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ABSTRACT Traffic delays are inevitable when evaluating the performance of a signalized intersection, but
these delays cannot be directly measured in the field based on existing spot detectors. Traffic-light controllers
have adopted a reinforcement learning (RL) algorithm, which is currently prevalent in the field of study
and requires real-time measurement of traffic delays to derive the state and reward for each time period.
No RL-based study, however, has provided a robust way to measure traffic delays. In order to bridge the gap,
we devised a convolutional neural network (CNN) to directly measure traffic delays from video footage in an
end-to-end manner. The proposed methodology proved superior to both a state-of-the-art vision technology
and an analytic formula that has widely been used to estimate delays. Furthermore, a robust method to
secure labeled data without human input was suggested based on a cycle-consistent adversarial network
(CycleGAN).

INDEX TERMS Traffic delay estimation, image-based learning, deep convolutional neural network.

I. INTRODUCTION
Traffic delays have been used as a basic indicator to assess the
performance of traffic light control algorithms. Many traffic
signal controllers depend on traffic delays to obtain an opti-
mal signal phase plan. The highway capacity manual (HCM)
provides an analytic formula to estimate traffic delays for a
lane group at a signalized intersection [1]. However, it is well
known that the formula does not work well when traffic flows
are saturated or where cars arrive on an irregular basis.

Traffic-light controllers have adopted a reinforcement
learning (RL) algorithm, which is currently prevalent in
the field of study and requires real-time measurement of
traffic delays to derive the state and reward for each time
period. Most researchers who have studied RL-based traffic
control have assumed that vehicle delays could be easily
measured [2]–[5], but the reality is that no real-time mea-
surement system for delays is available in the field. If every
vehicle could be embedded with an on-board unit it might
be possible to transmit their mobile information for every
short period of time to compute traffic delays. However, such
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a fully connected environment cannot be realized any time
soon.

It is necessary to find a robust way tomeasure traffic delays
in an intersection approach on a real-time basis. The present
study was focused on the possibility that a traffic delay could
be measured from video images using deep-learning tech-
nology that has recently produced breakthroughs [6]–[10].
Some pioneers have already attempted to use image analysis
to automate the estimation of stopped delays at signalized
intersections [11], although they were forced to depend on
rule-based engineering rather than on data-driven learning
methodologies.

A deep convolutional neural network (CNN) has recently
been used to measure both the traffic density and the space
mean speed of an intersection approach based solely on video
images [12], [13]. These previous studies have shed light on
the possibility that traffic delays could also be measured from
images. A CNN for measuring the space mean speed was
adapted to differentiate the number of stopped vehicles from
all other moving vehicles at an intersection approach. This
counting was implemented by adopting two consecutive pho-
tos taken over a short period of time to be used as input.
Once the number of stopped vehicles is measured, it is easy
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to compute the total cumulative stopped delay. Theoretically,
the total delay can be obtained by integrating the number of
stopped vehicles (= queue length) over time. This two-step
approach was devised in the present study to measure traffic
delays.

The institute of transportation engineers (ITE) recom-
mended that a manual delay measurement method be used in
the field [14]. For 15 minutes, the number of stopped vehicles
in an intersection approach is counted every 15 seconds, and
the number is multiplied by 15 seconds and summed over a
15-minute time period. The average delay can be obtained by
dividing the total delay by the number of vehicles passing the
stop line during the 15-minute time period. This method has a
drawback wherein a 15-second time interval can be too long
to accurately convey the dynamics of vehicles. That is, the
assumption that vehicles maintain their behavior during the
15 seconds is so naïve that the computed delay cannot secure
an acceptable level of accuracy.

A novel technology was devised in the present study to
overcome the problem. A CNN continuously counted the
number of stopped vehicles within a much shorter time inter-
val. Two consecutive video images were used as input for
a CNN to count the number of stopped vehicles. If two
consecutive images are given, it is easy for a human to
recognize whether vehicles within the images are mov-
ing. Of course, this judgment could be automated based
on an engineering-based method developed in a previous
study [11]. On the other hand, the purpose of the present study
was to develop an end-to-end learning model that could be
used to count the number of stopped vehicles without any
feature engineering or any rule for judgment. An end-to-end
CNN model was trained only by image data to count the
number of stopped vehicles. Counting the number of stopped
vehicles in a short time interval led to an accurate measure-
ment of the stopped delay. To the best of our knowledge, such
a data-driven approach to measure traffic delays has never
been attempted before.

The only concern with respect to the proposed approach is
the difficulty in securing labeled images to train the proposed
CNN. It is a formidable task to manually count the stopped
vehicles for a large image set. To circumvent this burdensome
task, a revolutionary method was adopted using a generative
adversarial framework. Our previous study [13] already suc-
ceeded in synthesizing traffic images from naïve animation
images created by a traffic simulator, which had perfect traffic
information that could be used as a label when training a CNN
model to measure the space mean speed. The method was
also adopted in the present study to synthesize real-looking
images tagged with the number of stopped vehicles.

