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Abstract
Purpose  This cross-sectional study aimed to assess the effect of environmental cadmium (Cd) exposure and essential metal 
imbalance on renal tubular damage and oxidative stress in 979 adults living in a Cd-polluted area near an abandoned copper 
(Cu) refinery.
Methods  We analyzed urinary Cd concentrations, renal tubular damage and oxidative stress markers, such as beta-2 
microglobulin (β2-MG) and N-acetyl-β-d-glucosaminidase (NAG) activity and urine malondialdehyde (MDA) levels. The 
serum copper-to-zinc ratio (CZR) was used as an essential metal imbalance indicator. We divided the subjects into two Cd 
exposure groups based on the reference level of urinary Cd for renal dysfunction (2 μg/g creatinine).
Results  The geometric mean concentration of urinary Cd in all subjects was 2.25 μg/g creatinine. In both low and high Cd 
exposure groups, urinary Cd levels were positively correlated with urinary NAG activity, but not with serum CZR. After 
multivariate adjustment, serum CZR was strongly associated with urinary β2-MG levels in the low Cd exposure group 
(β = 1.360, P = 0.019) and was significantly associated with urinary MDA levels, regardless of Cd exposure level. In addi-
tion, the risk of renal tubular damage was significantly associated with urinary Cd level, particularly in the lowest or highest 
CZR tertile groups.
Conclusions  Essential metal imbalance may be a determinant of oxidative stress and renal tubular damage in a chronically 
Cd-exposed population, and proper zinc supplementation will be effective in preventing adverse health effects due to Cd 
exposure.

Keywords  Cadmium · Essential metal · Environmental exposure · Kidney tubule damage · Oxidative stress

Introduction

Cadmium (Cd) is widely distributed in the environment and 
is a major environmental pollutant that threatens human 
health. Under normal conditions, absorbed Cd is filtered 
through the glomerulus, reabsorbed in the proximal tubules, 
and accumulated in the kidneys (Jarup et al. 1998). In indi-
viduals with a chronic exposure to Cd, approximately 50% 
of the absorbed Cd is distributed in the kidneys and causes 
injury to renal microtubules. When kidney tubules are 
injured, urinary excretions of N-acetyl-d-glucosaminidase 
(NAG) and beta-2 microglobulin (β2-MG) increase (Bernard 
2008; Jarup et al. 1998).

The gastrointestinal absorption of Cd is affected by the 
nutritional status of individuals, such as the body levels of 
iron (Fe) and zinc (Zn) (EFSA 2009; Ryu et al. 2004), and 
Cd interacts metabolically with some essential metals such 
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as Zn, copper (Cu), Fe, and calcium (Ca) (Goyer 1997). 
Those metal ions and Cd are competitively transported by 
common transporters [i.e., divalent metal transporter 1, Zrt 
Irt-related protein 8 (ZIP8), and ZIP14] (Jenkitkasemwong 
et al. 2012; Vesey 2010) and tightly bound to metallothio-
nein (MT) in the systemic circulation. Therefore, the con-
centration of essential metals is affected by the concentration 
of Cd in the body.

Cd induces reactive oxygen species, which may play a 
role in acute and chronic Cd toxicity (Satarug et al. 2017; 
Shaikh et al. 1999; Thevenod and Friedmann 1999), while 
Cu and Zn are antioxidant trace elements because they act as 
the cofactors of cytoplasmic superoxide dismutase (Pokusa 
and Kralova Trancikova 2017). A recent study reported that 
an imbalance between Zn and Cu is associated with renal 
dysfunction in humans, which is mediated by oxidative 
stress (Hamasaki et al. 2016).

As the Cd concentration in the body increases, Cu and Zn 
levels can change and lead to an imbalance of the Cu-to-Zn 
ratio (CZR). Cd can simultaneously cause renal tubular dam-
age as well as an imbalance of the CZR. This study aimed to 
test whether a CZR imbalance is an intervening factor in the 
toxic mechanism of Cd on renal tubules or an independent 
risk factor for renal tubular damage.

