
Received December 29, 2019, accepted January 6, 2020, date of publication January 10, 2020, date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2965627

Continual Prediction of Bug-Fix Time Using Deep
Learning-Based Activity Stream Embedding
YOUNGSEOK LEE1, SUIN LEE2, CHAN-GUN LEE 3, IKJUN YEOM4, AND HONGUK WOO 4
1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea
2Department of Platform Software, Sungkyunkwan University, Suwon 16419, South Korea
3Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea
4Department of Software, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Honguk Woo (hwoo@skku.edu)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT, and in part by the Future Planning under Grant NRF-2016R1E1A1A01943474,
Grant NRF-2017R1E1A1A01075803, and Grant NRF-2018R1D1A1A02086102.

ABSTRACT Predicting the fix time of a bug is important for managing the resources and release milestones
of a software development project. However, it is considered non-trivial to achieve high accuracy when pre-
dicting bug-fix times.We view that such difficulties come from the lack of continuous or posterior estimation
based on subsequent developers’ activities after a bug is initially reported. In this paper, we formulate the
problem of bug-fix time prediction into a continual update of estimates with more activities. Logging data
of bug-related activities that are streamed to a bug tracking system change the bug reports, enabling us to
recalculate predictions over time. To do so, we propose a deep learning-based two-staged activity stream
embedding model, DASENet that employs (i) a merged network for extracting contextual features across
different types of logs, and (ii) a sequence network for exploring temporal relations of the logs. Through
experiments with bug tracking system datasets from open source projects including Firefox, Chromium, and
Eclipse, we show that DASENet achieves stable performance, e.g., for the Firefox dataset, top-1 accuracy
of 4.6 to 8.5 % higher than other state-of-the-art works. Our approach also provides a transferable structure,
yielding robust performance with a small dataset for different tasks; the DASENet model trained with a small
dataset of about 900 samples (2 % of a full dataset) can show competitive performance to the other models
with a full dataset. To the best of our knowledge, we are the first to employ deep learning on log streams in
the context of bug-fix time prediction.

INDEX TERMS Bug-fix time, activity stream, bug tracking system, deep learning, activity embedding,
sequence learning model.

I. INTRODUCTION
Data in a bug tracking system are frequently used as an essen-
tial part of managing the schedule, quality, and resources of
software development in both industry practice and academic
literature. Along with data, modern machine learning tech-
nology has raised the opportunity of automating several parts
of bug-related processes of software development, such as
bug triage [1]–[4], bug localization [5]–[11], duplicate bug
detection [12]–[14], and bug priority assignment [15], [16].

One major issue for handling bugs during software devel-
opment is to estimate the fix time of a bug in advance. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Mervat Adib Bamiah .

estimation of when a bug (or an issue) will be resolved, if suf-
ficiently accurate, contributes to productive decision-making
for resource allocation, release schedule management, and
other management tasks. Several researchers investigated the
problem of predicting bug-fix times, andmost of this research
addressed the problem by performing either regression [17],
[23]–[25] or classification [18]–[22] based on the features
extracted from the attributes of bug reports.

With the increasing popularity of deep learning, a few
researchers have recently utilized RNNs (recurrent neural
networks), CNNs (convolutional neural networks), or other
neural network models to investigate features mostly avail-
able on the text of bug reports, e.g., [3], [4] for bug triage,
and [7]–[11] for bug localization.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 10503

https://orcid.org/0000-0001-9734-4456
https://orcid.org/0000-0001-6948-3440
https://orcid.org/0000-0001-5692-9992

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

In this paper, on the contrary to the purpose of those
deep learning-based approaches, we focus on the continual
prediction of bug-fix times and adapt deep neural networks
for analyzing log streams of bug-related activities. We also
use text data that can be retrieved from bug tracking systems.
However, we take two different steps tailored to the contex-
tual and temporal properties of bug-fix time prediction.

First, we consider heterogeneity of log types, and therefore,
we develop joint learning and merged network. This network
structure facilitates automated feature extraction from various
types of bug-related activity logs, by combining a set of
individual embedding networks wherein each is structured
respectively for a specific type.

Second, we view the task of predicting the bug-fix time as
a continuous process on log streams. Accordingly, we discuss
how to continuously reevaluate the prediction with newly
available data, formulating such log streams as sequences
of contextual signals and then facilitating sequence analysis.
This reformulation of continual prediction was motivated by
our interviews with a group of project managers. They fre-
quently talked about the benefits of automatic status updates
that can not only integrate all of the ongoing activity infor-
mation but also revise forecasts to the latest state, e.g., daily
estimates about a set of bugs that are expected not to be
resolved within a scheduled milestone.

As described above, we treat developers’ activities, which
are continuously logged in a bug tracking system, as signals
for estimating the status of underlying bug fixing jobs. We
then propose a two-staged leaning model, DASENet (Deep
learning-based Activity Stream Embedding Network) that
leverages the integrated use of a merged network and a
sequence network; the former combines different types of
logging data to a per-day activity summation, and the other
generates embedding that reflects all the accumulated per-day
activities in a common vector space. Through experiments

with several datasets, we demonstrate that our continual pre-
diction using DASENet is able to render stable accuracy
for multi-class classification problems on bug-fix times. Our
main contributions are summarized as follows:
1. We first propose a continual approach for bug-fix time

prediction by exploiting deep learning techniques with
data streams of bug-related activity logs. Specifically,
we present the two-staged DASENet comprising a
merged network and a sequence network.

2. We then validate the model with several datasets
collected from the bug tracking systems of famous
open source projects, i.e., Firefox, Chromium, Eclipse
[26]–[28]. We reform the datasets into an easy-to-use
format for sequence learning and make them available
on Github [29].

3. We demonstrate the enhanced prediction ability of
DASENet for bug-fix times.

4. Finally, we present a data- and time-efficient transferring
procedure for variant tasks, which leverages the activity
stream embedding of DASENet.

II. RELATED WORKS
In the software engineering literature, there were sev-
eral works that conducted mining on bug management
databases or code repositories, with the intent of achieving
learning models related to bug-fix times. A summary of these
works is illustrated in Table 1.

Weiss et al. [17] employed the text-based similarity of titles
and descriptions of bug reports to predict bug fixing efforts.
Zhang et al. [18] utilized kNN clustering techniques over
bugs where the properties were characterized by domain-
specific features such as the opener, priority, severity, cat-
egory, and other selected bug attributes. Marks et al. [19]
made an effort to find many attributes relevant to bug-fix
times and used a decision tree with all of the attributes.