Another approach to counting stopped vehicles on a road
segment involves detecting and tracking individual vehicles
in video frames. Although there is no learning-basedmodel to
directly measure traffic delays, object-detection technology
with a filtering algorithm could count the stopped vehicles
from video footages. A YOLO-based vehicle detection-and-
tracking model was chosen as a reference [15], [16], and its

performance in counting stopped vehicles was comparedwith
that of the proposed method. The merits and drawbacks of the
reference model were fully discussed in the present study.

The present paper is structured as follows. The next section
provides a literature review for previous efforts to estimate
traffic delays including an effort to develop analytic formulas.
The third section describes how to collect image data for
training the proposed model. How to setup a CNN architec-
ture to count the stopped vehicles is introduced in the fourth
section. The fifth section presents the test results of the pro-
posed model trained on manually labeled images and shows
the traffic delay can be measured without errors. The model
performance was compared with two different contexts in the
sixth section. Traffic delays from the proposed model were
compared with those from a conventional analytic formula
and those from a detection-and-tracking algorithm. In the
seventh section, how to create training images without human
effort is described, and the performance of the model trained
on synthesized images is compared with that of the model
trained on real images. In the last section, conclusions are
drawn, and further studies are proposed to substantiate the
present study.

II. RELATED WORK
Traffic delays at intersections have been estimated in an ana-
lytic manner using formulas. Most studies adopt analytic for-
mulas to derive the average delay in an intersection approach
within a certain time period (e.g., 15 minutes). According to
Cheng et al. [17], theoretical delay models have been devel-
oped through three stages. The first stage was prevalent in
the 1920s-1970s, wherein researchers assumed a steady state
to estimate traffic delays. Models succeeded in estimating
delays only for under-saturated traffic conditions, whereas
they failed to obtain a reliable estimationwhen an intersection
approach was congested.

In the second stage (1970s-2000s), researchers adopted the
same analytic formula used to estimate an average delay,
but they employed adjustment factors to consider various
vehicle arrival patterns from an upstream intersection. Their
model performance was somewhat enhanced, but it retained
the intrinsic drawback whereby dynamic changes in traffic
delays could not be incorporated into the formula. The third
stage followed the new millennium, and some modifications
were made for the existing formulas in order to resolve mis-
cellaneous problems that had been posed in the second stage.
Meanwhile, new technologies such as fuzzy logic algorithms,
image analytics, and artificial neural networks were intro-
duced to estimate traffic delays.

Qiao et al. [18] developed a fuzzy logic-based model to
estimate intersection delays. They adopted new variables for
ambient conditions that included parking, the stopping of
busses, visibility, and climate, as well as employing basic
variables such as the degree of saturation, cycle length, and
green time ratios. They argued that their model performance
far surpassed that of the existing analytic formulas.
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As mentioned earlier, image analytics was also employed
to estimate the delay in an intersection approach [11]. A vir-
tual sensor in the path of vehicles was placed on images
and kept track of the digital signals of the vehicles and
their locations to judge whether vehicles were moving. This
measurement system depended on several engineering judg-
ments to recognize the presence and movement of vehicles.
In fact, the approach did not adopt a learning-based model but
employed an engineering-based methodology. This means
that the approach could not be improved regardless of how
much image data were provided.

Murat and Baskin [19] used an artificial neural network to
measure non-uniform delays that could scarcely be estimated
using existing analytic methodologies. They chose various
forms of input data to feed the neural network but did not
recognize the utility of images as input for estimating traffic
delays, because a deep learning model had not yet received
proper consideration at the time their study was being con-
ducted. All those methodologies are outdated with arrival of
the era of deep-learning and depended largely on independent
variables that cannot be easily acquired in the field.

With the advance of deep learning technologies, there have
been many attempts to count vehicles using traffic images.
Almost all previous attempts adopted a two-step procedure:
i.e., detecting and tracking individual vehicles in consecutive
video frames. As a reference approach to estimate traffic
delays, the potential of this technique to discern stopped
vehicles from moving ones was the focus. Deshmukh and
Uke (2016) summarized the current prevailingmethodologies
used to detect and trackmoving vehicles based on vision tech-
nologies [20]. Background subtraction methods have been
the most commonly employed techniques to detect vehicles
within an image [21]–[23]. Subtracting the current image
from a background image transforms an original image into a
silhouette with blobs representing vehicles. A Gaussian mix-
ture model (GMM) has also been widely used to determine
whether pixels correspond to background or foreground in
a probabilistic manner [24], [25]. An optical flow method
is another robust method used to detect and track moving
vehicles [26]. For optical flow, the change in pixel color is
a key to derive a two-dimensional velocity vector to trace a
vehicle’s motion.

