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Abstract. We consider generalized models on coral broadcast spawning phe-

nomena involving diffusion, advection, chemotaxis, and reactions when egg and
sperm densities are different. We prove the global-in-time existence of the reg-

ular solutions of the models as well as their temporal decays in two and three
dimensions. We also show that the total masses of egg and sperm density have

positive lower bounds as time tends to infinity in three dimensions.

1. Introduction. In this paper, we study the interaction between reactions and
chemotaxis in the mathematical model of the broadcast spawning phenomenon.
Broadcast spawning is a fertilization strategy used by many sea animals, like sea
urchins and corals(see [6, 7, 17]). In contrast with the numerical simulations based
on the turbulent eddy diffusivity, the field measurements indicate that fertilization
rates are often extremely as high as 90%(see [8, 9] and references therein) and it
seems plausible that the chemotaxis emitted by the egg gametes play an important
role in these high fertilization rates.

The simplest and most classical models of chemotaxis equations describing the
collective motion of cells or bacterias have been introduced by Patlak[18] and Keller-
Segel[13, 14]. The logistic source type of reaction term is also considered in many
studies for the mathematical modeling of chemotaxis equations in a bounded domain
with Neumann boundary conditions(see [19, 20, 21] and references therein).

In [15, 16], Kiselev and Ryzhik initiated mathematical study on the phenomenon
of broadcast spawning when males and females release sperm and egg gametes into
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the surrounding fluid. There is experimental evidence that eggs release a chemical
that attracts sperm. The authors in [15] and [16] in particular have proposed the
following chemotaxis model regarding the fertilization process (assuming that the
densities of egg and sperm gametes are identical):

∂tn+ (u · ∇)n−∆n = χ∇ · (n∇(∆)−1n)− εnq, in (x, t) ∈ Rd × (0, T ), (1.1)

where n is the density of egg (sperm) gametes, u is the smooth divergence free sea
fluid velocity, and χ denotes the positive chemotactic sensitivity constant. Also,
−εnq denotes the reaction (fertilization) phenomenon. In [15], the global-in-time
existence of the solution to (1.1) is presented under suitable conditions. Addition-
ally, in R2, they showed that the total mass m0(t) =

∫
R2 n(x, t)dx approaches a

positive constant whose lower bound is C(χ, n0, u) as t → ∞ when q is an integer
larger than 2. They also provided that C(χ, n0, u) → 0 as χ → ∞. This implies
that if the chemotactic sensitivity increases, then more eggs can be fertilized. The
critical case of d = q = 2 was studied in [16]; the total mass can go to zero with
a reaction term only, but not faster than a logarithmic rate when the initial data
is in the Schwartz class. If chemotaxis is present, the total mass is diminished in a
power of 1/χ, which gives a faster decay rate than 1/ log t in a certain time scale.
Recently, the existence and total mass behaviors have been studied in [1] when the
chemical concentration is governed by the parabolic equation. Espejo and Suzuki
[10] considered parabolic-parabolic Keller Segel equations with reaction term cou-
pled with Stokes equations in R2. They obtained the global-in-time existence of
solution.

Kiselev and Ryzhik[15] also presented the following model of sperm and egg
densities {

∂ts+ (u · ∇)s = κ1∆s− (se)
q
2 , s(x, 0) = s0(x),

∂te+ (u · ∇)e = κ2∆e− (se)
q
2 , e(x, 0) = e0(x).

(1.2)

Here, s and e denote the densities of sperm and egg gametes. From [15], it is
obtained that if q > max{d+2

d , 2}, then there exists an absolute positive constant
µ1 such that ‖s(·, t)‖L1(Rd) + ‖e(·, t)‖L1(Rd) ≥ µ1 > 0 for all t.

In this paper we consider more general mathematical models by allowing that
egg density can differ from sperm density in Rd (d = 2, 3) with q = 2 considering
the chemotaxis effect in the s equation in (1.2). Our first model reads as follows :{

∂te+ (u · ∇)e−∆e = −ε(se),
∂ts+ (u · ∇)s−∆s = χ∇ · (s∇∆−1e)− ε(se),

in (x, t) ∈ Rd × (0, ∞),

(1.3)
where e ≥ 0 , s ≥ 0, and u denote the density of egg gametes, sperm gametes
and the divergence free sea velocity of sea fluid, respectively. In the above, χ and
ε are positive constants representing chemotactic sensitivity and fertilization rate,
respectively. We also assume that u is in C∞(Rd+1) and div u = 0.

