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Featured Application: The Ni3Se4@MoSe2 composites could be used as electrocatalyst for
hydrogen production.

Abstract: Transition metal dichalcogenides (TMDs) have been considered as one of the most promising
electrocatalysts for the hydrogen evolution reaction (HER). Many studies have demonstrated the
feasibility of significant HER performance improvement of TMDs by constructing composite materials
with Ni-based compounds. In this work, we prepared Ni3Se4@MoSe2 composites as electrocatalysts
for the HER by growing in situ MoSe2 on the surface of Ni3Se4 nanosheets. Electrochemical
measurements revealed that Ni3Se4@MoSe2 nanohybrids are highly active and durable during the
HER process, which exhibits a low onset overpotential (145 mV) and Tafel slope (65 mV/dec), resulting
in enhanced HER performance compared to pristine MoSe2 nanosheets. The enhanced HER catalytic
activity is ascribed to the high surface area of Ni3Se4 nanosheets, which can both efficiently prevent
the agglomeration issue of MoSe2 nanosheets and create more catalytic edge sites, hence accelerate
electron transfer between MoSe2 and the working electrode in the HER. This approach provides an
effective pathway for catalytic enhancement of MoSe2 electrocatalysts and can be applied for other
TMD electrocatalysts.

Keywords: hydrogen evolution reaction; MoSe2; Ni3Se4; nanoflowers; nanosheets

1. Introduction

Energy-saving and environmental protection are of great importance to develop a sustainable
society in the 21st century. Currently, 80% of global energy is produced by the consumption of
fossil fuels. However, the unsustainable fossil fuels will ultimately come to depletion because of the
continuously growing population and expanding industrialization in the world, and their consumption
will also lead to serious environmental pollution. So, there is an urgent need to explore alternative
energy resources to substitute fossil fuels and gradually switch to a society dominated by sustainable
and renewable energy [1,2]. Hydrogen energy is considered as one of the promising clean and
renewable energies [3–7] because it possesses high energy density and its only outcome by combustion
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is water. These properties make it a highly efficient and environmentally friendly energy and enable
its potential to replace the current traditional fossil fuels. Its production from electrolytic water is an
important key to realize industrialization because this path for conversion of electricity to chemical
energy has many advantages, such as low cost, being friendly to the environment, high efficiency, and
good safety [8–10]. To achieve the best efficiency, this conversion process largely demands the assistance
of a highly active hydrogen evolution reaction (HER) electrocatalyst [10,11]. To date, platinum is
considered as the most efficient catalyst for hydrogen evolution [12–15]. However, its scarcity on earth
and high price make it unsuitable for widespread adoption. A few recent works have demonstrated
high catalytic activity using less Pt on electrodes [16]. Nevertheless, it is still necessary to explore
earth-abundant and inexpensive electrocatalysts for hydrogen production [17–20].

Among the catalyst candidates, layered transitional metal dichalcogenides MX, where M represents
a transition metal (e.g., Mo, W, V) and X is a chalcogenide (e.g., S, Se, Te), have drawn great attention
due to their attractive electrocatalytic properties towards HER, as well as their low cost compared to
noble metals and stability in acid [21–24]. However, only the edges, rather than the basal planes within
the material structure, are catalytically active to HER [23,25–28]. In order to expose more active edges,
intense efforts have been made on active edge engineering by hybridizing with other materials, such
as carbon nanotubes, graphene, and noble metals, to improve their conductivity and accelerate the
electron transfer rate between the electrocatalyst and the working electrode [11,29–31]. Recently, some
studies have reported that Ni-based materials, such as NiSe nanofiber [32–34], Ni–Mo alloy [35–37],
and transition metal dichalcogenides (TMDs) integrated with Ni components [5,37,38], exhibited great
catalytic activity and long-term stability for water splitting. Inspired by this viewpoint, we consciously
chose one of the selenides of nickel as a candidate for structuring Ni-based components/MoSe2 hybrid
composites for hydrogen production. Among all nickel selenides, Ni3Se2 has been intensively studied
and hybrid materials based on them have been extensively reported [39–41]. However, the common
methods employed to obtain nickel selenides, such as hydrothermal technique or electrodeposition,
are either time-consuming or energy-consuming processes. Therefore, it is imperative to use a facile
preparation method for these compounds and facilitate their integration with other materials and
make it applicable to large-scale HER catalysts.