TABLE 1. Research related to bug-fix time prediction.

10504 VOLUME 8, 2020

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

They focused on detecting outlier bugs in terms of fix
time, and thus, considered loose conditions, e.g., one year-
threshold.

There have been several works to exploit more than
conventional bug features via handcrafted analysis on project-
specific characteristics. For example, Guo et al. [20] partic-
ularly exploited external attributes that can be obtained from
feedback of employees (not from a bug report itself). Interest-
ingly, the examples of external attributes include geographi-
cal features such as whether the bug report opener and the
assigned developer are in the same building. Giger et al. [21]
demonstrated the benefit of exploiting post-submitted data of
bug-related activities, e.g., assignee changes and developers’
comments.

Recently, Habayeb et al. [22] exploited a hidden Markov
model (HMM) to analyze temporal features of system-
bug repositories, based on their sophisticated feature selec-
tions on significant events related to bug condition changes.
Similar to this HMM-based approach, we concentrate
on the time-dependent features of bug-related activities.
However, we employ deep neural networks to incorporate
diverse log types into unified feature extraction with less
manual labor. Furthermore, we adopt RLSTM (residual long
short-term memory)-based sequence analysis of extracted
features, hence rendering our model less dependent on spe-
cific datasets.

A few researchers have demonstrated the applicability of
deep learning techniques for mining bug-related data for a
specific task such as bug triage and bug localization. In gen-
eral, a bug triage process is to automatically find appropriate
developers who can fix the bug when a bug is reported.
Mani et al. [4] pointed out that it was critical to extract
features not from individual words but from the context of
sentences in bug reports in order to improve bug triage accu-
racy. Their work DeepTriage utilized a BLSTM (bi-direction
long short-term memory) network where word-embedding
sequences for bug description texts are fed. Similarly,
Lee et al. [3] utilized CNNs for bug triage.
For bug localization, Lam et al. [7], [8] proposed a deep

learning-based method using the combination of three types
of features: textual similarity, relevancy, and statistical data.
Specifically, they extracted the features by using a revised
Vector Space Model [30], [31] with textual similarity mea-
surements, and then derived the text and code-level relevancy
between bug reports and source files. Xiao et al. [9]–[11]
presented a CNN-based merged network structure, namely
DeepLoc, for combining different feature types of bug reports
and source files. They achieved stable performance with aver-
age accuracy 59 to 70 % and 69 to 79 % respectively for
top-5 and top-10 rankings. This work and our model share
a common structure in that both leverage the merged deep
learning structure. However, our problem domain is not bug
localization but bug-fix time prediction, which is suited to
continual prediction with log streams.

At this time, not many deep learning-based methods have
been introduced to solve problems related to bug-fix times.

To the best of our knowledge, in the context of learning
temporal properties of bug-related data, our work is the first
that utilizes deep learning and embedding techniques.

III. PROPOSED APPROACH
In this section, we briefly describe our view on data in bug
reports, and present the overall structure of our proposed
DASENet model.

A. ACTIVITY LOG STREAMS
A bug tracking system manages databases of bug-related
information and allows a group of developers in a project
team tomanage various issues of bugs. For each bug, its report
contains relevant information such as title, owner, status,
description, comment, and attachment. While there might be
several different report formats and layouts across projects,
it is commonly observed that a bug report is continuously
updated during its lifetime alongside bug-related activities.
Activities are normally logged, either by manual descriptive
text of developers in natural language (e.g., description, com-
ments, and inquires) or by semi-automated records in struc-
tured text (e.g., appending a new developer to CC list, and
updating the status field from NULL to Fixed). Considering
the different text structure and input source, throughout this
paper, we distinguish these two appended log types into user
comment and system record respectively.
Fig. 1 illustrates an example bug report in the Chromium

project repository [27]. In the figure, a bug was initially
reported on March 10, 2014, and then four user comments
(a©, c©, f©, g©) and three system records (b©, d©, e©)
were appended until the bug status was finally changed
to ‘‘fixed’’ on March 26, 2014. User comments contain
sentences, e.g., ‘‘Either solution is better than . . .’’ and
‘‘Change the streamPrivate . . .’’, while system records briefly
describe the changes of bug report attributes, e.g., ‘‘CC:
darine@chromium.org’’ and ‘‘Labels: Cr-Internals. . .’’.

In the same vein of previous works [18]–[22], we consider
day-granularity for bug-fix times. Thus, we devise a per-day
bin container (namely, activity bin). Specifically, for each
bug, all of the temporally co-logged activity information dur-
ing a day is bundled together. Furthermore, we convert a set
of continuously generated activity bins to the chronologically
ordered sequence format (namely, bin-sequence).

B. OVERALL MODEL ARCHITECTURE
To achieve robust prediction models over log streams,
we investigate a deep learning-based embedding structure in
which both contextual and temporal features of activity log
streamswith various log types can bewell-represented. Based
on the embedding structure, we then explore various bug-
related temporal tasks including our main task, bug-fix time
prediction. Several tasks will be discussed in Section VI.
Fig. 2 illustrates our proposed DASENet model. Its learn-

ing process takes the following steps.

VOLUME 8, 2020 10505

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

FIGURE 1. A bug report example with activity logs in the Chromium project repository.

1© In data preprocessing, each bug report is transformed
into a chronologically ordered set of per-day activity
bins (bin-sequence) containing user comments, system
records, and metadata.

2© For activity bin embedding, each activity bin is used to
train a merged network of BLSTMs and MLPs (multi-
layer perceptrons). This embedding process is intended
for extracting contextual features related to bug fixing
jobs available logging data of different types.

3© For bin-sequence embedding, an RLSTM-based
sequence network is stacked on top of the merged net-
work (in 2©). The bin-sequence embedding is intended
for capturing temporal relations of activities. A bin-
sequence is used by such a two-staged embedding
model of the merged and sequence networks, namely
DASENet.

4© For task learning, a feed-forward MLP (task layer)
is additionally stacked on the pre-trained DASENet.
The task layer is directly connected with the output of
the sequence network, and then separately trained with
datasets for a specific task.