Materials and methods

Study participants

This cross-sectional study was conducted in a Cd-contam-
inated area near the Janghang Copper Refinery, which was 
closed in 1989. The Janghang Copper Refinery is located 
in the Seocheon-Gun, Chungnam Province, on the west 
coast of the Korean Peninsula. It is reported that, within a 
7-km radius of the refinery, soil Cd levels range from 1.6 to 
27.2 mg/kg and decrease with increasing distance from the 
refinery (Kim and Chon 1993).

The selection of study participants was described in detail 
in previous studies (Kim et al. 2014, 2016). In brief, the 
study included 985 adults aged ≥ 30 years who had been 
living within 15 km of the closed refinery. All subjects were 
provided with information about the purpose of this study, 
and they provided written consent. Experienced interview-
ers directly interviewed the subjects with a questionnaire 
that included demographic and lifestyle information, includ-
ing dietary habits, smoking habits (current smoking status, 
average number of cigarettes smoked daily, total duration of 
smoking), alcohol consumption, occupation, duration of cur-
rent residence, and past medical history. Non-smokers were 
defined as individuals who had never smoked cigarettes or 
who had smoked fewer than 100 cigarettes in their lifetimes. 
Whole blood and spot urine samples were collected from the 

participants and stored at − 80 °C until analysis. The partici-
pants with minimal or no urine (n = 6) were excluded from 
this study. Finally, a total of 979 participants were included.

Determination of trace metal levels in biological 
samples

We quantified the concentrations of Cd in the urine and Cu 
and Zn in the serum of subjects. The determination of Cd 
in urine was performed with a flameless atomic absorption 
spectrophotometer (Model Z-8270, Hitachi) equipped with a 
Zeeman graphite furnace. Briefly, urine was added to nitric 
acid and diluted with di-ammonium hydrogen phosphate and 
1% Triton X-100, followed by vigorous mixing. The detec-
tion limit was 0.01 µg/L for Cd in urine. Cu and Zn in serum 
were measured using inductively coupled plasma mass spec-
trometry (Elan DRC-e, Perkin Elmer, USA) at a radio fre-
quency power of 1550 W. The argon plasma gas flow rate 
and argon carrier gas flow rate were 15 L/min and 1.04 L/
min, respectively. The kinetic energy discrimination mode 
using helium gas (4.3 μL/min) was applied to measure Cu 
and Zn. The detection limits were 0.54 and 0.15 µg/dL for 
serum Cu and Zn, respectively. There were no samples with 
concentrations of any element below the detection limits.

Determination of NAG activity, β2‑MG, 
and malondialdehyde (MDA) in the urine

As markers for renal tubular damage, urinary NAG activity 
and β2-MG levels were measured.

Urinary NAG activity was quantified using a commercial 
kit (Shionogi, Osaka, Japan) according to the manufacturer’s 
protocol. In brief, a synthetic substrate solution (1 μL) was 
incubated at 37 °C for 5 min. After centrifugation of the 
urine samples, 50 μL of the supernatant was mixed with a 
warm synthetic substrate solution and then incubated in a 
37 °C water bath for 15 min. The stopping solution (2 μL) 
was added, and the absorbance of the samples and NAG 
standard solution were measured at 580 nm using a spectro-
photometer. The urinary β2-MG level was measured using 
a commercial kit (Enzygnost β2-MG Micro Kit; Behring 
Institute, Mannheim, Germany) according to the manufac-
turers’ instructions. The test kit principle was based on the 
solid phase enzyme-linked immunosorbent assay. The assay 
system utilized a monoclonal anti-β2-MG antibody for solid 
phase immobilization and an anti-β2-MG-horseradish per-
oxidase conjugate solution.

