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-is study considers the structural vibration control by a lever-type tuned mass damper (LTMD). -e LTMD has a constraint
condition to restrict the motion at both ends of the lever. -e LTMD controls the dynamic responses at two locations combining
the tuned mass damper (TMD) and the constraint condition. -e parameters of the LTMD are firstly estimated from the TMD
parameters and should be modified by them to obtain from numerical results. -e effectiveness of the LTMD is illustrated in two
numerical experiments, and the sensitivity of the parameters is numerically investigated. It is shown that the LTMD leads to the
remarkable displacement reduction and exhibits more definite control than the TMD system because the LTMD controls the
vibration responses at two DOFs. More displacement responses are reduced when the installation locations of the LTMD coincide
with the nodes to represent the largest modes’ values at the first and second modes. -e application of the LTMD at the dynamic
system of a few degrees of freedom (DOFs) is more effective than the system of many DOFs.

1. Introduction

Many countries specify the seismic-resistant design to
protect the building structures and the residents inside due
to earthquakes. Bracing and shear wall must be seismic-
resistant members to reduce the structural responses by
improving the lateral stiffness of a structure. -e existing
methods to improve the seismic performance of structures
consist of controlling the plastic hinge occurrence, in-
creasing the deformation capacity and dissipated energy,
strengthening or changing the structural system, and en-
hancing the lateral stiffness.

-e dynamic control systems can be considered for more
definite vibration control.-e utilization of a seismic control
system to dissipate earthquake energy has been raised to
reduce loss of lives and property caused by seismic disasters.
-e dynamic control systems are divided into three different
systems of passive, active, and hybrid controls.

A tuned mass damper (TMD) is a kind of passive control
system installed on a structure for reducing the dynamic

responses. -e frequency of the TMD is tuned to the
structural frequency, and the energy is dissipated. -e
Citigroup Center in New York City, Chiba Port Tower in
Japan, John Hancock Tower in Boston, Canadian National
Tower in Toronto, Crystal Tower in Japan, Taipei 101 in
Taiwan, etc., are representative examples to install TMDs.
-e design theory for the TMD was initiated by Ormon-
droyd and Den Hartog [1] in 1928. Various theories have
been developed for the designs of undamped and damped
TMD installed on the undamped and damped single-degree-
of-freedom (SDOF) system subjected to harmonic excitation
or seismic excitation.

Tsai and Lin [2] proposed the optimum tuning frequency
and damping ratio of the TMD through a sequence of curve-
fitting schemes. Abdulsalam et al. [3] suggested the optimum
frequency ratio and damping ratio of the TMD installed on a
structure subjected to an earthquake loading. Den Hartog
[4] did not consider the damping effect of the primary
structure. Abubakar and Farid [5] presented the optimum
design parameters for the TMD considering the damping of
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the primary structure. Okhovat et al. [6] performed a para-
metric study to evaluate the e�ectiveness for the TMD at
Tehran Tower through the �nite element analysis. Murudi and
Mane [7] investigated the seismic e�ectiveness of TMD and
found that the TMD is not a�ected by the intensity of ground
motion. Warburton and Ayorinde [8] studied the e�ect on the
optimum parameter conditions of light damping in the pri-
mary system. Farghaly and Ahmed [9] discussed the design
procedure and the applications through a case study of a
symmetrical moment resistance frame twenty-story three-di-
mensional model. Nigdeli and Bekdas [10] investigated the
control e�ect depending on the location of a TMD on a seismic
structure for an e�ective response reduction. Bakre and Jangid
[11] derived the optimum parameters of TMD installed on a
viscously damped SDOF system for various combinations of
excitation and response parameters.

�e strategies to improve seismic performance may be
established by the structural type and assessment results.
Stoica [12] provided a seismic retro�tting method to con-
solidate conventional methods and seismic device such as
TMD. Brendike and Petryna [13] studied the TMD to
control the dynamic responses as a seismic retro�t device of
RC frame structures. Suzuki et al. [14] developed a seismic
control device to increase damping of an old bridge for
seismic retro�t. Nawrotzki et al. [15] introduced the e�ec-
tiveness of the tuned mass control systems for the seismic
retro�tting of existing structures.