The implementation and use of DASENet will be discussed
in the next sections: 1© preprocessing in Section IV, 2©
activity bin embedding and 3© bin-sequence embedding in
Section V, and 4© task learning on DASENet in Section VI.
Here, we briefly explain our motivation for the two-staged

deep learning structure of DASENet. Table 2 shows the accu-
racy result of our initial test for a bug-fix time classification
problem with three classes. For this test, we implemented

an MLP-based deep neural network. Considering divergent
perspectives on how to interpret log streams, we intention-
ally created three different datasets, and then trained models
with each dataset. Fig. 3 depicts the difference between the
datasets: (1) ‘‘cumulative - all’’ contains all the available
logging data from the bug-open to a specific point in time
for prediction including the both log types, user comments
and system records for each bug report, (2) ‘‘cumulative -
user comment’’ consists of all the available user comments
only (no system records), and (3) ‘‘latest - all’’ holds only the
latest updated per-day activity for the both log types.

In this test, we expected that a model trained with more
data in terms of aggregation and log types (i.e., ‘‘cumulative -
all’’ dataset) should outperform the other models. However,
in Table 2, we observed only slight differences of 1 to 2 % in
model accuracy that rarely met our expectation. This initial
result led us to devise a hierarchical model structure that
can extract both contextual and temporal features from time-
series log streams of different types.

TABLE 2. Initial top-1 accuracy of 3-class classification.

Note that the datasets used here will be explained in
Section VII-A. In addition, the MLP-based deep neural

10506 VOLUME 8, 2020

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

FIGURE 2. Our overall approach.

FIGURE 3. Aggregation and log types.

network model with the ‘‘cumulative - all’’ dataset is used
as a baseline for evaluation (DeepBase in Section VII-B).

IV. STREAM DATA PREPROCESSING
In this section, we present how to transform log streams of
various types of bug-related activities into input data for deep
learning models.

TABLE 3. Metadata of activity bins.

As described previously, a per-day activity bin Bi contains
all of the co-logged activity information in various types
(e.g., user comments, system records) during the same day.
Alongside log types of user comments Xuser and system
records Xsys, we also treat several statistical properties as a
metadata set (in Table 3) for each activity bin, and include the
metadata set in its associated activity bin. Then, an activity
bin is denoted by a set

Bi = {Xi
user, Xi

sys, Xi
meta} (1)

where a bin index i ∈ N is given in chronological order.
Fig. 4 shows the timeline of individual activity logs

extracted from the bug report R in Fig. 1. For example,
the activity bin B2 on March 17, 2014, holds a user com-
ment c©, a system record b©, and its metadata. It should be
noted that any logs trivially signifying that a bug has been
closed can be seen as a label for bug-fix time prediction;
hence, those should not be in activity bins. In Fig. 1 and 4,
the status change log (Fixed) on March 26, 2014, is not
included in any activity bin.

FIGURE 4. Activity timeline of a bug report.

Word embedding schemes (i.e., word2vec [32]) are used
to represent individual words in user comments and system
records in a common vector space. Accordingly, we denote
them as vector sequences

Xi
user=

[
v1, . . . , vluser

]
, Xi

sys=
[
v1, . . . , vlsys

]
(2)

where v is a word embedding and luser and lsys are the
sequence lengths of Xi

user and Xi
sys respectively. In addition,

we represent the metadata set in Table 3 as a binary encoded
data

Xmeta =
[
m1, . . . ,mlmeta

]
(3)

where lmeta = 5 is the size of Xmeta.

VOLUME 8, 2020 10507

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

For a bug report R, its bin-sequence contains activity bins
in chronological order, and it is denoted as

ST = {B1,B2, ...,BT } (4)

where T ∈ N is the latest bin index at the current time.

V. ACTIVITY STREAM EMBEDDING
In this section, we present our deep learning-based activ-
ity stream embedding technique. Our proposed two-staged
learning DASENet employs (i) a merged network structure
with different neural networks for performing compositional
embedding of various log types, and (ii) an RLSTM-based
sequence network for performing temporal data analysis over
log streams. These merged and sequence networks together
are intended for continuously extracting contextual and tem-
poral features from log streams in heterogeneous formats over
time.

A. NETWORK COMPONENTS
DASENet is organized into deep neural network components
to be laid out according to the characteristics of the input
data, as shown in Fig. 5. We explain each network block such
as deep BLSTM [33], MLP, and RLSTM, and depict their
internal structure on the right side of Fig. 5.

1) DEEP BLSTM
Consider an l-length input vector sequenceX = [x1, . . . , xl].
A deep BLSTM function with d-hidden layers computes an
output vector:

y = [y1, . . . , yo] = BLSTM([x1, . . . , xl]). (5)

To do so, it calculates the intermediate output vector sequence
Y = [y1, . . . , yl] and the hidden state vector sequence of the
nth layerHn

=
[
hn1, . . . ,h

n
l

]
by iterating the equations below

for n = 1, . . . , d and t = 1, . . . , l. Here, we denote a forward
layer as −→· , and a backward layer as ←−· for bi-directional
processing.

−→
h n
t = H

(
W−→

h n−1−→h n

−→
h n−1
t +W−→

h n−→h n

−→
h n
t−1 +

−→
b n
t

)
(6)

←−
h n
t = H

(
W←−

h n−1←−h n

←−
h n−1
t +W←−

h n←−h n

←−
h n
t−1 +

←−
b n
t

)
(7)

−→y t = W−→
h d−→y

−→
h d
t +W−→h d−→y

−→
h d
t +
−→
b y
t (8)

←−y t = W←−
h d←−y

←−
h d
t +W←−h d←−y

←−
h d
t +
←−
b y
t (9)

H(·) is the hidden layer function which uses memory cells
defined in [34], [35]. Whn−1hn is the hidden weight matrix
from the (n − 1)th layer to the nth layer, Whnhn is the recur-
rent hidden weight matrix at the nth layer, and Whdy is the
d th hidden-output weight matrix. b is the bias vector. Then,
the output vector is derived from the intermediate output
vector sequence Y = [y1, . . . , yl] by:

y =
[(−→y l

)
,

(←−y 1
)]

. (10)

FIGURE 5. Architecture of DASENet.

2) DEEP MLP
For an input vector x = [x1, . . . , xl], a deep MLP function
yields the output vector

y = [y1, . . . , yo] = MLP([x1, . . . , xl]) (11)

by calculating the hidden state vector of the nth layer hn =
[hn1, . . . , h

n
qn] where qn is the number of the nodes in the

nth hidden layer. This calculation is done by the following
equations for n = 1, . . . , d and t = 1, . . . , qn:

hnt = f

qn−1∑
j=1

whn−1j hnt
hn−1j + bnt

 (12)

yp = f

 qd∑
j=1

whdj yph
d
j + b

y
p

, p = 1, . . . , o. (13)

Note that whn−1j hnt
is the weight value from the jth node of

the (n − 1)th hidden layer to the tth node of the nth hidden
layer. b is the bias value (byp is the bias value in the pth
node of the output layer), and f (·) is an activation function,

10508 VOLUME 8, 2020

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

e.g., Leaky ReLU. In addition, whdj yp is the weight value from
the jth node in the final hidden layer to the pth node in the
output layer.