As a marker of oxidative stress, the concentration of 
MDA in urine was determined by measuring the level of 
thiobarbituric acid reactive substances (TBARS) using a 
high-performance liquid chromatographic (HPLC) sys-
tem with a fluorescence detector (Agarwal and Chase 
2002). Briefly, 50 μL of 0.05% butylated hydroxytoluene 
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(B1378, Sigma-Aldrich, St. Louis, MO, USA), 150 μL of 
0.1125 N nitric acid (438073, Sigma-Aldrich), and 150 μL 
of 42 mM thiobarbituric acid (TBA, T5500, Sigma-Aldrich) 
were added to a 50 μL aliquot of urine sample or 50 μL of 
1,1,3,3-tetramethoxypropane (Alfa Aesar, Heysham, UK) 
standard solution and vortex-mixed. The samples were 
then heated at 100 °C for 1 h, and 300 μL of n-butanol 
(W217816, Sigma-Aldrich) was added for the extraction 
of TBARS. After centrifugation, 10 µl of the supernatant 
was injected into the HPLC system, which consisted of a 
pump (Lsp 930; Younglin, Seoul, Korea), an automatic 
injector (SIL 10Avp; Shimadzu, Kyoto, Japan), a fluores-
cence detector (RF-10AxL; Shimadzu), and a data acquisi-
tion module (Autochro-200; Younglin). The column was a 
150 mm long reverse-phase column (TSK-GEL ODS-80TM; 
Tosoh), and the mobile phase was potassium dihydrogen 
phosphate:methanol:acetonitrile (60:25:15, v/v/v) at a flow 
rate of 1 μL/min. The excitation/emission wavelengths were 
515/553 nm. The limit of detection of MDA in the urine was 
0.07 μmol/L, and the intra-assay coefficient of variation for 
the pooled urine sample was 5.25%.

Statistical analysis

All data on the levels of trace metals were log-transformed 
since the distribution was right skewed. Participants were 
assigned to exposure groups based on the Cd level in urine 
being low (< 2 μg/g creatinine) or high (≥ 2 μg/g creatinine), 
as per previously reported thresholds (Buchet et al. 1990). 
Differences in the demographic or lifestyle factors of the 
groups were compared using the Chi-square test. Statisti-
cal comparisons of the means of various biomarkers were 
performed using Student’s t test. The Pearson’s correlations 
between the log-transformed levels of Cd, Cu and Zn and the 
other biomarkers were evaluated. Multiple linear regression 
models were used to test the associations of the serum CZR 
and the urinary Cd level with renal tubular damage or oxida-
tive stress. Each model included age, sex, body mass index, 
smoking status, drinking status, diabetes, hypertension and 
urinary creatinine concentration as covariates. In the regres-
sion analysis, we used creatinine-unadjusted values for uri-
nary biomarkers and included urinary creatinine value in the 
models as covariate to adjust urine dilution. The association 
of urinary Cd levels with renal tubular damage, according 
to serum CZR levels, was evaluated by multivariate logistic 
regression analyses. The serum CZR level was categorized 
into tertiles (lowest, middle, and highest groups). ‘‘High 
NAG’’ and ‘‘high β2-MG’’ were defined as greater than 
11.5 unit/g creatinine and 300 µg/g creatinine, respectively, 
which are critical reported values for renal tubular damage 
(Bernard 2008). All statistical analyses were performed 
using the Statistical Package for the Social Sciences (SPSS) 
software version 24.0 (IBM, Armonk, NY, USA).

Results

The general characteristics of the 979 study participants are 
presented in Table 1. The geometric mean concentration of 
Cd in urine was 2.25 μg/g creatinine. There were 396 sub-
jects (40.4%) with urinary Cd values < 2.0 μg/g creatinine 
(low Cd exposure group) and 583 subjects (59.6%) with 
urinary Cd values ≥ 2.0 μg/g creatinine (high Cd exposure 
group). The high Cd exposure group had more elderly and 
female subjects than the low Cd exposure group. Meanwhile, 
the low Cd exposure group had more current- or ex-smokers 
and more alcohol drinkers than the high Cd exposure group. 
There were no between group differences for the prevalence 
of diabetes, hypertension, or body mass index. Serum Cu 
and Zn levels and urinary NAG and MDA were significantly 
higher in the high Cd exposure group than in the low Cd 
exposure group. However, serum CZR and urinary β2-MG 
were not significantly different between the two groups.

Urinary Cd levels were positively correlated with the 
Cu and Zn levels in serum, but not with CZR in both the 
low and high Cd exposure groups. Urinary NAG activity 
and MDA levels were significantly correlated with urinary 
Cd in both Cd exposure groups. Serum CZR was signifi-
cantly correlated with urinary MDA levels, but not with 
the urinary NAG activity. In the low Cd exposure group, 
serum CZR was positively correlated with the urinary 
β2-MG level (Table 2).