We will obtain the apriori estimates in section 2. Initial data are given by (e0(x),
s0(x)) with e0(x), s0(x) ≥ 0.

From now on, we denote Lq,pt,x = Lq(0, T ;Lp(Rd)) and Lpt,x = Lp(0, T ;Lp(Rd))
with any given time T in the context. We mostly omit the spatial domain Rd in
Lp(Rd) if there is no ambiguity. We also denote a norm

‖f‖Mn =

∫
Rd

(|f(x)|+ |∇f(x)|)(1 + |x|n)dx,
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and Banach space Km,n defined by the norm ‖f‖Km,n = ‖f‖Mn + ‖f‖Hm . We also

denote a function space XT
m,n ≡ C([0, T ];Km,n) and X∞m,n ≡ C([0,∞);Km,n) . Let

ms(t) and me(t) denote the total mass of sperm and egg gametes, respectively :
ms(t) =

∫
Rd s(x, t)dx and me(t) =

∫
Rd e(x, t)dx.

Our first main result is the global-in-time existence of smooth solutions to (1.3).
We also obtain the positive lower bound of the total mass for 3-dimensional case
and the decay estimates of ‖e‖Lp and ‖s‖Lp . Compared to the case of e, the
temporal decay of s is a bit tricky, due to the presence of the chemotactic effect,
i.e. χ∇· (s∇∆−1e). It turns out that the reaction term −ε(se) in the egg equation,
in particular in two dimensions, plays a crucial role in controlling the chemotactic
term. See the argument around (2.16).

Theorem 1. Let d = 2, 3. We assume the initial data (e0(x), s0(x)) ∈ Km,n×Km,n

(m ≥ [d2 ] + 1 and n ≥ 1) and a given velocity field u(x, t) ∈ C([0,∞);Hm) satisfies
div u = 0.

(i): When d = 2, 3, there exists a unique solution (e, s) ∈ X∞m,n ×X∞m,n to the
system (1.3).

(ii): When d = 3, we have ms(t) ≥ C(s0, e0) > 0 and me(t) ≥ C(χ, ε, s0, e0) >
0.

(iii): When d = 2, 3, we have the following temporal decay estimates

‖e(t)‖Lp(Rd) ≤
C

t
d
2 (1− 1

p )
, p ∈ (1,∞], (1.4)

and

‖s(t)‖Lp(Rd) ≤
C

t
d
2 (1− 1

p )
, p ∈ (1,∞). (1.5)

Remark 1. In the proof of Theorem 1, the lower bound of the mass of the egg
density, C(χ, ε, s0, e0) approaches 0 as χ → ∞. It implies that if the chemotactic
sensitivity is dominant, then total mass of egg density may vanish, hence perfect
fertilization may occur. On the other hand, in Theorem 1 (ii), the lower bound of
the mass of the sperm is independent of χ in the proof of Theorem 1. From the fact
that the difference of the total mass of sperm and egg is conserved, that is,

me(t)−ms(t) = me(0)−ms(0),

the lower bound of the mass of the egg is independent of χ if me(0) ≥ ms(0).
Therefore, in 3D, even if the chemotactic sensitivity χ → ∞, the egg density may
vanish only if ms(0) > me(0).