More recently, the performance of YOLO has been
highlighted in vehicle detection studies [27], [28]. Some
researchers developed vehicle counters that incorporate
YOLO and a filtering algorithm [15], [16]. Once a YOLO
detects vehicles in each video frame, a filtering algorithm
tracks them across many video frames. The present study
showed that the YOLO-based counter could be revised to
count the number of stopped vehicles. The proposed method
will be compared with a YOLO-based model in section VI.

As shown in the review above, the effort to measure vehicle
delay has changed from one of using an analytic estimation
with a formula into adopting a data-driven approach via
artificial intelligence. Based on the gains of previous studies,
the present study benefitted from the insight of combining

the utility of a neural network with the potential power of
input from images, and the existing notion that was confined
to the analytic formula was shifted to the direct measurement
of delays in the field. It is apparent that learning-based image
sensors will soon replace engineering-based sensors in traffic
surveillance. The present study took the initial step to accom-
plish this new direction.

III. DATA COLLECTION
Video images were taken at two different intersection
approaches located in Seoul, Korea for 98 minutes in daytime
on a weekday. The first testbed was 67 m long and 13 m wide
with 4 lanes, and the second one was 59 m long and 10 m
wide with 3 lanes (see Fig. 1). For the first testbed, the upper
two lanes were reserved for straight-ahead traffic, and the
lower two lanes for left-turn traffic. For the second testbed,
the upper two lanes were reserved for straight-ahead traffic,
and the remaining lane for left-turn traffic. The test imagewas
cropped from a larger photo that covered the entire testbed.
Such birds-eye view photos are available owing to CCTVs
for traffic accident surveillance. The stop line was located at
the left (or right) end of the testbed. The traffic signal control
parameters such as cycle length (= 140 sec for the first testbed
and 160 sec for the second testbed) and green time ratios were
collected in the field.

FIGURE 1. Testbeds for the present study to measure traffic delays. For
each testbed, the upper photo is a raw video shoot taken from 35 to 45 m
high, and is similar to a photo that could be taken by a CCTV in the area.
A small image inset in the upper right (or lower left) corner of the photo
shows a higher aerial view and is provided to promote a better
understanding of the entire intersection. For each testbed, the lower
photo was clipped from the upper photo and the viewport and angle
were adjusted to provide rectangle input for the proposed CNN model.
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For the video frames taken for 98 minutes, the number of
stopped vehicles were recorded manually every 0.2 seconds.
The pseudo-ground truth for delay was computed using this
short time interval and was used to assess the performance
of the proposed model. On the other hand, 10,000 pairs of
consecutive video images were chosen for each testbed to
train the proposed CNN model to recognize the number of
stopped vehicles. Another set of image data (= 2,000 pairs
of images) was chosen from the remaining images to test the
trained model for each testbed. For the time interval of 1 sec-
ond, only 5,880 pairs of images were available. To train the
model, 4,500 pairs of images were used, and the rest of the
images were reserved for the test. While training the model,
10% of training images were randomly chosen and used for
the cross-validation.

In fact, labeling images was a burdensome task for the
modeling to count the number of stopped vehicles. Nonethe-
less, in the present study all images (29,400 images ×
2 testbeds) for 98 minutes were manually labeled to verify
whether the proposed approach could continuously measure
the cumulative delay.

To replace the manually tagged images, fake photos that
appeared real were synthesized by the coordination of both a
traffic simulator and a cycle-consistent generative adversarial
network (CycleGAN) [13]. Initially, the physical layout and
operational conditions of the first testbed were fed to a com-
mercial traffic simulator (Vissim). The simulation run was
then tuned so that the simulation environment could be the
same as the real traffic conditions. The simulation run offered
cartoon-like animation images that cannot be directly used to
train a CNN to measure traffic parameters.

A CycleGAN was trained on two unpaired sets of real
photos and animated images. The trained CycleGAN syn-
thesized the real-looking fake photos from the same number
of randomly chosen animation images (= 10,000 pairs of
images). The synthesized photos had a perfect label (= the
number of stopped vehicles), since the original animation
images were generated from controlled traffic simulation.
A sample of the animated and synthesized photos for the first
testbed will be shown in the seventh section.

IV. MODEL ARCHITECTURE
The delay measurement becomes a trivial task once the num-
ber of stopped vehicles can be counted continuously over
time. Eq. (1) indicates the theoretical background for comput-
ing delays. The cumulative traffic delay can be obtained by
integrating the instantaneous count of stopped vehicles over
time, as shown in Eq. (1).

D (T ) =
∫ T

t0
Q (t) dt (1)

In Eq. (1), D (T ) is the cumulative delay from the initial
time, t0, to a certain time, T , andQ(t) is the number of stopped
vehicles instantaneously observed at time t .
As a practical matter, the mathematical integration can

be numerically approximated as in Eq. (2). Regarding the

approximation, it is important to reduce the time interval at
which the number of stopped vehicles is counted, as shown
in Eq. (2).