�is study considers the e�ectiveness of LTMD installed
between the two nodes in the structure. �e LTMD controls
the structural responses and is designed using a constraint
condition of the lever responses as well as the optimum
parameters of the TMD. �is work performs the numerical
study according to the design parameters of the LTMD and
compares the seismic e�ect by the LTMD and TMD in the
numerical experiment. It is shown that the LTMD is more
e�ective in controlling the dynamic responses than the
TMD. More displacement responses are reduced when the
installation locations of the LTMD coincide with the nodes
to represent the largest modes values at the �rst and second
modes. It is shown that the application of the LTMD at the
dynamic system of a few DOFs is more e�ective than the
system of many DOFs.

2. Formulation

2.1.TMDDesignParameters. Aprimary structure described by
nDOFs can be idealized as a SDOF structure. Figure 1 represents
a SDOF system consisting of a primary structure and a TMD.
Many researchers provided the optimum parameter values of the
TMD for reducing the responses of the undamped or damped
system subjected to harmonic forces or earthquake load.

�e dynamic equation of motion for the systems can be
written by
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0 mT

[ ]
€up

€uT
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− cT cT
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(1)

where the subscripts “p” and “T” indicate the primary
structure and the TMD, respectively, m, c, and k denote the
mass, damping, and sti�ness, respectively, and u and F are
the displacement response and external force, respectively.

�e optimum design parameters for the TMD take
di�erent forms depending on the types of external forces and
the presence of the damping in the primary structure.
Considering the harmonic forces and the earthquake load as
the external forces, Fp � F0eiΩt and FT � 0 and Fp � − mp €ug
and FT � − mT €ug, respectively. F0 and €ug represent the force
magnitude and the acceleration of earthquake, respectively.

Tables 1 and 2 denote the optimum parameters sug-
gested by various researchers according to the undamped
and damped primary structures, respectively. In the tables,

μ � mT/mp: mass ratio
ξp � cp/2ωpmp: damping ratio of the primary structure
ξT � cT/2ωTmT: damping ratio of the TMD
ωp �

������
kp/mp

√
: natural frequency of the primary

structure
ωT �

������
kT/mT

√
: natural frequency of the TMD

f � ωT/ωp: natural frequency ratio
fOPT: optimal frequency ratio
ξOPTT : optimal damping ratio of the TMD

It is observed that the optimal parameters in Tables 1 and
2 are deeply a�ected by the mass ratio between the primary
structure and TMD and the damping ratio of the primary
structure. However, the numerical values of the parameters
are very close despite the di�erent mathematical forms.
From the parameters of the TMD, the LTMD parameters
can be designed, and their e�ectiveness is investigated.

2.2. LTMD. �is section considers the parameter design of a
LTMD based on the concept of the TMD.�e LTMD shown
in Figure 2 is installed between the adjacent two nodes in a
structure; it is designed by modifying the TMD design
parameters and controls the dynamic responses at the two
nodes unlike the TMD. �e LTMD consists of the massless
lever, the masses, springs, and dampers at both ends, and the
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Figure 1: A TMD installed on a SDOF primary structure.
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hinge to restrict the responses at both ends. �e system is
subjected to a constraint to restrict the interstory drift and
provides the control forces at both ends of the lever. �e
control forces indicate the constraint forces required for
satisfying the constraint condition.

�e dynamic equation for the LTMD can be written by

mT1 0

0 mT2
[ ]

€uT1

€uT2
[ ] +

cT1 0

0 cT2
[ ]

_uT1

_uT2
[ ]

+
kT1 0

0 kT2
[ ]

uT1

uT2
[ ] �

FT1

FT2
[ ],

(2a)

or MT €uT + CT _uT + KTuT � F, (2b)

where the subscripts “T1” and “T2” denote the DOFs at the
both ends of the lever, respectively, and the corresponding
displacement response and external force are represented by
u and F. �e system constrained by one constraint condition
becomes a SDOF system.

�e constraint condition from the relationship of laθ �
uT1 and lbθ � uT2 can be written by

αuT1 � uT2, (3)

where α � lb/la and θ denotes the rotational angle at the
hinge of the lever.