Next, we consider the following egg-sperm chemotaxis model coupled with the
incompressible fluid equations(Navier-Stokes or Stokes equations):

∂te+ (u · ∇)e−∆e = −ε(se),
∂ts+ (u · ∇)s−∆s = −χ∇ · (s∇c)− ε(se),
∂tc+ (u · ∇)c−∆c = e,
∂tu+ κ(u · ∇)u−∆u+∇p = −(s+ e)∇φ,
div u = 0,

in (x, t) ∈ Rd × (0, ∞), (1.6)

where e, s, c ≥ 0, and u denote the density of egg gametes, sperm gametes, chemi-
cals and the divergence free sea velocity of sea fluid governed by the fluid equations,
respectively. φ denotes potential function, which is given by gravitational force,
centrifugal force, etc. We consider the cases κ = 1(Navier-Stokes equations) when
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d = 2 and κ = 0 (Stokes system) when d = 3 to avoid additional smallness assump-
tion on the initial velocity of the fluid for the well-posedness. Chemotaxis equation
coupled with the fluid equations have been considered in many studies, especially
for describing the dynamics of Bacillus Subtilis in the water droplet. For recent
mathematical developments in the model, please refer to [2, 4, 5, 10] and references
therein.

For the system (1.6) our main aim is to establish global well-posedness of solu-
tions. To be more precise, in two dimensions, we prove that unique regular solu-
tions exist globally in time for large initial data, provided that the data are regular
enough. On the other hand, for three dimensional case, global well-posedness can
be obtained under smallness condition of L1-norm of intial data of s, i.e. ‖s0‖L1

(more specifically, it suffices to assume that χ2‖s0‖2L1
x
‖∇φ‖2L∞x,t is small). It is worth

mentioning that L1-norm of s0 is a super-critical qunatity in 3D under the scaling
invariance (3.1) (L3/2-norm of s0 is indeed scaling invariant in 3D). In this sense,
our result is beyond scaling invariance but we do not know if the smallness assump-
tion can be removed or not. Now we are ready to state our second result, where
temporal decays of solutions are also shown as well.

Theorem 2. Let d = 2, 3. We assume the initial data (e0(x), s0(x), c0(x), u0(x)) ∈
Km,n × Km,n × Km,n × Hm (m ≥ [d2 ] + 1 and n ≥ 1) with div u0 = 0. We also

assume that s0, e0 ∈ L1(Rd) and ‖∇lφ‖L∞ <∞ for 1 ≤ l ≤ m.

(i): When d = 2 and κ = 1, there exist unique solutions (e, s, c, u) ∈ X∞m,n ×
X∞m,n ×X∞m,n × C([0, ∞);Hm) to the equations (1.6).

(ii): When d = 3 and κ = 0, assuming χ2‖s0‖2L1
x
‖∇φ‖2L∞x,t to be sufficiently

small, there exist unique solutions (e, s, c, u) ∈ X∞m,n × X∞m,n × X∞m,n ×
C([0, ∞);Hm) to the equations (1.6). Moreover, we have me(t), ms(t) ≥
C(χ, ε, s0,∇e0) > 0. This lower bound also satisfies C(χ, ε, s0,∇e0) → 0 as
χ→∞.

(iii): We have the following decay estimates of the solutions in the above

‖e(t)‖Lp(Rd) ≤
C

t(1−
1
p ) d2

, when 1 < p ≤ ∞, if d = 2, 3, (1.7)

‖c(t)‖Lq ≤ Ct
− 3

2 (
1
3−

1
q ), 3 < q <∞. if d = 3, (1.8)

Furthermore, when d = 2 and ω is the vorticity of u, if we assume that
‖s0‖L1(R2) + ‖e0‖L1(R2) + ‖∇c0‖L2(R2) + ‖ω0‖L1(R2) ≤ ε1, then we have

‖s(t)‖Lp(R2) ≤
Cε1

t(1−
1
p )
, ‖∇c(t)‖L∞ ≤

Cε1

t
1
2

, ‖ω(t)‖Lγ(R2) ≤
Cε1

t1−
1
γ

, (1.9)

where 1 < p ≤ ∞ and 1 < γ <∞.

Remark 2. Formally integrating both sides of (1.3) (or (1.6)) over Rd and sub-
tracting the first equation from the second equation, we deduce that

‖s‖L1(Rd)(t)− ‖e‖L1(Rd)(t) = ‖s0‖L1(Rd) − ‖e0‖L1(Rd), for all t > 0. (1.10)

Hence the difference of the total mass of sperm and egg cells is conserved.
On the other hand, in the 2D case, Kiselev and Ryzhik [16, Theorem 1.1] showed
that if ρ0 ∈ S (Schwartz class) and ρ satisfy

∂tρ+ (u · ∇)ρ−∆ρ = −ερ2, (1.11)
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then, for any σ > 0 and t ≥ 1, there exists a constant C(σ, ρ0) > 0 such that

‖ρ(·, t)‖L1(R2) ≤
C(σ, ρ0)

(1 + ε log t)1−σ
.