D (T )∼=
∑(T−t0)/1t

i=0
Q′(i)1t (2)

In Eq. (2), 1t is a time interval to discretely measure
the number of stopped vehicles and Q′ (i) is the number of
stopped vehicles during the ith interval [i.e., Q′(i) = Q(t0+ i ·
1t)].

As mentioned earlier, the ITE recommended that the time
interval should be 15 seconds when the delay is measured
manually in the field [14]. Although this works well for the
purpose of evaluating the intersection service at the macro
level, it is impossible for the resultant delay measurement to
be applied to an adaptive RL traffic signal control on a real-
time basis.

The proposed CNN counted the number of stopped vehi-
cles every 0.2 seconds, which made it possible to continu-
ously measure the cumulative delay. As a human recognizes
stopped vehicles using video frames, the proposed CNN
counted the number of stopped vehicles based solely on
two consecutive video images. This end-to-end manner has
the great advantage of requiring no engineering judgment in
the model. Once a sufficient amount of labeled images is
provided for training, the CNN carries out the remaining tasks
necessary to count the number of stopped vehicles.

The proposed CNN architecture was devised with multiple
outputs such that the number of stopped vehicles can be
counted for each lane group and each vehicle type (see Fig. 2).
This was very efficient since a single neural network can
accommodate multiple tasks. As a result, the proposed CNN
simultaneously counted and classified stopped vehicles for
each lane group. More concretely, the CNN was designed
such that vehicles for two different lane groups could be sep-
arately counted within a single model [see Fig. 2]. No prior
remedy for the input images was necessary to make the model
recognize each lane group. A pair of full images covering
both lane groups was used as input, and the CNN automat-
ically classified straight-ahead and left-turn traffic. While
training the CNN, the output nodes were fedwith the numbers
of stopped vehicles in the straight-ahead and left-turn lane
groups, respectively.

The detailed CNN architecture was chosen on a trial-
and-error basis. The previous CNN for measuring the space
mean speed was adopted as a baseline model [13] and was
adapted to recognize stopped vehicles after testing as many
alternatives as possible. More concretely, hyper-parameters
to determine the model architecture included the number
of layers, number of nodes in each layer, number of fil-
ters for each layer, filter size, and stride size. The archi-
tecture was selected after testing 50 different combinations
of hyper-parameters, each of which was randomly chosen
within predefined ranges. According to Bergstra and Ben-
gio [30], random searches of 8 trials matched or outper-
formed the grid searches of (on average) 100 trials. Recently,
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FIGURE 2. CNN architecture used to count the number of stopped vehicles. The input size is for the first testbed, but different input sizes are
applicable with the filter layout fixed.

Bayesian optimization was applied to finding optimal hyper-
parameters of deep neural networks [31], [32]. This method-
ology would enhance the model performance in further
studies.

The final architecture of the CNN model appears in Fig. 2.
The CNN architecture was built by stacking 5 convolutional
blocks, each of which was composed of a convolutional
layer, an instance normalization layer, and a rectified lin-
ear unit (Relu) activation layer. Normalizing input feature
maps on a layer-by-layer basis enhanced the performance
of a deep neural network to abstract features from images.
Instance normalization was used to independently compute
the mean and standard deviation across spatial dimensions
of each feature map within a batch input [33], which differs
from batch normalization that computes them across an entire
batch of images [34]. After the final convolution block, a sin-
gle average pooling layer was added. The final tensor was
flattened to feed the last fully connected layer that connected
the output layer. The output layer had 4 nodes, each of which
corresponded to counts of stopped cars and buses for each
lane group, respectively.

V. DELAY MEASUREMENT RESULTS
A. TEST RESULTS OF COUNTING STOPPED VEHICLES
The number of stopped vehicles was counted for both lane
groups (i.e., straight-ahead and left-turn flows) prior to
measuring the stopped delay. The number was also sepa-
rately counted for two different vehicle types (i.e., cars and
buses). The former encompasses cars, SUVs and small trucks,
whereas the latter covers buses and large trucks. As men-
tioned earlier, when counting the number of stopped vehicles,
an infinitesimally small interval is required to exactly mea-
sure the true delay. The pseudo-ground truth for delay was set
in the present study based on the number of stopped vehicles
counted every 0.2 seconds.

For each testbed, from among 29,400 pairs of consecutive
images for a 98-minute survey period, 10,000 pairs of images

were randomly selected for training the proposed model to
count the number of stopped vehicles. Another 2,000 pairs of
images were randomly chosen again for the test. The model
performance derived from the test data are shown in this
section. Three performance indices were adopted to confirm
the utility of the proposed model [i.e., correlation coefficient
(ρ), map absolute error (MAE), and root mean square error
(RMSE).