In the multivariate analysis—adjusted for potential 
confounding factors such as age, sex, body mass index, 
smoking, alcohol consumption, diabetes, hypertension, 
and urinary creatinine concentration—urinary Cd levels 
were significantly associated with urinary NAG activity 
and β2-MG levels in the high Cd exposure groups. Fur-
thermore, there was a significant and positive association 
between the serum CZR and urinary MDA was observed 
in both Cd exposure groups. However, serum CZR was 
significantly associated with urinary β2-MG levels only 
in the low Cd exposure group (Table 3).

We evaluated associations between urinary Cd level and 
the risk of renal tubular damage according to serum CZR 
levels were evaluated (Table 4). In high Cd exposure group, 
the prevalence of high NAG activity increased with the 
serum CZR tertile levels. Among the highest serum CZR 
tertile group, the risk of high NAG activity was 4.98 times 
higher for the high Cd exposure group than for the low Cd 
exposure group. After controlling for various potential con-
founders, statistical significance remained (adjusted odds 
ratios = 3.76, 95% CI 1.24–11.44). In both lowest and high-
est serum CZR tertile group, the risk of high β2-MG levels 
was significantly higher in the high Cd exposure group than 
in the low Cd exposure group. However, there was no similar 
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association observed within the middle serum CZR tertile 
group.

Discussion

The present study evaluated whether an imbalance in the 
levels of Zn and Cu is associated with renal tubular damage 
or oxidative stress in a population living in a Cd-polluted 
area. Serum CZR was found to be a determinant of oxida-
tive stress and was significantly associated with microscopic 
damage to the proximal tubules in the low and chronically 
Cd-exposed population. In addition, it was found that the 
imbalance between Cu and Zn could exacerbate the risk of 
kidney damage due to Cd.

In this study, we divided subjects into Cd exposure 
groups based on a threshold level of 2 μg/g creatinine. This 
is believed to be the level that can cause Cd-induced renal 
tubular damage (Buchet et al. 1990; Prozialeck and Edwards 
2010). The urinary Cd level among the low Cd exposure 
group in our study (GM 1.10, 95% CI 1.05–1.15 μg/g cre-
atinine) was comparable to levels observed in the general 
Korean adult population (GM range 0.95–1.36 μg/g creati-
nine) (Eom et al. 2017; Huang et al. 2013; Lim et al. 2016). 
However, the mean urinary Cd level in the high Cd expo-
sure group (GM 3.63, 95% CI 3.51–3.76 μg/g creatinine) 
was more than twice of that reported in previous studies on 

general population (Eom et al. 2017; Huang et al. 2013; Lim 
et al. 2016). Compared to the low Cd exposure group, the 
high Cd exposure group had many more women and indi-
viduals classified as elderly, both of which are known pre-
dictors of an elevated body burden of Cd (Jarup et al. 1998; 
Vacchi-Suzzi et al. 2016). In addition, the low Cd exposure 
group had significantly more current- or ex-smokers than 
the high Cd exposure group. This is due to the confounding 
effect caused by the high proportion of women who were 
non-smokers in the high Cd exposure group. In fact, in the 
stratification analysis by sex, the proportion of ex-smokers 
was higher in the high-Cd exposed group than in the low-
exposed group for both men and women (data not shown).

In our study, the serum Cu and Zn levels of the high Cd 
exposure group were significantly higher than those of the 
low Cd exposure group and were positively correlated with 
the levels of Cd in urine. This result can be explained by 
the simultaneous exposure to Cd, Cu, and Zn, which are the 
main products or byproducts of the Cu smelter. Similarly, in 
a previous study with copper smelter workers, positive cor-
relations between Cd, Cu, and Zn in tissues were reported 
(Gerhardsson et al. 2002). However, it was reported that 
serum Zn levels are inversely associated with blood Cd con-
centrations in American adults (Vance and Chun 2015), and 
chronic low-level Cd exposure was associated with reduced 
Cu and Zn reabsorption (Satarug et al. 2018).