Note that (1.11) corresponds to (1.1) when the chemotaxis is absent and q = 2.
If s(x, t) > e(x, t) holds true for all (x, t) ∈ R2 × (0,∞), then (1.3)1 and (1.6)1

are reduced to

∂te+ (u · ∇)e−∆e = −ε(se) ≤ −εe2.
In this case, applying Kiselev and Ryzhik’s result for the solution to the above
(assuming u is sufficiently regular), we obtain

‖e(·, t)‖L1(R2) ≤
C

(1 + ε log t)1−σ
→ 0 as t→∞.

Taking into account (1.10), we infer that, in 2D, an egg cell can be perfectly fertilized
if the initial sperm cell density is much larger than that of the egg cell.

Remark 3. After completing this work, we are informed that Espejo and Winkler
[11] obtained classical solvability and stabilization in a chemotaxis-Navier-Stokes
system modeling coral fertilization in a smooth bounded two-dimensional domain.
Our result has an essential difference from their work in the asymptotic behaviour
in the whole domain.

The rest of this paper is as follows : In Section 2, we provide the proofs for the
global-in-time existence of the smooth solution to (1.3) and also provide the proofs
of the positive lower bounds of the total mass and decay estimates. In Section 3,
we consider the global well-posedness of the system (1.6) and provide the proof of
Theorem 2 and especially consider the decay properties of the solutions to (1.6)
with the small initial data.

2. Global well-posedness and asymptotic behavior of total mass. In this
section, we provide some apriori estimates of solutions to (1.3). Also we provide the
proof of global well-posedness of (1.3) (Theorem 1 (i)) and lower bound of the total
mass(Theorem 1 (ii)). Using the standard method(contraction mapping principle),
the local-in-time existence of regular solution can be shown, which reads as follows:

Proposition 1. Let d = 2, 3 and n be a positive integer and initial data (e0, s0)
as in Theorem 1 belong to Km,n ×Km,n (m >

[
d
2

]
+ 1). Suppose that u ∈ C∞ ∩

L∞(Rd × [0,∞)) is divergence free and any of its spatial derivatives is uniformly
bounded for all (x, t) ∈ Rd × (0,∞). Then there exists a maximal time of existence
T∗, such that for t < T∗, a pair of unique regular solution (e, s) of (1.3) exists and
satisfies

(e, s) ∈ Xt
m,n ×Xt

m,n.

The proof of the proposition is quite standard, hence we omit it. It can be found
in [15, Theorem 5.4].

In this section and throughout the paper we use the maximal Lp −Lq estimates
or maximal regularity estimates for the heat equations: let 1 < p, q < ∞. If v is
the solution of the heat equation

∂tv −∆v = f(x, t), v(·, 0) = v0
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for the given function f(x, t) ∈ LqtLpx(0,∞;Rd) and v0 ∈ W 2,p(Rd), there exist a
constant C > 0 (see [12]) such that∫ T

0

‖∂tv‖qLpxdt+

∫ T

0

‖∆v‖q
Lpx
dt ≤ C

(
‖v0‖qW 2,p +

∫ T

0

‖f‖qLpdt

)
. (2.1)

We often denote (0, T ) × Rd by QT and ‖v‖LqtLpx(0,T ;Rd) by Lq,pt,x(QT ). When

p = q, we simply write Lp(QT ). Also we denote
∑
|α|≤m ‖Dαv‖LqtLpx(0,T ;Rd) by

LqtW
m,p
x (QT ) (or LqtH

m
x if p = 2).

In what follows, we derive some a priori estimates of (e, s) to prove Theorem 1.
• (L1 estimates) First, we have the following decreasing properties for the total
mass

d

dt

∫
Rd
e(x, t)dx+ ε

∫
Rd
se dx = 0,

and
d

dt

∫
Rd
s(x, t)dx+ ε

∫
Rd
se dx = 0.

