�1=2

=R+ + y I� RR+
� 	

ð21Þ

where y is the n 3 n arbitrary matrix, and I represents
the n 3 n identity matrix. Equation (21) indicates an
infinite number of solutions on the stiffness variation.
This study derives the mathematical form of the

updated stiffness matrix to minimize the performance
index of equation (19).

Applying the minimization condition of equation
(19) into equation (21), the arbitrary matrix y yields

y= K̂
1=2
� R+

h i
I� RR+
� 	

+ hRR+ ð22Þ

where h is the n 3 n arbitrary matrix and
R+RR+ =R+. Substituting equation (22) into equa-
tion (21) and arranging the result, we get

K̂
1=2

K̂
�1=2

KK̂
�1=2

= K̂
1=2

+ I� K̂
1=2

R
h i

R+ ð23Þ

Post-multiplying both sides of equation (23) by K̂
1=2

and arranging the result, we obtain

K= K̂+ I� K̂Q
h i

K̂
1=2

Q
� �+

K̂
1=2

ð24Þ

The second term on the right-hand side of equation
(24) represents the variation in the stiffness matrix
owing to the deterioration of structural performance,
external noise, construction, and measurement errors.
The modal data are related to the stiffness variation.
The variable Q of equation (24) indicates that the
updated stiffness matrix is sensitive to the number of
selected modes.

(a)

(c)

(b)

(d)

Figure 5. Variations in parameter matrices estimated using the lowest two modal data contaminated by 2% noise: (a) Case 1-K,
(b) Case 1-M, (c) Case 2–K, and (d) Case 4-M.
The labels in the x and y axes indicate the row and column in the stiffness and mass matrices, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Diagonal elements in variation matrices between analytical and estimated parameters using 2% noise level and the first
two modal data sets: (a) Case 1-K, (b) curvature of Case 1-K, (c) Case 1-M, (d) curvature of Case 1-M, (e) Case 2-K, (f) curvature of
Case 2-K, (g) Case 4-M, and (h) curvature of Case 4-M.
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Example 2. The second example considers damage
detection using the stiffness variation alone. Assuming
the invariant mass matrix, this example evaluates the
numerical results of the updated methods by the lowest
two modal data sets depending on the external noise.
The measured modal data replaced by the numerically
simulated data are utilized to estimate the stiffness
matrix. The numerical experiments update the stiffness
matrix using the lowest two modes (F-2 beam model).
The responses of the F-2 beam model are constrained
by the lowest two natural frequencies and the corre-
sponding mode shapes.

The stiffness matrix of the F-2 beam model is
updated by equation (24) and noise-free measurement
modal data. Figure 7(a) shows the stiffness variation
matrix before and after the damage occurrence. This
shows that the abrupt change in the stiffness is limited
to the damaged elements. The proposed approach does
not yield accurate stiffness variations compared to the
actual variations because the beam model is con-
strained by the lowest two modal data sets only. The

abrupt variations are found at the damaged elements
by the curve of the diagonal elements in the stiffness
variation matrix and its curvature curve, as shown in
Figure 7(b) and (c), respectively. As shown in the plots,
the damage can be accurately detected by the stiffness
variations in the case of noise-free measurement data.

The external noise contained in the measured mode
shape data leads to the deviation in the actual stiffness
as well as the actual modal data. Figure 8(a) shows the
estimated stiffness variations including 2.0% noise,
where the irregularity in the stiffness variations is
observed unlike the noise-free case. The plots display
the sensitivity to external noise. Figure 8(b) and (c)
shows the numerical results using the lowest two modal
data only contaminated by 2% noise level. It is
expected that the damages are located in the neighbor-
hood of element s28, except for the actual damaged ele-
ments s18 and s43, as shown in Figure 8(b) and (c). This
is caused by the external noise, and the inaccuracy of
damage detection disappears in the use of accumulated
data through repeated numerical simulations. It is

Figure 7. Numerical results using noise-free measurement data: (a) stiffness variation matrix, (b) diagonal elements in the stiffness
variation matrix and (c) curvature of diagonal elements.
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found that the proposed method for updating the stiff-
ness matrix can be utilized in detecting the damage
despite the external noise.

Conclusion

The dynamic responses of the analytical model do not
coincide with the actual ones, and the dynamic para-
meter matrices should be corrected for subsequent anal-
yses. This article proposes the mathematical forms for
updating the stiffness and mass matrices. However, the
method rarely provides accurate parameter matrices. It
is shown that the parameter matrices are straightfor-
wardly derived and take explicitly different forms
depending on the weighting matrices in the objective
functions. In comparing the variation curves to utilize
the stiffness and mass matrices, it is observed that the
stiffness matrix as the weighting matrix indicates more
accurate damage information than the mass matrix
despite the external noise. In addition, the method in
section ‘‘Estimation of updated stiffness matrix’’ to

update the stiffness matrix can only also be utilized in
detecting the damage despite the external noise. It is
not practical to collect the data of a full set of DOFs.
More research on the update of parameter matrices is
required because of using fewer measurement data than
the system DOF.
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