For comparison, the same model architecture was trained
on a different dataset collected from a longer time interval.
A set of 5,880 pairs of images was manually labeled with
the number of vehicles stopped during a 1-second interval.
Fig. 3 shows performance indices of the proposed model
for both time intervals of 0.2 and 1.0 seconds. For both
testbeds, the model trained on images of 0.2-second intervals
produced almost the same test results as the observed num-
ber of stopped vehicles. The 0.2-second interval proved to
be almost perfect to count the number of stopped vehicles.
When a larger time interval (= 1.0 second) was adopted,
the discrepancy between the estimated and observed numbers
of stopped vehicles was negligible, which means the labeling
task in the future can be carried out more easily with a larger
time interval [see Fig. 3 (b) and (d)].

Deep learning models have been criticized due to an uncer-
tainty wherein the model cannot account for causal effects
between input and output [35]. Nonetheless, the results
showed that CNN filters could learn to count the number
of stopped vehicles based solely on two consecutive images.
Although a direct interpretation is not possible, it is certain
that weights for filters stored experiences while learning in
order to improve performance. To show such evidence, values
of the last 128 4 × 22 tensors of the proposed CNN are
plotted in Fig. 4. for two contrast inputs: i.e., two consecutive
images of running vehicles and those of stopped vehicles,
respectively. The difference in filter values is apparent, and
these different patterns made it possible to count stopped
vehicles.
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FIGURE 3. Performance of the model trained on manually labeled images in counting the number of stopped vehicles.

B. RESULTS FROM MEASURING THE STOPPED DELAY
Counting the number of stopped vehicles was prerequisite
to measuring the stopped delay. The stopped delay was
estimated by accumulating the number of stopped vehi-
cles counted in a short time interval. Fig. 5 shows the
stopped delay for each lane group and for each vehi-
cle type. When a 0.2 second time interval was employed,
the estimated cumulative delay was almost the same as the
pseudo-ground truth. As the time interval was increased
to 1.0 second, the model performance deteriorated slightly
only for straight-ahead buses for both testbeds. This could
have been due to an insufficient amount of buses that
kept stopping for 1.0 second, whereas there were more
buses that kept stopping for 0.1 second. However, this
was not a serious problem since the discrepancy was not
significant.

VI. COMPARISON WITH OTHER METHODS
A. COMPARISON WITH AN ANALYTIC MODEL
The HCM 2000 presents a formula that can be used to
estimate the average control delay for any time period [1].
The control delay includes the initial deceleration delay,
the stopped delay, and the final acceleration delay. Unfortu-
nately, the present approach can only measure the stopped
delay. Thus, the delay formula from the previous HCM
1994 [36], which estimates the average stopped delay per
vehicle for a 15-minute period, was adopted as a reference
for comparison. Eq. (3) denotes the delay formula used in
HCM 1994.

ds = 0.38
C (1− λ)2

{1− λ [min (x, 1.0)]}

+173x2
[
(x − 1)+

√
(x − 1)2+

mx
c

]
(3)
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FIGURE 4. Values of the last 128 tensors of the proposed CNN for two
contrastive inputs.

where,
ds = stopped delay,
c = capacity of the lane group (vph),
x= v/c ratio for the lane group (= traffic volume/capacity),
λ = g/C ratio for the lane group (= green time/cycle

length), and m = the incremental calibration term represent-
ing the effect of arrival type and the degree of platooning (the
default value 16 was adopted in the present study).
For both testbeds, the signal parameters of both lane groups

were surveyed in the field and applied to the formula to esti-
mate the stopped delay. Six 15-minute periods out of 98 min-
utes were chosen to compare the measurement performance
between the HCM formula and the proposed CNN models.
Table 1 shows the comparison results. As expected, the pro-
posed model outperformed the analytic formula. The average
delays measured from the proposed model were much closer
to the pseudo ground truth. The excellence lies in the fact that
the proposed approach is purely data-driven, even though how
the CNN model works so well is not yet fully accounted for.
For the first testbed, the HCM formula underestimated

delays for a higher saturation level. This implies that the
actual delay for a higher saturation level stems largely from
unsteady traffic states rather than from uniform and incre-
mental traffic states. On the other hand, the formula overes-
timated delays in the straight-ahead lane group of the first

testbed for the period from 30 to 60 min when small traffic
volumes were observed. In the same context for the second
testbed, despite a longer cycle length and a shorter green
time, much smaller traffic volumes in all time periods led the
formula to overestimate traffic delays.