Table 1   General characteristics of the study participants

SD standard deviation, NAG N-acetyl-β-d-glucosaminidase, β2-MG β2-microglobulin, MDA malondialdehyde
a The P values were determined by t tests or Chi-squared tests for the difference between the low and high cadmium exposure groups
b Values are presented as geometric means with 95% confidence intervals

Variables Total Cadmium exposure P valuea

Low (< 2 μg/g creatinine) High (≥ 2 μg/g creatinine)

Total, N (%) 979 (100.0) 396 (40.4) 583 (59.6) –
Age, years, mean ± SD 64.33 ± 11.50 61.67 ± 13.65 66.14 ± 9.66 < 0.001
 > 65 years, N (%) 550 (56.2) 194 (49.0) 356 (61.1) < 0.001
 > 75 years, N (%) 172 (17.6) 63 (15.9) 109 (18.7) 0.307

Females, N (%) 578 (59.0) 153 (38.6) 425 (72.9) < 0.001
Current or ex-smokers, N (%) 309 (32.0) 161 (41.3) 148 (25.7) < 0.001
Alcoholic drinkers, N (%) 482 (49.4) 234 (59.4) 248 (42.6) < 0.001
Diabetes, N (%) 180 (18.4) 62 (15.7) 118 (20.2) 0.069
Hypertension, N (%) 636 (65.0) 256 (64.8) 380 (65.2) 0.912
Body mass index, kg/m2, mean ± SD 24.57 ± 3.50 24.71 ± 3.52 24.47 ± 3.49 0.266
Urinary cadmium, μg/g creatinineb 2.25 (2.14, 2.34) 1.10 (1.05, 1.15) 3.63 (3.51, 3.76) < 0.001
Serum copper, μg/dLb 91.84 (89.12, 93.69) 86.03 (82.85, 89.33) 95.33 (92.67, 98.06) < 0.001
Serum zinc, μg/dLb 76.71 (75.19, 78.26) 72.66 (70.28, 75.13) 79.04 (77.12, 81.00) < 0.001
Serum copper-to-zinc ratiob 1.20 (1.17, 1.22) 1.18 (1.16, 1.21) 1.21 (1.18, 1.23) 0.251
Urinary NAG, unit/g creatinineb 2.83 (2.56, 3.10) 2.16 (1.84, 2.53) 3.35 (2.98, 3.78) < 0.001
Urinary β2-MG, μg/g creatinineb 23.10 (19.49, 27.11) 17.92 (13.80, 23.27) 24.31 (19.89, 29.71) 0.066
Urinary MDA, μmol/g creatinineb 1.67 (1.62, 1.72) 1.58 (1.51, 1.65) 1.73 (1.66, 1.80) 0.002
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An imbalance in the Cu/Zn level had different effects 
on renal tubular damage, particularly β2-MG, depending 
on the Cd exposure level. In the high Cd exposure group, 
Cd was an independent risk factor for renal tubular dam-
age, and the same results were found in numerous previ-
ous studies (Bernard 2004, 2008; Eom et al. 2017; Jarup 
et al. 1998; Satarug et al. 2010). However, in the high 
Cd exposure group, the CZR effect on β2-MGuria was 

relatively weaker than that of Cd. Interestingly, in the low 
Cd exposure group, the urinary β2-MG concentration was 
positively associated with the serum CZR but not with the 
urinary Cd level. Considering that the urinary Cd level 
was not correlated with the CZR, these results suggest 
that a Cu/Zn imbalance may be an independent factor for 
the elevated urinary β2-MG level in the low Cd exposure 
group. Similarly, previous studies have reported that an 

Table 2   Pearson’s correlation coefficients among the biomarkers of trace elements, renal tubular damage, and oxidative stress

Cd cadmium, NAG N-acetyl-β-d-glucosaminidase, β2-MG β2-microglobulin, MDA malondialdehyde
a All variables are log-transformed
*P < 0.05, **P < 0.01

Cadmium expo-
sure group

Variablesa Serum copper, 
μg/L

Serum zinc, 
μg/L

Serum 
copper-to-
zinc ratio

Urinary NAG, 
unit/g creati-
nine

Urinary β2-MG, 
µg/g creatinine

Urinary MDA, 
µmol/g creatinine

Total Urinary Cd, μg/g 
creatinine

0.191** 0.185** 0.043 0.200** 0.076* 0.118**

Serum copper, 
μg/dL

0.744** 0.511** 0.168** 0.038 0.038

Serum zinc, μg/
dL

− 0.194** 0.157** 0.002 − 0.082*

Serum copper-
to-zinc ratio

0.046 0.054 0.161**

Urinary NAG, 
unit/g creati-
nine

0.355** 0.015

Urinary β2-MG, 
µg/g creatinine

0.096**

Low (< 2 μg/g 
creatinine)