�e dynamic equation of motion for the constrained
system was proposed by Udwadia and Kalaba [18] in 1992.
�e equation was derived by minimizing the Gaussian
function as a function by the di�erence between the con-
strained and unconstrained accelerations. �e dynamic
equation for the LTMD system can be expressed by

€uc � €ua +M− 1/2
T AM− 1/2

T( )
+
b − A€ua( ), (4)

where €ua � − M− 1
T (CT _uT + KTuT − F), €uc and €ua denote the

acceleration vector for the constrained and unconstrained
dynamic system, respectively, and the matrix A and the
vector b represent the coe¥cients in di�erentiating equation
(3) twice with respect to the time as

A � α − 1[ ],
b � 0.

(5)

Substituting equations (2a), (2b), and (5) into equation
(4), utilizing the linear algebra, and arranging the result, the
dynamic equation at the upper DOF of the lever yields

mT1 €uT1,c + cT1 _uT1,c + kT1uT1,c � FT1,c, (6)

where cT1 � cT(α2m− 1
T1 +m− 1

T2)/(m− 1
T2 + α2cm− 1

T2), cT2 � ccT1,
kT1 � kT(α2m− 1

T1 +m− 1
T2)/(m− 1

T2 + α2βm− 1
T2), kT2 � βkT1, and

FT1,c � m− 1
T2(FT1 + αFT2)/(m− 1

T2 + α2m− 1
T1), mT2 � ηmT1.

�e coe¥cients β, c, and η denote the sti�ness ratio,
damping ratio, and mass ratio at the one end with respect to
the sti�ness, damping, and mass at the other end of the lever,
respectively.

�e dynamic equation at the other end of the lever can be
derived by inserting the relation of equation (3) into equation
(6). �e control forces exerted by the LTMD act on the
structure and are obtained by multiplying the second term in
the right-hand side of equation (4) by the mass matrix M:

Fc � M1/2 AM− 1/2( )
+
b − A€ua( ). (7)

�e dynamic responses of the LTMD are controlled by
the control forces estimated by equation (7), and the forces
a�ect the responses of the entire structure.

�e LTMD is designed by the ¨owchart shown in Fig-
ure 3. It is shown that the TMD parameters are �rstly es-
timated using assumed mass ratio μ and Tables 1 and 2. �e
design parameters of the LTMD α, β, c, and η are selected by

Table 1: Optimal TMD parameters for undamped primary structures.

Loading/researchers fOPT ξOPTT

H.F./Den Hartog [1] 1/(1 + μ)
��������������
(3/8)(μ/(1 + μ))
√

H.A./Warburton [16] (1/(1 + μ))
��������
(2 − μ)/2
√ �����������������

3μ/(4(1 + μ)(2 − μ))
√

W.N.F./Warburton [16] (1/(1 + μ))
��������
(2 + μ)/2
√ �������������������������

(μ(4 + 3μ))/(8(1 + μ)(2 + μ))
√

W.N.A./Warburton [16] (1/(1 + μ))
��������
(2 − μ)/2
√ ������������������������

(μ(4 − μ))/(8(1 + μ)(2 − μ))
√

H.F., harmonic force; H.A., harmonic accelerations; W.N.F., white noise force; W.N.A., white noise accelerations.

Table 2: Optimal TMD parameters for damped primary structures.

Loading/researchers fOPT ξOPTT

H.F./Abubakar [5] (1/(1 + μ))(1 − 1.5906ξp
��������
μ/(1 + μ)
√

)
��������������
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√

+ 0.1616ξp/(1 + μ)
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√
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√
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Figure 2: LTMD con�guration.
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the numerical values minimizing the dynamic responses of
the structure subjected to external excitations. In the design
process, the optimum values of the variables μ, α, β, c, and η
are estimated numerically. �e e�ectiveness and superiority
of the LTMD are numerically illustrated in the following two
examples.

3. Applications

3.1. Control of a�ree-Story Building Structure. Consider the
design of the LTMD installed between the second and third
¨oors in a three-story building structure, as shown in Fig-
ure 4, and its dynamic control. �e TMD is installed on the
¨oor of the structure to exhibit the largest mode value in the
�rst mode. If we add another TMD for more displacement
control, it should be installed at the location to exhibit the
highest mode value in the second mode. Utilizing the
concept of MTMD (multi-TMD), the LTMD is located at the
third and second ¨oor corresponding to the highest mode
values in the �rst and second mode, respectively.