B. COMPARISON WITH AN EXAMPLE OF COMPUTER
VISION TECHNOLOGY
As another reference, a vehicle detection-and-tracking
model incorporating YOLO v3 and a SORT algorithm
was selected [28]. The former was for vehicle detection,
and the latter was for vehicle tracking. Since the existing
YOLO failed in recognizing vehicles from a bird-eye view,
we retrained it on a new dataset. We drew bounding boxes
for all vehicles within 3,000 aerial road images. The tracking
algorithm (SORT)was tuned to recognizewhether a vehicle is
moving. The reason a YOLO was selected as a reference was
because the model has been a leader in the recent progression
to deep learning and is known to be more promising in object
detection than older vehicle detection models such as back-
ground subtraction or optical flow models [15], [27], [28].
The performance of theYOLO-basedmodel was compared

with that of the proposed methodology and of the HCM
formula. The YOLO-basedmodel proved to be superior to the
HCM formula but showed a comparable performance with
our proposed methodology (see Table 2). However, draw-
ing a bounding box for every vehicle in all training images
was much more labor-intensive than counting the number
of stopped vehicles to obtain labeled data. A revolutionary
method to alleviate the effort to obtain labeled data was
developed for the propose CNN, and is described in the next
section.
The proposed CNN used to count the stopped vehicles had

a much lighter structure than a YOLO model. The proposed
approach to estimate delay also did not require an additional
algorithm for vehicle tracking and thus requires much shorter
computing time (see Table 2).

VII. ALLEVIATING THE EFFORT OF TAGGING IMAGES
WITH LABELS
The only complication associated with the proposed method
is the human effort that is required to tag images with a true
label. A large number of labeled images (about 10,000 pairs
of images) was necessary to train the proposed CNN. It took a
couple of days for two proficient researchers to tag the images
with labels. It is burdensome tomanually tag images with true
labels whenever a new intersection approach is included.
Our previous study provided a great possibility to over-

come the difficulty in labeling. A CycleGANwas used to suc-
cessfully synthesize virtual reality and create many labeled
images with the help of a traffic simulator [13]. The method-
ology depended largely on a reliable traffic simulator that can
mimic the traffic conditions in the testbed. It was verified
in the first testbed that a CycleGAN could generate labeled
images for pretraining a proposed model to count stopped
vehicles.
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FIGURE 5. Model performance in measuring the cumulative stopped delay.

A commercial traffic simulator (Vissim) was used to repli-
cate the real traffic conditions of the first testbed and then
provided animation images for them. The images were, how-
ever, so naïve that they could not be directly used to train the
proposed CNN model, although the images contained exact
traffic information including the number of stopped vehicles.
A CycleGAN converted these naïve animation images into
seemingly realistic images to pretrain the proposed CNN.
Both the generator and discriminator models were set up in
reference to our previous study to measure the space mean
speed. For the details of how to set up and train the models,
readers are referred to the previous work [13].

Fig. 6 shows randomly chosen examples of the conversion.
Images on the left were generated by the traffic simulator, and
images on the right were synthesized from those on the left.
The same number of synthesized images (= 10,000 pairs) was
used to pretrain the CNN to maintain consistency with the
model training based on real images with true labels.

The performance of the model pretrained on the synthe-
sized images was tested on the same test data that were

manually labeled (= 2,000 pairs). A time interval of 0.2 sec
was applied to the comparison. Fig. 7 shows the model per-
formance to count the number of stopped vehicles. The test
results were compared with those from the CNN trained on
manually labeled data (see Table 3). The performance of the
model pretrained on synthesized imageswas inferior to that of
the model trained on manually labeled real images. Whereas
the gap for cars was not significantly large, the gap for buses
was considerable. The potential reason for the gap for buses
was also due to an insufficient amount of training images that
included buses.

To bridge the gap, the model was fine-tuned with a small
number of real images tagged with true labels (= only
300 pairs of images) after being pretrained on the syn-
thesized images. The test results of the fine-tuned model
recorded almost the same performance as the model trained
on a large amount of manually labeled images. More
concretely, the observed and the estimated numbers of
stopped vehicles turned out to be statistically identical at a
0.05 significance level. Table 3 shows that the p-values to
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TABLE 1. Performance comparison in measuring average delays between the proposed CNN and reference models.

TABLE 2. Applicability comparison between the proposed model and a
YOLO-based model.

reject the null hypothesis for two equal population means.
When a value exceeded 0.05, the estimated result was not
statically different from the observed number of stopped
vehicles.

Fig. 8 shows a small discrepancy in delays between the
pseudo ground truth and traffic delays, as measured by the
fine-tuned model. These results verified that this scheme can

FIGURE 6. Conversion from naïve animation images to real-looking
synthesized images.

minimize the human effort required to secure labeled data for
training whenever the proposed CNN is applied to different
sites.
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FIGURE 7. Performance of the model trained on synthesized images for
counting the number of stopped vehicles (for testbed 1).

TABLE 3. Measuring the number of stopped vehicles using the model
trained on manually labeled images compared with using the model
trained on synthesized images.

FIGURE 8. Performance comparison in measuring the traffic delays for
testbed 1. ‘‘Predicted_C ‘‘ represents delays estimated via the model
pretrained on synthesized images, ‘‘Predicted_CF ‘‘ represents those
estimated from fine-tuned model after pretraining on the synthesized
images.