3) RESIDUAL LSTM (RLSTM)
We devise a modified LSTM network based on the residual
network structure [36], which can enrich temporal feature
extraction and mitigate the accuracy saturation and degrada-
tion problem of deeply layered networks [37], [38].

For an l-length input vector sequence X = [x1, . . . , xl], an
RLSTM function computes an output vector:

y = [y1, . . . , yo] = RLSTM([x1, . . . , xl]). (14)

To do so, it calculates the intermediate output vector sequence
Y = [y1, . . . , yl], and the hidden state vector sequence of
each layer n, Hn

=
[
hn1, . . . ,h

n
l

]
by iterating the following

equations for n = 1, . . . , d and t = 1, . . . , l:

hnt = H
(
Whn−1hnh

n−1
t +Whnhnhnt−1 + bn−1t

)
(15)

Hn
= Hn

+Hn−1, yt = Whdyh
d
t + byt + xt . (16)

Then, an output vector y is obtained from the intermediate
output vector sequence Y = [y1, . . . , yl] by y = yl where yl
is the last element of Y.

B. ACTIVITY BIN EMBEDDING
In DASENet, a merged network for activity bin embedding
is jointly trained to combine various types of activity logs
via multiple deep neural networks. It was pointed out that
a deep neural network structure with multiple networks is
effective in representing an event in the context of event
embedding [39], [40]. The merged network of DASENet
adapts this event embedding structure for activity log streams.
Specifically, it combines deep BLSTM and MLP networks,
and transforms an activity bin Bi = {Xi

user,X
i
sys,X

i
meta}

(in (1)) into a bin embedding vector eibin.
For Xi

user and X
i
sys (in (2)) in a word embedding sequence,

their feature vectors yiuser ∈ Rouser and yisys ∈ Rosys are calcu-
lated by the deep BLSTM functions that discover underlying
information from written texts:

yiuser=BLSTMuser(Xi
user), yisys=BLSTMsys(Xi

sys). (17)

Notice that the BLSTMuser(·) and BLSTMsys(·) functions do
not share their parameters. The feature vector yimeta ∈ Rometa

of metadata Xi
meta = [m1, . . . ,mlmeta] (in (3)) is extracted by

the MLP function:

yimeta = MLPmeta
(
[(m1), . . . , (mlmeta)]

)
. (18)

Subsequently, the three outputs separately computed
in (17)-(18) are concatenated and then fed to the deep MLP
function to be merged:

eibin = MLPbin

([(
yiuser

)
,
(
yisys

)
,
(
yimeta

)])
. (19)

Then, we treat the output eibin ∈ Rouser+osys+ometa as an activity
bin embedding vector for the activity bin Bi. In overall, this

embedding vector represents comprehensive features of Bi on
a continuous vector space, combining different types of logs
in Bi.

C. BIN-SEQUENCE EMBEDDING
In DASENet, a sequence network is stacked on the previ-
ously explained merged network. It takes as an input a set
of activity bin embedding vectors

{
eibin

}T
i=1 (in (19)) where T

denotes the number of activity bins currently available for a
bug report, and then it produces a bin-sequence embedding
vector eseq.

Recall that
{
eibin

}T
i=1 is calculated by the iteration

of (17)-(19) for each of all the activity bins in ST (in (4)).
Then, the deep RLSTM function computes its embedding
vector:

eseq = RLSTMseq

({
eibin

}T
i=1

)
. (20)

This embedding vector eseq turns out to encapsulate both
contextual and temporal features of activity log streams via
the stacked networks of bin embedding and bin-sequence
embedding.

D. DASENET MODEL IMPLEMENTATION
Fig. 5 illustrates the DASENet implementation, where the
dimensions of input and output variables and the number of
hidden nodes are presented in parentheses. For example, with
a word being mapped to 200-dimensional data,Xi

sys(50, 200)
in the box of the activity bin embedding indicates a
50-length sequence input for a system record (in (2)). In addi-
tion, eseq(200) on the top of the figure denotes that the size of
our bin-sequence embedding vector (in (20)) is 200.

To train DASENet, we leverage the notion of supervised
embedding [41] that is known to be effective for a spe-
cific task or a group of transferable tasks, and particularly,
we employ the bug-fix time prediction task with K -classes.
Specifically, we stack an additional layer of MLPtrain(·) and
a softmax function on top of DASENet. MLPtrain(·) takes the
output eseq of DASENet and yields a K -size vector ytrain.

ytrain = [y1, . . . , yK] = MLPtrain(eseq) (21)

Then, the predicted probability of jth element (yj) in ytrain is
calculated by a softmax function:

Prsoftmax(j) =
exp

(
yj
)∑K

p=1 exp
(
yp
) . (22)

For training DASENet in supervised manner, we utilize
categorical cross-entropy errors of K -class bug-fix time
classification:

Cross-entropy error = −
K∑
j=1

cjlog (Prsoftmax(j)) (23)

where cj is ground truth of the class label j.
Specifically, we setK = 7, by considering that the features

of embedding outputs can be biased unless the distribution of

VOLUME 8, 2020 10509

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

FIGURE 6. Distribution of bin-sequences.

samples is well-balanced. Fig. 6 compares the distributions
of bin-sequence samples; in Fig. 6(b), we notice that the
distribution of 7-class is relatively balanced, as contrasted to
imbalanced long-tail pattern of 100-class in Fig. 6(a). Note
that the criterion of 7-class is in Table 4.

TABLE 4. Multiple class ranges for three tasks.

In consequence, the trained DASENet generates a 200-
dimension embedding vector eseq for an activity stream,
by taking a bin-sequence ST = [B1,B2, ...,BT] as an input
and processing it via the two-staged merged and sequence
networks.

VI. TASK LEARNING USING DASENET
In this section, we present the learning process for a task using
DASENet and describe several task scenarios.