In this study, we presented a Ni3Se4/MoSe2 composites catalyst fabricated by a facial two-step
synthesis method for the first time. The Ni3Se4 was prepared in a simple way as a template and the
MoSe2 was grown in situ on as-prepared Ni3Se4 using the colloid synthesis method. The Ni3Se4

nanosheets are expected to support the nucleation and formation of MoSe2, which can improve the
quality of the MoSe2 nanosheets and prevent the agglomeration issue associated with Ni3Se4 and
MoSe2. The simplification of preparing Ni3Se4 makes it easier to tune and control the proportion of
the components in Ni3Se4/MoSe2 composites. The HER test results showed that the Ni3Se4@MoSe2

catalysts exhibited improved HER activity with low onset overpotential (140 mV) and Tafel slope
(67 mV/dec) compared to pure MoSe2 nanosheets (80 mV/dec). The high catalytic activity of the
Ni3Se4/MoSe2 composites with a simple way of fabrication makes it competitive to other Ni-based
MoSe2 electrocatalysts in practical application.

2. Experimental Section

2.1. Materials

Nickel (II) chloride hexahydrate [NiCl2·6H2O, 98%], molybdenum hexacarbonyl (Mo (CO)6),
selenium (99.999%), 1-octadecene (ODE, 90%, tech), 1-dodecanethiol, and acetic acid were purchased
from Sigma-Aldrich. Oleylamine (OAm, 80–90%) was purchased from Acros Organics. All reagents
were analytical grade and used as received without further purification.
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2.2. Synthesis of Ni3Se4 Nanosheets

Ni3Se4 nanoparticles were synthesized as in previous work with some modifications [42]. In a
typical synthesis procedure, 0.1 M NaOH solutions were prepared by dissolving 0.1 mol NaOH in
100 mL of ethanol. Subsequently, 12 mL of the solution was taken in each spout of a three-neck flask.
Then, 0.2 mM NiCl2•6H2O, 0.2 mM selenium powder, and 2 mL of N2H4•H2O were added to the
bottles, which were sealed well and preserved at 90 ◦C for 16 h with magnetic stirring. Thereafter, the
black powders were collected by centrifugation and washed with ethanol repeatedly, followed by final
drying in a vacuum oven for further characterization and synthesis of composites. The final Ni3Se4

product weighed 98.4 mg.

2.3. Synthesis of Ni3Se4–MoSe2 Composites

In a typical procedure, 0.2 mmol Se powder dissolved in 10 mL of OAm and dodecanethiol (9:1,
vol%) was placed in a three-neck flask at room temperature. The suspension was first maintained
at 120 ◦C for around 10 min with moderate stirring. To obtain the highly active Se precursor, the
mixture was then heated up to 200 ◦C and aged for an additional 0.5 h. After it cooled down to
room temperature, as-obtained Ni3Se4 nanosheets (0.05, 0.1, and 0.2 mmol) mixed with 0.1 mmol of
Mo(CO)6 were added into 5 mL OAm and 15 mL ODE and then sufficiently mixed before injecting
into the flask (the ratios of Ni3Se4 to MoSe2 were fixed at 1:2, 1:1, and 2:1, respectively). The products
were then held at 250 ◦C for 0.5 h before being cooled to room temperature. Subsequently, the black
powders were thoroughly washed alternately by hexane and ethanol and separated from solution by
centrifugation. Further, an acid-picking process was applied to remove the organic molecules and
improve the hydrophilic property of the products by dissolving them in acetic acid and maintaining
them at 85 ◦C with vigorous magnetic stirring for 12 h. The final products were washed with alcohol,
centrifuged, and dried for further characterization. Pristine MoSe2 nanosheets were synthesized under
the same conditions except adding Ni3Se4 nanosheets. The Ni3Se4–MoSe2 composites with ratios of
1:2, 1:1, and 2:1 weighed 31.2, 52.4, and 96.8 mg, and are denoted as Sample 1, 2, and 3 in the following
discussion, respectively