VIII. CONCLUSIONS AND FURTHER STUDIES
The present study proved that traffic delays can be measured
based solely on consecutive video images in an end-to-end

manner. Once the number of stopped vehicles is counted
using a deep CNN, measuring the delay is a trivial task of
accumulating the count numbers over time.

The proposed model for measuring traffic delays outper-
formed the existing HCM formula and showed a comparable
performance with a state-of-the-art vehicle detection algo-
rithm. Furthermore, a plausible way to secure labeled images
based on a traffic simulation and a CycleGANwas suggested.
Owing to this scheme, the transferability of the proposed
approach is guaranteed. Training the model takes little human
effort to tag images with labels when it is applied to other road
segments.

The proposed model also resolved the biggest problem in
applying a RL algorithm for traffic-light control. Although
delay has been a basic parameter that was used to determine
the state and reward in a RL framework, no previous study has
presented a robust method to measure it on a real-time basis.
The proposed approach provides a plausible solution to set
up a delay-based reward and penalty. That is, a RL algorithm
is rewarded if the cumulative delay measured in the field
decreases after an action is taken, whereas it is penalized if the
delay increases. In our on-going study, the proposed approach
to measure traffic delay is being fully incorporated with a RL
algorithm for traffic light control in an urban arterial.

The proposed model was validated only for two different
sites due to the difficulty of obtaining ground truth delays.
If any third-party agency like a navigation company provided
mobile information of probe vehicles, the delay estimated
from the proposed methodology could be validated on a large
scale.

REFERENCES
[1] Transportation Research Board, ‘‘Highway capacity manual,’’ Nat. Res.

Council, Washington, DC, USA, TRB Special Rep. 193, 2000.
[2] B. Abdulhai and L. Kattan, ‘‘Reinforcement learning: Introduction to

theory and potential for transport applications,’’ Can. J. Civil Eng., vol. 30,
no. 6, pp. 981–991, 2003.

[3] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, ‘‘Multiagent reinforce-
ment learning for integrated network of adaptive traffic signal controllers
(MARLIN-ATSC):Methodology and large-scale application on downtown
toronto,’’ IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1140–1150,
Sep. 2013.

[4] M. Abdoos, N. Mozayani, and A. L. C. Bazzan, ‘‘Traffic light control in
non-stationary environments based on multi agent Q-learning,’’ in Proc.
14th Int. IEEE Conf. Intell. Transp. Syst. (ITSC), Washington, DC, USA,
Oct. 2011, pp. 1580–1585.

[5] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, ‘‘Reinforcement learning-
based multi-agent system for network traffic signal control,’’ IET Intell.
Transp. Syst., vol. 4, no. 2, pp. 128–135, 2010.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), Stateline, NV, USA, vol. 25, Dec. 2012, pp. 1097–1105.

[7] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ Sep. 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA,
USA, Jun. 2015, pp. 1–9.

[9] H. Noh, S. Hong, and B. Han, ‘‘Learning deconvolution network for
semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis., Santiago,
Chile, Dec. 2015, pp. 1520–1528.

VOLUME 7, 2019 169897



J. Shin et al.: Image-Based Learning to Measure the Stopped Delay in an Approach of a Signalized Intersection

[10] P. Xu, Q. Yin, Y. Huang, Y. Z. Song, Z. Ma, L. Wang, T. Xiang,
W. B. Kleijn, and J. Guo, ‘‘Cross-modal subspace learning for fine-grained
sketch-based image retrieval,’’ Neurocomputing, vol. 278, pp. 75–86,
Feb. 2018.

[11] W. R. Hereth, A. Zundel, and M. Saito, ‘‘Automated estimation of average
stopped delay at signalized intersections using digitized still-image analy-
sis of actual traffic flow,’’ J. Comput. Civil Eng., vol. 20, no. 2, pp. 132–140,
2006.

[12] J. Chung and K. Sohn, ‘‘Image-based learning to measure traffic density
using a deep convolutional neural network,’’ IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 5, pp. 1670–1675, May 2018.

[13] J. Lee, S. Roh, J. Shin, and K. Sohn, ‘‘Image-based learning to measure
the space mean speed on a stretch of road without the need to tag images
with labels,’’ Sensors, vol. 19, no. 5, p. 1227, 2019.

[14] H. D. Robertson, Manual of Transportation Engineering Studies. Engle-
wood Cliff, NJ, USA: Prentice-Hall, 1994.

[15] C. S. Asha and A. V. Narasimhadhan, ‘‘Vehicle counting for traffic man-
agement system using YOLO and correlation filter,’’ in Proc. IEEE Int.
Conf. Electron., Comput. Commun. Technol. (CONECCT), Mar. 2018,
pp. 1–6.