�e parameters interdependently a�ect the dynamic
responses and control. �e control by the LTMD is nu-
merically evaluated by the design parameters and compared
with the dynamic control by the TMD. �e mechanical
properties of the primary structure are assumed as
m1 � m2 � m3 � 10 kg, c1 � c2 � c3 � 2N·sec/m, and
k1 � k2 � k3 � 1, 000N/m.

�e primary structure is transformed to a SDOF system
using the �rst natural frequency ω1 and the corresponding
mode shape φ1:

ω1 � 4.45 rad./sec.,

φ1 � 0.445 0.8019 1.000[ ]T.
(8)

�e modal mass can be calculated by

φT1Mφ1 � 18.4 kg. (9)

Utilizing the above modal and the optimal parameters
presented by Den Hartog and various researchers in Table 1,
the optimum parameters of the TMD, fOPT and ξOPTT , are
calculated using the prescribed mass ratio μ. �e TMD
parameters are designed selecting the mass ratios of 0.02 and
0.03 for this study.

�e design parameters α, β, c, and η of the LTMDmay be
estimated by the TMD optimum parameters and numerical
analysis. �is study numerically investigates the dynamic
control and design values of those parameters. Firstly, as-
suming numerical values of α and ηwith the prescribedmass
ratio, the other parameters β and c to minimize the square
root of the sum of the squares (SRSS) by the dynamic re-
sponses during an external excitation are determined. And
another SRSS is calculated using the predetermined pa-
rameters β and c, and the parameters α and η to minimize
the SRSS are also selected. We assume that the half-scaled
N-S acceleration components of the 1940 El Centro
earthquake acted on the structure during the �rst 30 sec-
onds. Figure 5(a) represents the N-S acceleration component
of the El Centro earthquake.

Figure 5(b) represents the SRSS responses according to
the parameters β and c in substituting the assumed values of
μ � 0.02, α � 0.8091, and η � 1.0 into equation (6).�e SRSS
responses are calculated in the range of 0.7≤ β≤ 1.15 and
0.7≤ c≤ 1.15 with the step of 0.05. �e minimum values of
the SRSS responses are taken at β � 0.75 and c � 0.70.
Substituting these values into equation (6) and numerically
integrating the second-order di�erential equation, the SRSS
responses are determined according to the parameters α and
η and are plotted in Figure 5(c). �ey exhibit the minimized
values at α � 0.7 and η � 0.95. It is observed from the SRSS
plots that the design parameters for the LTMD in-
terdependently a�ect the dynamic responses of the structure.

Figures 5(d)–5(f ) compare three dynamic responses of
the structure without any dynamic control system, with
TMD or LTMD. It is shown that the control system re-
markably reduces the dynamic responses. And the LTMD
system is more e�ective in controlling the dynamic re-
sponses than the TMD. It is due to the control of the dy-
namic responses of adjacent two ¨oors unlike the TMD.�e
control forces or constraint forces necessary to satisfy the
constraint condition of the lever act on the structure, and the
dynamic responses are controlled by the forces. Figure 5(g)
represents the forces acting on the upper mass of the lever,
and the forces αFcT1 act on the lower mass. �e dynamic
control is accomplished by those forces.

Similar process is performed using the mass ratio of
μ � 0.03, and Figure 6 shows the numerical results. �e
minimum SRSS responses in Figures 6(a) and 6(b) appear at
the parameters of α � 1.15, β � 1.15, c � 1.15, and η � 1.0. It
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Figure 4: A three-story building structure.

Transform primary structure
into a SDOF by model analysis

Design the TMD using
tables 1 and 2

Design the LTMD using
equation (6)Select α, β, γ, η

Assume μ

Figure 3: Flowchart for designing the LTMD.
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Figure 5: Continued.
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Figure 5: Numerical results of dynamic responses using the mass ratio μ � 0.02. (a) Earthquake accelerations; (b) SRSS according to β and c
at �xed values of α � 0.8093 and η � 1.0; (c) SRSS according to α and η at �xed values of β � 1.15 and c � 1.15; (d) dynamic responses (3rd

¨oor) at α � 1.15, β � 1.15, c � 1.15, and η � 1.0; (e) dynamic responses (2nd ¨oor); (f ) dynamic responses (1st ¨oor); (g) control forces at
the upper mass of the lever.
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Figure 6: Continued.
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indicates that the LTMD to be installed between two ¨oors
corresponding to the highest mode values of the �rst and
secondmodes is e�ective in reducing the dynamic responses.
It more de�nitely controls the dynamic responses than the
TMD system as shown in Figures 6(c)–6(e). And the LTMD
is very e�ective in reducing the story drift by the control
forces as shown in Figure 6(f).