2.4. Characterization

X-ray powder diffraction (XRD, Bruker New D8-Advance) patterns were recorded on an X-ray
powder diffractometer with CuKα radiation (λ = 0.154 nm). Field-emission scanning electron
microscopy (FE-SEM, Zeiss 300 VP) images were captured at an acceleration voltage of 10 kV.
Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) mapping
were performed using a JEOL (Tokyo, Japan) instrument. X-ray photoelectron spectroscopy (XPS)
was conducted using a K-alpha plus (Thermo Fisher) instrument under vacuum pressure of at least
1 × 10 −5 bar using MgKα radiation (1250 eV) and a constant pass energy of 50 eV.

2.5. Electrochemical

Characterization HER performance test was implemented using a three-electrode cell, which
consisted of a glassy carbon as working electrode (GCE, 3 mm in diameter), a graphite rod as counter
electrode, and a saturated calomel as reference electrode and in 0.5 M H2SO4 at room temperature. Then,
4 mg catalyst and 30 µL Nafion solution (5 wt%) were dispersed in 1.0 mL N, N-Dimethylformamide
(DMF) and then sonicated for 0.5 h to form a homogeneous ink. Subsequently, 5 µL catalyst ink was
then dropped onto the GCE and dried naturally. Linear sweep voltammetry (LSV) was performed
between 0.2 and −1.0 V vs. RHE at a sweep rate of 5 mV/s. Electrochemical impedance spectroscopy
(EIS) measurements were carried out in the frequency range of 105 to 10−1 Hz at the voltage of 0.27 V
vs. RHE. All the potentials were calibrated to RHE using the equation: E(RHE) = E(SCE) + 0.272 mV.
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3. Results and Discussion