[16] G. Lopez. Traffic counter with YOLO and SORT. [Online], Available:
https://github.com/guillelopez/python-traffic-counter-with-yolo-and-sort

[17] C. Cheng, Y. Du, L. Sun, and Y. Ji, ‘‘Review on theoretical delay esti-
mation model for signalized intersections,’’ Transp. Rev., vol. 36, no. 4,
pp. 479–499, 2015.

[18] F. Qiao, P. Yi, H. Yang, and S. Devarakonda, ‘‘Fuzzy logic based inter-
section delay estimation,’’ Math. Comput. Model., vol. 36, nos. 11–13,
pp. 1425–1434, 2002.

[19] Y. S. Murat and O. Baskan, ‘‘Modeling vehicle delays at signalized junc-
tions: Artificial neural networks approach,’’ J. Sci. Ind. Res., vol. 65, no. 7,
pp. 558–564, 2006.

[20] G. Deshmukh and N. J. Uke, ‘‘A systematic review of image based moving
vehicle detection techniques,’’ Int. J. Sci. Eng. Res., vol. 4, no. 9, pp. 45–47,
2016.

[21] R. P. Singh, P. Sharma, and J. Madarkar, ‘‘Compute-extensive back-
ground subtraction for efficient ghost suppression,’’ IEEE Access, vol. 7,
pp. 130180–130196, 2019.

[22] S. Buttan and K. Venugopal, ‘‘On-roadmoving vehicle detection by spatio-
temporal video analysis of static and dynamic backgrounds,’’ in Ambi-
ent Communications and Computer Systems. Singapore: Springer, 2018,
pp. 703–715.

[23] P. Gajbhiye, N. Cheggoju, and V. R. Satpute, ‘‘Moving object detection
and tracking in traffic surveillance video sequences,’’ in Recent Find-
ings in Intelligent Computing Techniques. Singapore: Springer, 2018,
pp. 117–128.

[24] J.-F. Song, ‘‘Vehicle detection using spatial relationship GMM for complex
urban surveillance in daytime and nighttime,’’ Int. J. Parallel Program.,
vol. 46, no. 5, pp. 859–872, 2018.

[25] K. Zhong, Z. Zhang, and Z. Zhao, ‘‘Vehicle detection and tracking based on
GMM and enhanced camshift algorithm,’’ J. Elect. Electron. Eng., vol. 6,
no. 2, pp. 40–45, 2018.

[26] Z. Dai, H. Song, X. Wang, Y. Fang, X. Yun, Z. Zhang, and H. Li,
‘‘Video-based vehicle counting framework,’’ IEEE Access, vol. 7,
pp. 64460–64470, 2019.

[27] J. Sang, Z. Wu, P. Guo, H. Hu, H. Xiang, Q. Zhang, and B. Cai,
‘‘An improved YOLOv2 for vehicle detection,’’ Sensors, vol. 18, no. 12,
p. 4272, 2018.

[28] S. Seong, J. Song, D. Yoon, J. Kim, and J. Choi, ‘‘Determination of
vehicle trajectory through optimization of vehicle bounding boxes using
a convolutional neural network,’’ Sensors, vol. 19, no. 19, p. 4263, 2019.

[29] N. Wojke, A. Bewley, and D. Paulus, ‘‘Simple online and realtime tracking
with a deep association metric,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2017 pp. 3645–3649.

[30] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[31] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, ‘‘Fast
Bayesian optimization of machine learning hyperparameters on large
datasets,’’ 2016, arXiv:1605.07079. [Online]. Available: https://arxiv.org/
abs/1605.07079

[32] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,
M. Patwary, M. Prabhat, and R. Adams, ‘‘Scalable Bayesian optimization
using deep neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2171–2180.

[33] D. Ulyanov, A. Vedaldi, and V. Lempitsky, ‘‘Instance normalization:
The missing ingredient for fast stylization,’’ 2016, arXiv:1607.08022.
[Online]. Available: https://arxiv.org/abs/1607.08022

[34] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167

[35] G. Marcus, ‘‘Deep learning: A critical appraisal,’’ 2018,
arXiv:1801.00631. [Online]. Available: https://arxiv.org/abs/1801.00631

[36] Transportation Research Board, ‘‘Highway capacity manual,’’ Nat. Res.
Council, Washington, DC, USA, TRB Special Rep. 209, 1994.

JOHYUN SHIN is currently pursuing the degree
with the Department of Urban Engineering,
Chung-Ang University. His research interests
include machine learning and visual recognition.

SEUNGBIN ROH is currently pursuing the
degree with the Department of Urban Engineer-
ing, Chung-Ang University. His research interests
include machine learning and visual recognition.

KEEMIN SOHN is currently a Professor with the
Department of Urban Engineering, Chung-Ang
University. His research interest includes the appli-
cations of artificial intelligence to transportation
engineering and planning.

169898 VOLUME 7, 2019