Urinary Cd, μg/g 
creatinine

0.182** 0.188** 0.024 0.151** − 0.084 0.066

Serum copper, 
μg/dL

0.779** 0.485** 0.261** 0.062 0.047

Serum zinc, μg/
dL

− 0.170** 0.257** − 0.020 − 0.067

Serum copper-
to-zinc ratio

0.054 0.125* 0.165**

Urinary NAG, 
unit/g creati-
nine

0.340** − 0.072

Urinary β2-MG, 
µg/g creatinine

0.085

High (≥ 2 μg/g 
creatinine)

Urinary Cd, μg/g 
creatinine

0.103* 0.104* 0.017 0.142** 0.160** 0.071

Serum copper, 
μg/dL

0.705** 0.533** 0.064 0.006 0.012

Serum zinc, μg/
dL

− 0.225** 0.048 0.006 − 0.115**

Serum copper-
to-zinc ratio

0.031 0.001 0.154**

Urinary NAG, 
unit/g creati-
nine

0.360** 0.052

Urinary β2-MG, 
µg/g creatinine

0.094**
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overload or deficiency of Cu or Zn is associated with renal 
dysfunction (Hamasaki et al. 2016; Ikeda et al. 2007; Liu 
et al. 2018). In particular, Ikeda et al. (2007) found that 
β2-MG levels are more related to Cu levels than to Cd lev-
els in women without environmental Cd exposure (Ikeda 
et al. 2007). Schantz et al. reported that an induction of 
MT by zinc acts as a potential endogenous antioxidant 
in renal proximal tubular cells, which has a protective 
effect against the reduction of kidney function (Schanz 
et al. 2017). Therefore, this study suggests that the balance 
of essential metals, such as Cu and Zn, plays an impor-
tant role in renal dysfunction, especially in groups with 
low levels of Cd exposure. The CZR is a more important 
indicator than each concentration of these trace metals 
for evaluating trace metal imbalance (Osredkar and Sustar 
2011).

In the present study, the urinary NAG activity was not 
associated with the CZR but with the urinary Cd levels. In 
the high exposure group, the urinary β2-MG levels were 
significantly correlated with the urinary Cd levels. Urinary 
NAG activity reflects ongoing damage in the tubular epi-
thelial cells, while the β2-MG level reflects a decreased 
tubular reabsorption capacity (Bernard 2008; Fassett 
et al. 2011). When the CZR was stratified, the risk of both 
NAG and β2-MG abnormalities caused by Cd showed a 
U-type pattern with relatively increased CZR tertile levels. 
Although these results suggest that CZR has a mechanism 
of renal toxicity different from that of Cd, it suggests that 
the kidney damage caused by Cd can be controlled by bal-
ancing essential metals.

The mechanism of linking Cd exposure and renal tubu-
lar damage has not yet been fully understood. Cd-induced 
oxidative stress may play an important role in renal damage 

Table 3   Multiple linear 
regression analysis for renal 
tubular damage and oxidative 
stress

Cd cadmium, NAG N-acetyl-β-d-glucosaminidase, β2-MG β2-microglobulin, MDA malondialdehyde
a Multiple linear regression adjusted for age, sex, body mass index, smoking status, alcoholic drinking sta-
tus, diabetes, hypertension and urinary creatinine concentration. Both independent and dependent variables 
are log-transformed

Dependent variables Independent variables Cadmium exposure group

Low (< 2 μg/g creati-
nine)

High (≥ 2 μg/g 
creatinine)

βa P value βa P value

Urinary NAG (unit/L) Urinary Cd (μg/L) 0.271 0.128 0.482 0.002
Serum copper-to-zinc ratio 0.357 0.284 0.091 0.710

Urinary β2-MG (μg/L) Urinary Cd (μg/L) − 0.409 0.184 0.703 0.006
Serum copper-to-zinc ratio 1.360 0.019 0.120 0.771