3.1. Synthesis and Structural Characterization

Ni3Se4 powders were synthesized by a facile and low-temperature method in ethanol (solvent),
and the composites were obtained by growing MoSe2 on the as-synthesized Ni3Se4 nanosheets as
depicted in Figure 1. The structural properties of Ni3Se4 and Ni3Se4–MoSe2 powders were investigated
by XRD. As displayed in Figure 2, three dominant peaks appeared at 33.1◦, 44.8◦, and 50.6◦ in the
spectra of Ni3Se4, which were assigned to the (312), (514), and (310) crystal faces of the Ni3Se4 phase,
respectively (PDF card number 18-0890) [43]. Further, the obtained diffraction peaks of MoSe2 can
be indexed to the hexagonal 2H-MoSe2 (JCPDS 29-0914). The XRD patterns of Ni3Se4–MoSe2 were
like that of Ni3Se4, but (002) peak assigned to the basal plane of MoSe2 could still be observed in
the patterns.
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Further, XPS analysis was carried out to explore the composition and chemical state of the
composites. The survey spectrum of the Ni3Se4–MoSe2 composites clearly shows the peaks of Ni 2p,
Mo 3d, Se 3d, and O 1s (Figure 3a). The O 1s peak occurred owing to the unavoidable oxidation that
takes place during the synthesis process. To confirm the oxidation states of these three elements in the
composites, the high-resolution spectra of Ni 2p, Mo 3d, and Se 3d were also obtained (Figure 3b).
The spectrum of Ni 2p in the Ni3Se4–MoSe2 composites could be deconvoluted into two doublets
(2p3/2 and 2p1/2) along with two shake-up satellites, which appeared due to the spin–orbit coupling
effect [44]. Specifically, the 2p3/2 peak could be further deconvoluted into two components, which
were located at the band energies of 853.6 and 855.8 eV. The lower energy band could be attributed to
the +2 valence state of nickel (Ni2+), whereas the higher energy could be attributed to the +3 valence
state of nickel (Ni3+) [43,45,46]. Similarly, the 2p1/2 peak could also be resolved into two components
that were located at the band energies of 870.9 and 873.5 eV, which were assigned to Ni2+ and Ni3+,
respectively [43,45,46]. Further, the satellite peaks appeared at a binding energy slightly positive to the
peaks of Ni 2p3/2 and Ni 2p1/2 [45]. Compared to the spectrum of Ni 2p in pure Ni3Se4, all components
and satellite peaks shifted slightly (approximately 0.1–1.2 eV) towards lower binding energy, which
indicated the chemical bonding between Ni3Se4 and MoSe2. For the spectra of Mo 3d (Figure 3c), the
two peaks at binding energies of 229.0 and 232.2 eV were assigned to Mo 3d5/2 and Mo 3d3/2 of Mo
(IV), confirming the presence of Mo4+, while the peak at binding energies of 235.6 eV was probably
due to the Mo oxide [47], which was formed by oxidation of the metal Mo during the synthesis
process. In addition, the Se 3d spectra of the Ni3Se4–MoSe2 composites is shown in Figure 3d. The
peaks at binding energies of 54.3 and 55.2 eV were corresponded to Se 3d5/2 and Se 3d3/2, respectively,
confirming the presence of Se in –2 valence state, whereas the peak at binding energies of 59.9 eV
oxidized Se species (SeOx). Further, the peaks of both Se 3d5/2 and 3d3/2 in the composites shifted
slightly towards a higher binding energy, whereas the position of the SeOx peak remained unchanged.
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The morphologies and structures of the Ni3Se4 and Ni3Se4–MoSe2 composites with different
amounts of Ni3Se4 were characterized by FE-SEM and TEM. Figure 4 shows the FE-SEM and TEM
images of pure Ni3Se4 and Ni3Se4–MoSe2 composites with a ratio of 1:2. The pure Ni3Se4 nanosheets
were observed to be aggregated and formed clusters with large surface areas, as shown in Figure 4a.
Figure 4b shows the high-resolution transmission electron microscopy (HRTEM) image of Ni3Se4

nanosheets with a lattice fringe of 0.27 nm, which was assigned to the (112) plane [48]. By in situ
synthesis, uniform flower-like MoSe2 nanosheets could be grown on Ni3Se4 nanosheets (Figure 4c).
The growth of vertical MoSe2 nanoflowers was further confirmed by HRTEM (Figure 4d). Moreover,
the EDX elemental mapping results shown (Supporting Information, Figure S1) revealed that MoSe2

nanoflowers were dispersed uniformly on the surface of Ni3Se4. Further increasing the amound of
Ni3Se4 in the Ni3Se4-MoSe2 composites resulted in agglomeration of the composites (Supporting
Information, Figure S2) and could hinder the exposure of active edges of MoSe2.
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3.2. Electrocatalytic Properties

The electrocatalytic HER activities of Ni3Se4, MoSe2, and Ni3Se4–MoSe2 with different ratios
were investigated in the 0.5 M H2SO4 solution in a three-electrode cell. For reference, commercial
Pt/C (10 wt%) was also tested for comparison. As shown in Figure 5a, all Ni3Se4–MoSe2 composites
showed low onset overpotentials at a cathode current density of 1 mA/cm2 (η1). Specifically, Sample
1 showed the lowest onset overpotential of ~145 mV, while the overpotential for Samples 2 and 3
were ~160 and ~214 mV, respectively. Further, increasing the negative potential gave rise to a rapid
increase in cathode current density. The overpotentials at the cathode current density of 10 mA/cm2