Figure 7 compares the dynamic responses and the
control forces in utilizing the coe¥cient values to minimize
the SRSS shown in Figure 5 (μ � 0.02) and Figure 6
(μ � 0.03). It is shown that the dynamic responses are re-
duced with the increase in the mass ratio.�e increase in the
mass ratio also leads to the increase in the control forces as
shown in Figure 7(c). �ough the optimum parameters of
the LTMD cannot be explicitly established, it is shown that
they can be obtained by numerical experiments and the
LTMD system can more de�nitely control the dynamic
responses than the TMD system.

3.2. Control of a Simply Supported Beam. �e distance be-
tween the locations to represent the largest mode values at
the �rst and second modes increases with the increase in the
number of DOFs. In the case of a �xed-end beam shown in
Figure 8, one end of the lever should be installed at the
midspan to represent the largest mode value at the �rst
mode. �is example investigates the vibration control
according to the location of the other end of the LTMD and
compares the e�ectiveness with the TMD system.

Assume that the external excitations of 10% magnitude
of the earthquake accelerations in Figure 5(a) vertically act at
both ends of the beam.�e dynamic responses for the �rst 30
seconds are calculated by integrating the second-order
di�erential equation with the time step of 0.02 seconds. �e
nodal points and the elements are numbered as shown in
�gure. A beam with a length of 1m is modeled using 20
beam elements. �e beam has an elastic modulus of 1.95 ×
105 MPa and a unit mass of 7, 860 kg/m3. �e beam’s gross

cross section is b × h � 75mm × 9mm.�e damping matrix
is assumed as a Rayleigh damping to be expressed by the
sti�ness and mass matrices with proportionality constants of
0.001 and 0.002, respectively.

In this example, we consider two cases depending on the
installation location of the other end of the LTMD: (a) case 1
to position at the node 15 to represent the highest mode
value in the second mode and (b) case 2 to position at the
node 13 adjacent to the nodes 10 and 15. �e sensitivity of
the design parameters of the LTMD is numerically in-
vestigated. Figure 9(a) represents the SRSS plot of case 1
according to the variation of the parameters β and c at �xed
values of μ � 0.03, α � 1.414, and η � 1.0. �e SRSS using
the displacement responses at all 19 nodes is calculated with
the increase of 0.05 in the ranges of 0.7≤ β≤ 1.15 and
0.7≤ c≤ 1.15. It is shown that the minimum SRSS is located
at β � 1.15 and c � 0.95. In next stage, the SRSS of the
displacements is determined with the increase of 0.05 in the
ranges of 0.7≤ α≤ 1.15 and 0.7≤ η≤ 1.15 at the �xed pa-
rameter values of β � 1.15 and c � 0.95.�e optimum values
of the parameters in these ranges can be estimated by α �
1.15 and η � 0.85. It is shown in Figure 9(b) that the vi-
bration can be more explicitly controlled with the increase in
the parameters α and β in the given ranges rather than the
parameters c and η. It indicates that the vibration is more
sensitive to the length ratio of the lever and the sti�ness ratio
at both ends of the lever.

�e SRSS of the displacements is shown in Figures 9(c)
and 9(d) when the lever is installed at nodes 10 and 13.
Minimum SRSS is obtained when the values of parameters
are as follows: α � 1.15, β � 1.15, c � 0.9, and η � 0.8. �ese
plots also show that the length ratio and the sti�ness ratio are
sensitive to the vibration control of the beam.

Figure 10 compares the displacement responses at nodes
10 and 15 of case 1. �e parameter values of μ � 0.03,
α � 1.15, β � 1.15, c � 0.95, and η � 0.85 are utilized. It is
observed in Figures 10(a) and 10(b) that the dynamic re-
sponses are remarkably reduced by the TMD or LTMD. And
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Figure 6: Numerical results of dynamic responses using the mass ratio μ � 0.03. (a) SRSS according to β and c at �xed values of α � 0.8093
and η � 1.0; (b) SRSS according to α and η at �xed values of β � 0.75 and c � 0.7; (c) dynamic responses (3rd ¨oor) at α � 0.7, β � 0.75,
c � 0.7, and η � 0.95; (d) dynamic responses (2nd ¨oor); (e) dynamic responses (1st ¨oor); (f ) control forces at the upper mass of the lever.
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it is found in those plots that the LTMD system can reduce a
little more dynamic responses than the TMD system because
the LTMD makes an additional control at another node 15
unlike the TMD. -us, it is shown in Figure 10(c) that the
displacement difference between nodes 10 and 15 can be
reduced owing to the control force in the satisfaction of the
constraint condition of the lever motion.