Urinary MDA (µmol/L) Urinary Cd (μg/L) 0.051 0.276 − 0.027 0.549
Serum copper-to-zinc ratio 0.243 0.006 0.265 < 0.001

Table 4   Associations of urinary Cd levels with renal tubular damage according to serum copper-to-zinc ratio

Cd cadmium, NAG N-acetyl-β-d-glucosaminidase, β2-MG β2-microglobulin, CZR serum copper-to-zinc ratio, OR odds ratios, CI confidence 
interval
a OR (95% CI) for renal tubular damage, comparing the low Cd exposure and the high Cd exposure group by level of CZR tertiles
b Cadmium exposure was divided into a low (urinary Cd < 2 μg/g creatinine) or high (urinary Cd ≥ 2 μg/g creatinine) exposure group
c Adjusted for age, sex, body mass index, smoking status, alcoholic drinking status, diabetes, and hypertension

Level of CZR High NAG (> 11.5 unit/g creatinine) High β2-MG (> 300 µg/g creatinine)

N (%) OR (95% CI)a N (%) OR (95% CI) a

Low Cdb High Cd Crude Adjustedc Low Cdb High Cd Crude Adjustedc

Tertile 1 
(CZR < 1.1)

3 (2.31) 15 (7.98) 3.67 (1.04, 12.95) 3.37 (0.84, 13.51) 3 (2.31) 19 (10.11) 4.76 (1.38, 16.43) 4.22 (1.09, 16.36)

Tertile 2 
(1.1 ≤ CZR < 1.3)

10 (7.09) 24 (12.24) 1.83 (0.85, 3.96) 1.31 (0.57, 3.01) 12 (8.51) 15 (7.65) 0.89 (0.40, 1.97) 0.79 (0.33, 1.85)

Tertile 3 
(CZR ≥ 1.3)

4 (3.05) 27 (13.57) 4.98 (1.70, 14.60) 3.76 (1.24, 11.44) 4 (3.05) 19 (9.55) 3.35 (1.11, 10.08) 3.26 (0.99, 10.74)
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(Prozialeck and Edwards 2010; Thevenod 2003). In this 
study, the serum CZR was significantly associated with 
the MDA levels in urine in both Cd exposure groups after 
adjusting for potential confounding factors. In contrast, 
the urinary Cd was not associated with the level of urinary 
MDA. This finding suggests that although Cd can cause a 
decrease in renal Zn reabsorption, which leads to Cu and Zn 
imbalances (Satarug et al. 2018), the CZR imbalance is an 
independent risk factor for renal tubular damage by induc-
ing oxidative stress. Similar to our findings, several studies 
have shown a correlation between the imbalance in trace ele-
ments and oxidative stress (Guo and Wang 2013; Lin et al. 
2014; Ozturk et al. 2013). Previous studies have also shown 
that Zn supplementation increases the antioxidant enzyme 
activity associated with Zn and reduces oxidative stress and 
inflammatory responses (Kloubert and Rink 2015; Mariani 
et al. 2008).

Both serum Cu and Zn levels reflect dietary intake and 
supplementation (Hess et al. 2007). Imbalance between Cu 
and Zn is often caused by inadequate dietary factors (Lon-
nerdal 2000; Ma and Betts 2000) and influenced by physi-
ological conditions (i.e., age, infection, and anemia), alco-
hol drinking, malabsorption due to gastrointestinal diseases, 
inflammatory conditions, and genetics (Osredkar and Sustar 
2011; Roohani et al. 2013). However, this study was limited 
by its cross-sectional design and was therefore unable to 
identify the specific cause and prolonged period of Cu and 
Zn imbalance. In addition, the temporal relationship between 
the imbalance of essential element and renal tubular damage 
or oxidative stress remains unclear. Consequently, our results 
should be interpreted with caution.

In conclusion, CZR imbalance is a risk factor for renal 
tubular damage by inducing oxidative stress independent 
of Cd. The results of this study suggest that an imbalance 
between Cu and Zn must be evaluated to identify kidney 
damage due to a chronic exposure to heavy metals, and 
proper Zn supplementation will be effective in preventing 
adverse health effects due to Cd exposure.
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