A. TASK LEARNING PROCESS
The activity stream embedding of DASENet allows us to
build a task model data-efficiently, which can deal with bug-
related temporal prediction problems. For a task, an addi-
tional network combined with DASENet can be separately
trained with its own dataset and class labels. For imple-
menting such an additional task network, we generally use
a deep MLP function, yet with no limitation on how it is
implemented. For example, we use MLPtask(·) on the trained
DASENet such as

ytask = [y1, . . . , yK] = MLPtask(eseq) (24)

where K is the same as the number of the task classes (e.g.,
K -class classification). To calculate the predicted probability
of jth element (yj) in ytask, we use the softmax function
(in (22)). Subsequently, for top-k accuracy-based prediction,
we choose a k-size set of those elements with the highest
probabilities.

B. TASK SCENARIOS
Here, we consider three task scenarios that involve analyzing
bug-related activities to make temporal event prediction: bug-
fix time (FixTime), the number of remaining activity bins
(RemainBins), and the occurrence time of next activity bin
(NextBin). While the activity stream embedding is based
on FixTime, K -class classification (with various K -settings)
tests and cross-project tests are discussed here. The other
RemainBins and NextBin tasks are also related to project
managers’ jobs, similar to FixTime.

Table 4 illustrates the multi-class specification used in
Section VII. For simple explanation, suppose that we have a
task functionWtask(R) that yields a certain task-specific value
for a bug report R. Then, we represent class conditions by
intervals [a, b] (or (a, b]) where all the bug reports R such
that a ≤ Wtask(R) ≤ b (or a < Wtask(R) ≤ b) are in the
same class. The implementation ofWtask(·) is fully dependent
on specific task semantics. Note that the 2-class criterion
of FixTime is set to the median of bug-fix times of each
project dataset, but otherwise the same criterion applies to
all datasets; for the 2-class, we hardly found such a common
criterion that can render all the datasets well-balanced.

1) FixTime
In general, it is important for project managers to estimate
when bugs or issues are resolved. In the context of bug-
fix time prediction, a task function of a bug report R is
represented as a daily-basis time gap from the latest update on
R (i.e., day for the last bin) to whenR is closed. For generality,
we assume K -class classification problems for various K
settings, as illustrated in Table 4.

2) RemainBins
The RemainBins task is to predict howmany activity bins will
be generated more until a bug is closed. In the same way as
FixTime, we use per-day activity bins and accordingly day-
granularity.

3) NextBin
To predict when next bug-related activities will occur,
the NextBin task uses a model with the same day-granularity
above.

VII. EVALUATION
In this section, we evaluate the performance of our proposed
DASENet model. For evaluation, we implemented the mod-
els using the Keras machine learning framework [42], and
conducted tests on a system with an Intel CPU i9-9940X
processor 3.30 GHz (14 cores), 128G of RAM, and NVIDIA

10510 VOLUME 8, 2020

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

Geforce GTX 2080 SLI. The performance metric for evalu-
ating a model with a G-sized dataset is Top-k accuracy =
1
G

∑G
g=1 match

(
cg,Pg

)
where cg and Pg denote a ground

truth class label and a set of predicted class labels respectively
for each sample. Here, match

(
cg,Pg

)
= 1 if cg ∈ Pg; 0,

otherwise.
All the tests were performed with 10-fold cross-validation

sets [43] and the average performance was summarized.

A. DATASETS
We utilize datasets collected from the bug tracking systems
of open source software development projects including Fire-
fox [26], Chromium [27], and Eclipse [28], which have been
frequently used for bug-mining research. We use only bug
report samples of which state is resolved and their lifetime
is in the range from 1 to 100 days. We observed that some
bugs were rapidly closed in a few seconds just after they
were reported to the system, and others had remained with no
activity for more than 100 days since there were open. These
outlier data patterns on bug reports were also mentioned
in the previous research [22]. Some might be interested in
seizing characteristics of such abnormality, but we rather
focus on modeling with normal data, similarly to [22], [44].
Our refined datasets that contain bug-related activities in
the daily-basis sequence format can be accessed from
Github [29].

Table 5 presents the statistics of the datasets. For exam-
ple, in the Chromium dataset, there are 15,170 bug reports
with 70,001 sequence samples which are observed from
March 2014 to August 2015. In addition, the sample ratio of
each dataset for training and testing is set to 6.4:3.6. Table 6
illustrates the statistics of the datasets with respect to the three
tasks previously explained in VI-B.

TABLE 5. Datasets of studied open source projects.

TABLE 6. Dataset statistics with respect to three tasks.

B. MODELS IN COMPARISON
For comparison, we implemented several deep learning-
based models including the baseline (DeepBase) and state-
of-the-art models, i.e., DeepTriage [4], DeepLoc [11], in
addition to our proposed DASENet. There has been no deep
learning-based work introduced for bug-fix time prediction
yet, so we leverage those two state-of-the-art models recently
introduced in the domain of bug triage and bug localization.

Fig. 7 illustrates the structure and input log type of models
in comparison. As shown, in terms of the input log type,
while DeepBase and DeepTriage directly take textual data in
bug reports, DeepLoc uses additional metadata. In terms of
the network structure, DeepBase, DeepTriage, and DeepLoc
exploit MLP, BLSTM, and CNN respectively for feature
extraction. DASENet processes data streams of three log
types from bug reports, and feeds each to its respective net-
work, hence extracting relevant features separately first and
combining them later.

FIGURE 7. Comparison of learning model structures.

C. MODEL PERFORMANCE - ACCURACY
Table 7 provides an overall performance comparison based
on top-1 and top-2 accuracy for K -class FixTime classifi-
cation. In the table, the highest accuracy among all of the
models is highlighted in bold, and the average accuracy dif-
ference between the DASENet and the other models is written
in parentheses. Note that the class definition is described
in Table 4.

Overall, DASENet outperforms the others in top-1 and top-
2 accuracy. For example, the average performance gains of
DASENet over the other models are 4.6 to 8.5 % in top-
1 accuracy and 5.9 to 10.3 % in top-2 accuracy for the
Firefox dataset. For all the datasets and K -classes (where
K = 2, 3, 5, 7, 9), the gains of DASENet are 3.1 to 8.5 % in
top-1 and 2.9 to 10.3% in top-2 accuracy. This result indicates
DASENet’s capability using the two-staged learning process
for continuously extracting and analyzing features over log
streams via different networks.

Fig. 8 illustrates the top-1 accuracy of 3-class FixTime
classification with respect to the bin-sequence length. As a
bin-sequence gets longer, the top-1 accuracy of DeepBase and
DeepTriage often tend to be lower; however, DeepLoc and

VOLUME 8, 2020 10511

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

TABLE 7. FixTime — Top-1 and Top-2 accuracy of K -class classification.