(η10), which are usually regarded as indicators of HER performance [49], were 206, 242, and 310 mV
for Samples 1, 2, and 3, respectively. All of them showed a decrease in η1 and η10 compared with pure
MoSe2 nanosheets. The Tafel plots of catalyst samples and Pt/C are displayed in Figure 5b. The linear
regions of Tafel plots derived from the polarization curve can be analyzed using the Tafel equation:
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η = b log j + a, where η is overpotential, b is Tafel slope, and j is current density [50,51]. Compared
to pristine MoSe2 nanosheets (Tafel slope of 80 mV/dec), Sample 1 showed the lowest Tafel slope
(65 mV/dec), while a slightly higher Tafel slope value was observed for Sample 2 (76 mV/dec) and
Sample 3 (96 mV/dec).The HER performance of pure Ni3Se4 nanoparticles was also investigated for
comparison. They exhibited inferior performance towards HER. These results indicate that HER
catalytic activity originates from MoSe2 rather than from the inactive Ni3Se4. This observation is also
confirmed by EIS, which was performed to investigate the impedance properties and the electron
transfer kinetics during the HER [51]. The charge transfer resistance (Rct) obtained from the impedance
spectra (Figure 5c) showed that Ni3Se4 nanoparticles were conductive and had lower Rct than pure
MoSe2 nanosheets, although they were not good for HER. We attribute the enhanced HER activity of
MoSe2 to the incorporation of Ni3Se4 nanoparticles, which have large surface areas and can improve
the conductivity of MoSe2 nanosheets and hence promote electron transfer between MoSe2 and the
electrolyte. The η1, η10, Tafel slope, and Rct values of the three samples, along with those of Ni3Se4,
MoSe2 are summarized in Table 1.
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Figure 5. (a) Hydrogen evolution reaction (HER) polarization curves and (b) Tafel slopes of MoSe2,
Ni3Se4, Ni3Se4@MoSe2, and Pt. (c) Impedance spectra of MoSe2, Ni3Se4, and Ni3Se4@MoSe2, and
(d) stability of Ni3Se4@MoSe2.

Table 1. Summary of η1, η10, Tafel slope, and Rct of Ni3Se4, Ni3Se4–MoSe2 composites, and MoSe2.

η1 (mV) η10 (mV) Tafel Slope (mV/dec) Rct (Ω cm2)

Ni3Se4 240 330 109 108
Ni3Se4–MoSe2 (1:2) 145 206 65 68
Ni3Se4–MoSe2 (1:1) 160 242 76 98
Ni3Se4–MoSe2 (2:1) 214 310 96 156

MoSe2 210 295 80 134

The stability of the Ni3Se4–MoSe2 composites was evaluated by cyclic voltammetry tests from −0.4
to 0.2 V vs. RHE at 50 mV/s for 1000 cycles. The polarization curves of the Ni3Se4–MoSe2 composites
showed negligible activity change after 1000 cycles, indicating their durability towards HER. Notably,
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the composites with ratios of 1:2 and 1:1 exhibited better stability than that with a ratio of 2:1, which is
consistent with the HER performance results.

4. Conclusions

In summary, we successfully synthesized Ni3Se4–MoSe2 composites by directly growing MoSe2 on
Ni3Se4 nanosheets for the first time. The Ni3Se4 nanosheets served as templates to support MoSe2 and
were expected to prevent MoSe2 from aggregation and improve its conductivity. XRD, XPS, FE-SEM,
and TEM were used to characterize the morphology and structure of the samples. The results revealed
that MoSe2 was chemically bonded on the surface of Ni3Se4. Further, electrochemical measurements
of the composites verified that the HER performance was improved compared to pristine MoSe2

nanosheets, whereas the Ni3Se4 nanosheets were not catalytically active to the HER but could reduce
the charge transfer resistance and facilitate electron transfer between MoSe2 and the electrolyte. The
Ni3Se4–MoSe2 composites with a ratio of 1:2 performed the best, with a small overpotential of 145 mV
and a low Tafel slope of 65 mV/dec. Continued increase in the amount of Ni3Se4 led to inferior HER
performance. These results suggest that the HER activity of MoSe2 nanosheets can be enhanced by
constructing composites with Ni3Se4 in appropriate ratios.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/23/5035/s1:
Figure S1: EDX spectra of Ni3Se4@MoSe2; Figure S2: (a), (b), (c) SEM images of Ni3Se4@MoSe2 with different
Ni3Se4:MoSe2 ratios of 1:2, 1:1, and 2:1, respectively.
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