Figure 11 compares the displacement responses at nodes
10 and 15 depending on the installation locations of the
LTMD of two cases. -e response difference at two cases
cannot explicitly be recognized but the LTMD of case 1 is a
little more effective than that of case 2. It is shown that the
LTMD is a little more effective when it is installed at the
location of the highest mode value of the second mode.

Figure 12 compares the control forces exerted by the
LTMD and TMD. -e constraint forces at node 10 of the

LTMD corresponding to two cases are shown in
Figure 12(a). It is shown that the constraint forces in case 1
are a little higher than those in case 2. And, it is observed that
the control forces exhibited by the TMD are larger than the
constraint forces by the LTMD. -us, it is found that the
displacement responses can be more explicitly controlled by
distributing the control effect of the TMD system into two
nodes of the LTMD.

It can be expected from the above two applications that
the LTMD can be more effective in controlling the dynamic
responses of a low-rise building structure with a few DOFs
than those of a high-rise building structure with many
DOFs.

4. Conclusions

-is study illustrates the effectiveness of the vibration
control by the LTMD. -e LTMD controls the dynamic
responses combining the TMD parameters and the con-
straint condition. -ough the optimum parameter values of
the LTMD cannot be explicitly established, they can be
estimated by numerical experiments. -e numerical appli-
cations exhibit that the LTMD leads to remarkable
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Figure 7: Displacement responses and control forces depending on the mass ratio μ. (a) Dynamic responses (2nd floor); (b) dynamic
responses (3rd floor); (c) control forces at the upper mass of the lever.
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Figure 8: A fixed-ended beam model.
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Figure 9: Comparison of numerical results depending on installation location (μ � 0.03) of nodes 10 and 15 and 10 and 13. (a) SRSS of case
1 when α � 1.414, β � 1.15, c � 0.95, and η � 1.0; (b) SRSS of case 2 when α � 1.15, β � 1.15, c � 0.95, and η � 0.85; (c) SRSS of case 1 when
α � 1.122, β � 1.15, c � 0.9, and η � 1.0; (d) SRSS of case 2 when α � 1.15, β � 1.15, c � 0.9, and η � 0.8.

×10–5

W/LTMD

W/O

W/TMD

5 10 15 20 25 30 350
Time (sec.)

–2

–1.5

–1

–0.5

0

0.5

1

D
isp

la
ce

m
en

t r
es

po
ns

es
 (m

)

(a)

×10–6

W/O
W/LTMD

W/TMD

5 10 15 20 25 30 350
Time (sec.)

–12

–10

–8

–6

–4

–2

0

2

4

6

8

D
isp

la
ce

m
en

t r
es

po
ns

es
 (m

)

(b)

Figure 10: Continued.
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Figure 12: Comparison of control forces by the TMD and LTMD at node 10. (a) Constraint forces exhibited by the LTMD; (b) control forces
exhibited by the TMD.
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Figure 11: Comparison of displacement responses of cases 1 and 2. (a) Displacement responses at node 10; (b) displacement responses at
node 15.
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Figure 10: Displacement responses at nodes 10 and 15 (μ � 0.03) of case 1 using α � 1.15, β � 1.15, c � 0.95, and η � 0.85. (a) Displacement
responses at node 10; (b) displacement responses at node 15; (c) displacement difference between nodes 10 and 15.
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displacement reduction. And, the LTMD is more effective
control system than the TMD because the LTMD controls
the displacements between adjacent floors.-e control effect
by the LTMD is more sensitive to the length ratio of the lever
and the stiffness ratio at both ends of the lever than the other
parameters. -e LTMD is a little more effective when it is
installed at the location of the highest mode value of the
second mode. It is found that the displacement responses
can be more explicitly controlled by distributing the control
effect of the TMD system into two nodes of the LTMD.
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