FIGURE 8. FixTime — Top-1 accuracy of 3-class classification w.r.t. bin-sequence length.

DASENet render different patterns, showing more robustness
for bin-sequences of longer than 4. A bug report with a
longer bin-sequence (i.e., having more activities overtime
after a bug is reported) is likely to have a more complex
history regarding how bug fixing jobs were made. Therefore,
it might be effective to analyze temporal properties within a
bin-sequence.

The semantic complexity of bug-related events was
recently studied by Habayeb et al. [22], although their work
relied on manual feature selection for HMM-based event
sequence analysis. On the other hand, DASENet leverages
advanced deep learning techniques, by taking the sequen-
tial form of time-series activity bins as input data for the
RLSTM network. Hence, DASENet renders model accuracy
more stable even for long-length bin-sequences. Interestingly,
it is observed that DeepLoc yields a similar pattern with
DASENet, but its accuracy is at least 5 % lower. Indeed,
DeepLoc directly exploits the metadata including the bin-
sequence length, and thus DeepLoc inherently confines itself
to coarse-grain temporal analysis. In terms of analysis gran-
ularity, our DASENet contrasts to DeepLoc in that it is
intended for fully exploring temporal properties of a bin-
sequence.

D. MODEL PERFORMANCE - DATA EFFICIENCY
In this section, we discuss the stream embedding capability
of DASENet by performing several cross-project tests and
limited dataset tests. Here, we assume that there are a small
number of labeled samples for a task, i.e., 2 to 10 % of an
original training dataset used in the previous experiment (so,
having 900 to 4,500 samples for model training).

1) CROSS-PROJECT TEST
Table 8 presents top-1 and top-2 accuracy of 3-class
FixTime classification for ‘‘cross-project’’ cases, where a
model is completely trained with a source project dataset

TABLE 8. FixTime — Cross-project tests.

10512 VOLUME 8, 2020

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

FIGURE 9. Variant tasks — 3-class classification performance with various sample amounts.

(e.g., 44,800 samples of Firefox) and the model is then fine-
tuned with a small number of target project samples (e.g.,
4,480 samples of Eclipse). In this test, we applied such a
cross-project training process to all other models except for
DASENet. For the DASENet model, we leverage its activity
stream embedding in a way that we only train a target net-
work on top of the pre-trained DASENet embedding network
by using a small number of target project samples without
end-to-end fine-tuning. In the table, we represent the accu-
racy drop from the same project test (previously explained
in Table 7) to the cross-project test in parentheses. As shown,
the DASENet model outperforms the other models, clearly
showing its knowledge-transferable capability. Its small accu-
racy gap (−1.4 to−0.6 %) also represents that the knowledge
established from the source dataset has a greater impact on the
task than that of the other models.

Overall, the result of this cross-project test indicates that
DASENet can be commonly used for a new software devel-
opment project which might not have sufficient training
samples.

2) VARIANT PREDICTION TASKS
Here, we discuss the general expressiveness of activity stream
embedding by presenting how other prediction tasks about
bug-related temporal events can be addressed. Similar to the
cross-project tests above, we leverage the embedding output
of DASENet based on the supervised learning for FixTime.
However, we consider two different tasks, predicting the

number of the remaining activities (RemainBins) and the
occurrence time of the next activity (NextBin). We use the
day-granularity of activity bins, same to FixTime.

Fig. 9 represents the top-1 accuracy of 3-class clas-
sification with various sample amounts. On the x-axis,
‘‘x#’’ represents the ratio to the original dataset size (i.e.,
45,000 samples). For example, ‘‘x0.1’’ and ‘‘x0.02’’ mean
that about 4,500 and 900 samples (10% and 2%of an original
training dataset) were used for model training.

The DASENet model outperforms the others for all the
cases, when the same number of samples were used (i.e.,
x1 and x0.1 cases in Fig. 9(a) and (b)). Furthermore,
the DASENet model achieves stable performance, showing
very marginal accuracy degradation no more than−2.0 % for
x0.1 cases (e.g., as marked in the graph, −0.8 % for x0.1 for
RemainBins of Firefox). This result is robust, in a contrast
to the other models that show unstable performance with a
variable accuracy degradation up to −7.5 % between x1 and
x0.1 cases.

More importantly, the DASENet model using only about
900 training samples (x0.02) provides similar or better top-
1 accuracy over the other models with about 45,000 train-
ing samples (x1) for RemainBins. Note that DASENet with
x0.1 yields similar accuracy to the other models with x1 in
the case of NextBin. This result demonstrates that the deep
learning-based activity stream embedding can be effective for
combining all activity logs to extract features, and thus the
embedded output can be reused for data-efficiently training

VOLUME 8, 2020 10513

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

a new task model related to bug-related activities. We also
notice that the reusability or transferability level can be
varying across different tasks and datasets, by observing
that the top-1 accuracy gain of NextBin is less than that of
RemainBins for the Chromium and Eclipse datasets. It was
expected to some extent since the feature-embedded output
of DASENet is likely to relate to the overall activity sequence
of a bug report more than one specific future activity.

Fig. 10 depicts the time efficiency of training DASENet
models for the RemainBins and NextBin tasks. In the fig-
ure, the learning speed gain is calculated by the training
speed of DASENet over that of another model. As shown,
the gains are greater than 1 for all the cases. This indicates
the rapid learning convergence of DASENet, e.g., about 17 to
20 times (2.8 to 4.2 times) faster than DeepTriage (DeepLoc).
DeepTriage exploits the BLSTM network with memory cells
for extracting features from text data, which require intensive
computation. It is worthwhile to note that the learning speed
gain here mainly comes from the fact that the DASENet
model renders its task network much simpler than Deep-
Triage, while it utilizes the pre-trained embedding model.

FIGURE 10. Variant tasks — Learning time efficiency.

VIII. CONCLUSION
In this paper, we presented the deep learning-based model
over log streams of bug-related activities for bug-fix time
prediction. Our DASENet model achieved reliable prediction
performance for the datasets of three open source projects.
The model is two-staged with a merged network and a
sequence network for handling different types of logging
data over time. Moreover, the model of pre-trained activity
stream embedding showed its advantages as a data-efficient
learning process for cases where an insufficient number of
samples were available for a new task. Our ongoing work is
to investigate the model structure and extend it toward the
joint learning with non-text activity logs, e.g., user-created
diagram, in order to achieve a robust activity embedding strat-
egy over heterogeneous data. Our implementation is currently
confined to cover user-created comments, system-generated
records, and statistical data, but it can be extended once
additional networks have been properly designed for other
log types. We are also working on applying our approach to
a software development project that is internally operated by
a platform company.

REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy, ‘‘Who should fix this bug?’’ in Proc.

28th Int. Conf. Softw. Eng., Shanghai, China, May 2006, pp. 361–370.

[2] G. Jeong, S. Kim, and T. Zimmermann, ‘‘Improving bug triage with
bug tossing graphs,’’ in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf.
ACM SIGSOFT Symp. Found. Softw. Eng., Amsterdam, The Netherlands,
Aug. 2009, pp. 111–120.

[3] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong, ‘‘Applying
deep learning based automatic bug triager to industrial projects,’’ in Proc.
11th Joint Meeting Found. Softw. Eng., Paderborn, Germany, Sep. 2017,
pp. 926–931.

[4] S. Mani, A. Sankaran, and R. Aralikatte, ‘‘DeepTriage: Exploring the
effectiveness of deep learning for bug triaging,’’ in Proc. India Joint Int.
Conf. Data Sci. Manage. Data, 2019, pp. 171–179.

[5] J. A. Jones and M. J. Harrold, ‘‘Empirical evaluation of the tarantula auto-
matic fault-localization technique,’’ in Proc. 20th IEEE/ACM Int. Conf.
Automated Softw. Eng., Long Beach, CA, USA, Nov. 2005, pp. 273–282.

[6] X. Sun, W. Zhou, B. Li, Z. Ni, and J. Lu, ‘‘Bug localization for version
issues with defect patterns,’’ IEEE Access, vol. 7, pp. 18811–18820, 2019.

[7] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Combining
deep learning with information retrieval to localize buggy files for bug
reports,’’ inProc. 30th IEEE/ACM Int. Conf. Automat. Softw. Eng., Lincoln,
NE, USA, Nov. 2015, pp. 476–481.

[8] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Bug
localization with combination of deep learning and information retrieval,’’
inProc. 25th Int. Conf. ProgramComprehension, BuenosAires, Argentina,
May 2017, pp. 218–229.

[9] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, ‘‘Improving bug localization
with an enhanced convolutional neural network,’’ in Proc. 24th Asia–
Pacific Softw. Eng. Conf., Nanjing, Chin, Dec. 2017, pp. 338–347.

[10] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, ‘‘Bug localization with
semantic and structural features using convolutional neural network and
cascade forest,’’ in Proc. 22nd Int. Conf. Eval. Assessment Softw. Eng.,
Christchurch, New Zealand, Jun. 2018, pp. 101–111.

[11] Y. Xiao, J. Keung, K. E. Bennin, and Q. Mi, ‘‘Improving bug localization
with word embedding and enhanced convolutional neural networks,’’ Inf.
Softw. Technol., vol. 105, pp. 17–29, Jan. 2019.

[12] N. Jalbert andW.Weimer, ‘‘Automated duplicate detection for bug tracking
systems,’’ in Proc. IEEE Int. Conf. Dependable Syst. Netw. FTCS DCC,
Anchorage, AK, USA, Jun. 2008, pp. 52–61.

[13] M.-J. Lin, C.-Z. Yang, C.-Y. Lee, and C.-C. Chen, ‘‘Enhancements for
duplication detection in bug reports with manifold correlation features,’’
J. Syst. Softw., vol. 121, pp. 223–233, Nov. 2016.

[14] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava, ‘‘DWEN: Deep
word embedding network for duplicate bug report detection in software
repositories,’’ in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng., Companion,
Gothenburg, Sweden, May 2018, pp. 193–194.

[15] L. Yu, W.-T. Tsai, W. Zhao, and F. Wu, ‘‘Predicting defect priority based
on neural networks,’’ in Proc. 6th Int. Conf. Adv. Data Mining Appl.,
Chongqing, China, Nov. 2010, pp. 356–367.

[16] Q. Umer, H. Liu, and Y. Sultan, ‘‘Emotion based automated priority
prediction for bug reports,’’ IEEE Access, vol. 6, pp. 35743–35752, 2018.

[17] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, ‘‘How long will
it take to fix this bug?’’ in Proc. Fourth Int. Workshop Mining Softw.
Repositories, Minneapolis, MN, USA, May 2007, pp. 1–8.

[18] H. Zhang, L. Gong, and S. Versteeg, ‘‘Predicting bug-fixing time:
An empirical study of commercial software projects,’’ in Proc. Int. Conf.
Softw. Eng., 2013, pp. 1042–1051.

[19] L. Marks, Y. Zou, and A. E. Hassan, ‘‘Studying the fix-time for bugs in
large open source projects,’’ inProc. 7th Int. Conf. PredictiveModels Softw.
Eng., Banff, AB, Canada, Sep. 2011, pp. 11:1–11:8.

[20] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, ‘‘Characterizing
and predicting which bugs get fixed: An empirical study of microsoft
windows,’’ in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng., Cape Town,
South Africa, May 2010, pp. 495–504.

[21] E. Giger, M. Pinzger, and H. Gall, ‘‘Predicting the fix time of bugs,’’ in
Proc. 2nd Int. Workshop Rec. Syst. Softw. Eng., Cape Town, South Africa,
May 2010, pp. 52–56.

[22] M. Habayeb, S. S. Murtaza, A. Miranskyy, and A. B. Bener, ‘‘On the use of
hidden Markov model to predict the time to fix bugs,’’ IEEE Trans. Softw.
Eng., vol. 44, no. 12, pp. 1224–1244, Dec. 2018.

[23] P. Bhattacharya and I. Neamtiu, ‘‘Bug-fix time prediction models: Can
we do better?’’ in Proc. 8th Working Conf. Mining Softw. Repositories,
Honolulu, HI, USA, Jun. 2011, pp. 207–210.

[24] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, ‘‘An empirical study on
factors impacting bug fixing time,’’ in Proc. 19th Working Conf. Reverse
Eng., Kingston, ON, Canada, Oct. 2012, pp. 225–234.

10514 VOLUME 8, 2020

Y. Lee et al.: Continual Prediction of Bug-Fix Time Using Deep Learning-Based Activity Stream Embedding

[25] P. Anbalagan and M. Vouk, ‘‘On predicting the time taken to correct
bug reports in open source projects,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Edmonton, AB, Canada, Sep. 2009, pp. 523–526.

[26] Firefox Project Bug Tracking System. Accessed: Nov. 20, 2019. [Online].
Available: https://bugzilla.mozilla.org/home

[27] Chromium Project Bug Tracking System. Accessed: Nov. 20, 2019.
[Online]. Available: https://bugs.chromium.org/p/chromium/issues/list

[28] Eclipse Project Bug Tracking System. Accessed: Nov. 20, 2019. [Online].
Available: https://bugs.eclipse.org/bugs/

[29] Datasets for Bug-Related Activity Logs (Firefox, Chromium, Eclipse)
on the GitHub. Accessed: Nov. 20, 2019. [Online]. Available:
https://github.com/mkris0714/Bug-Related-Activity-Logs.git

[30] J. Zhou, H. Zhang, and D. Lo, ‘‘Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on
bug reports,’’ in Proc. 34th Int. Conf. Softw. Eng., Zürich, Switzerland,
Jun. 2012, pp. 14–24.

[31] J. Lu, Y. Wei, X. Sun, B. Li, W. Wen, and C. Zhou, ‘‘Interactive query
reformulation for source-code search with word relations,’’ IEEE Access,
vol. 6, pp. 75660–75668, 2018.

[32] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ in Proc. Int. Conf. Learn. Repre-
sent., Scottsdale, AZ, USA, Jun. 2013, pp. 1–12.

[33] A. Graves, N. Jaitly, and A. Mohamed, ‘‘Hybrid speech recognition with
deep bidirectional lstm,’’ inProc. IEEEWorkshop Autom. Speech Recognit.
Understand., Olomouc, Czech Republic, Dec. 2013, pp. 273–278.

[34] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[35] F. A. Gers, N. Schraudolph, and J. Schmidhuber, ‘‘Learning precise timing
with LSTM recurrent networks,’’ J. Mach. Learn. Res., vol. 3, pp. 115–143,
2002.

[36] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[37] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. Int. Conf. Learn. Represent.,
San Diego, CA, USA, May 2015.

[38] J. Kim, M. El-Khamy, and J. Lee, ‘‘Residual LSTM: Design of
a deep recurrent architecture for distant speech recognition,’’ CoRR,
2017, Accessed: Jan. 10, 2017. [Online]. Available: http://arxiv.org/
abs/1701.03360

[39] P. Oncharoen and P. Vateekul, ‘‘Deep learning for stock market predic-
tion using event embedding and technical indicators,’’ in Proc. 5th Int.
Conf. Adv. Inform., Concept Theory Appl., Krabi, Thailand, Aug. 2018,
pp. 19–24.

[40] Y. Wang and J. Tang, ‘‘Event2Vec: Learning event representations using
spatial-temporal information for recommendation,’’ in Proc. 23rd Pacific–
Asia Conf. Knowl. Discovery Data Mining, Macau, China, Apr. 2019,
pp. 314–326.

[41] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, ‘‘Super-
vised learning of universal sentence representations from natural language
inference data,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.,
Copenhagen, Denmark, Sep. 2017, pp. 670–680.

[42] F. C. Keras. Keras. Accessed: Nov. 20, 2019. [Online]. Available:
https://github.com/fchollet/keras

[43] R. Kohavi, ‘‘A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,’’ in Proc. 14th Int. Joint Conf. Artif. Intell.,
Montreal, QC, Canada, Aug. 1995, pp. 1137–1143.

[44] A. Lamkanfi and S. Demeyer, ‘‘Filtering bug reports for fix-time analysis,’’
in Proc. 16th Eur. Conf. Softw. Maintenance Reeng., Szeged, Hungary,
Mar. 2012, pp. 379–384.

YOUNGSEOK LEE received the B.S. degree
in electric and electronic engineering from
Sungkyunkwan University, Suwon, South Korea,
in 2013, where he is currently pursuing the inte-
grated Ph.D. degree with the Department of Elec-
trical and Computer Engineering. His research
interests include intelligent application, software
engineering, network traffic analysis, and wire-
less networks. He was a recipient of the Global
Ph.D. Fellowship of Korea National Research
Foundation, from 2013 to 2017.

SUIN LEE received the B.S. degree in com-
puter engineering fromSungkyunkwanUniversity,
Suwon, South Korea, in 2018, where she is cur-
rently pursuing the M.S. degree with the Depart-
ment of Platform Software. Her research interest
includes machine learning and its application.

CHAN-GUN LEE received the B.S. degree in com-
puter engineering from Chung-Ang University,
Seoul, South Korea, in 1996, the M.S. degree in
computer science from the Korea Advanced Insti-
tute of Science and Technology (KAIST), Daejon,
in 1998, and the Ph.D. degree in computer science
from The University of Texas at Austin, Austin,
TX, USA, in 2005. From 2005 to 2007, he was
a Senior Software Engineer with Intel, Hillsboro,
OR, USA. Since 2007, he has been a Professor

with the Department of Computer Science and Engineering, Chung-Ang
University, Seoul. His research interests include software engineering and
real-time systems. He was a recipient of the Korea Foundation of Advanced
Studies (KFAS) Fellowship, from 1999 to 2005.

IKJUN YEOM received the B.S. degree in elec-
tronic engineering from Yonsei University, Seoul,
South Korea, in 1995, and the M.S. and Ph.D.
degrees in computer engineering from the Texas
A&M University, in 1998 and 2001, respec-
tively. He was with DACOMCompany, Ltd., from
1995 to 1996, and Nortel Networks, in 2000. He
was an Associate Professor with the Department
of Computer Science, KAIST, from 2002 to 2008.
He is currently an Associate Professor with the

Computer Engineering Department, Sungkyunkwan University. His research
interests are in intelligent application, AQM, congestion control, wireless
networks, and the future Internet architecture.

HONGUK WOO received the B.S. degree in
computer science from Korea University, Seoul,
in 1995, and the M.S. and Ph.D. degrees in com-
puter sciences from The University of Texas at
Austin, Austin, TX, USA, in 2002 and 2008,
respectively. From 2008 to 2018, he worked for
Samsung Research of Samsung Electronics as a
Principal Engineer and the Vice President. Since
2018, he has been an Assistant Professor with the
Department of Software, Sungkyunkwan Univer-

sity, Suwon, South Korea. His research interests include intelligent applica-
tion, analytic monitoring, and networked cyber-physical systems.

VOLUME 8, 2020 10515