Integrating with respect to time, we have

sup
0≤t≤T

∫
Rd
e(x, t)dx+ ε

∫ T

0

∫
Rd

(se)dxdt ≤ ‖e0‖L1 ,

and

sup
0≤t≤T

∫
Rd
s(x, t)dx+ ε

∫ T

0

∫
Rd

(se)dxdt ≤ ‖s0‖L1 .

• (Lp-estimates) By multiplying ep−1 both sides of e equation, and integrating over
Rd, we obtain that

sup
0≤t≤T

∫
Rd
ep(x, t)dx+

4(p− 1)

p

∫ T

0

‖∇ep/2‖2L2dt+ εp

∫ T

0

∫
Rd
sepdxdt ≤ ‖e0‖pLp .

Moreover, as p→∞, we have ‖e(t)‖L∞ ≤ ‖e0‖L∞ .
For the sperm density, we have the following

1

p

d

dt
‖s(t)‖pLp +

4(p− 1)

p2
‖∇s

p
2 ‖2L2 + ε

∫
Rd
espdx =

p− 1

p
χ

∫
Rd
espdx. (2.2)

We note that if ε ≥ χ, then the righthand side can be absorbed to the left. Hence
it is direct that

s ∈ L∞(0,∞;Lp) and ∇sp/2 ∈ L2(0,∞;L2) for p ∈ (1,∞).

It also holds that s ∈ L∞(0,∞;L∞).
If 0 < ε < χ, then we have

1

p

d

dt
‖s(t)‖pLp +

4(p− 1)

p2
‖∇s

p
2 ‖2L2 + ε

∫
Rd
espdx

=
p− 1

p
χ

∫
Rd
espdx ≤ p− 1

p
χ‖e‖L∞‖s‖pLp .

Hence we deduce that

s ∈ L∞(0, T ;Lp) and ∇sp/2 ∈ L2(0, T ;L2) for any p ∈ (1,∞) and T > 0.

• (H1 estimates) Next, we consider H1 estimates of s :
By use of the maximal regularity of heat equation, we easily deduce that

‖∂te‖L2(QT ) + ‖∆e‖L2(QT ) ≤ C‖e0‖H2 + C(‖∇e‖L2(QT ) + ‖se‖L2(QT )) <∞.
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Therefore, together with (Lp-estimates) we obtain

∂te ∈ L2
t,x, and e ∈ L2(0, T ;H2).

Taking L2 inner product of −∆s with s equation, we find that

1

2

d

dt
‖∇s‖2L2 + ‖∆s‖2L2 + ε

∫
Rd
|∇s|2edx

≤ ‖∇u‖L∞‖∇s‖2L2 + ε‖∇s‖L2‖∇e‖L2‖s‖L∞
+χ‖s‖L∞‖∇e‖L2‖∇s‖L2 + Cχ‖∇s‖2L3‖e‖L3

≤ C(‖∇u‖L∞ + ‖s‖2L∞ + 1)‖∇s‖2L2 + δ‖∆s‖2L2 + C‖∇e‖2L2 .

In the above, we used the followings by the integration by parts and the Calderon-
Zygmund type inequality

−χ
∫
Rd
∇ · (s∇∆−1e)∆sdx =

χ

2

∫
Rd
e|∇s|2 + χ

∫
Rd
s∇s · ∇edx

+χ

∫
Rd

(∇s)T (∇2∆−1e)(∇s)dx

and

χ

∣∣∣∣∫
Rd

(∇s)T (∇2∆−1e)(∇s)dx
∣∣∣∣ ≤ χ‖∇2∆−1e‖L3‖∇s‖2L3 ≤ Cχ‖e‖L3‖∇s‖2L3 .

We note that δ can be chosen as a sufficiently small positive constant which can
be absorbed in the lefthand side.

Using the Gronwall type inequality, we have for any T > 0.

∇s ∈ L2,∞
x,t (QT ) ∩H1

xL
2
t (QT ).

• (H2 estimates) For the higher norm estimates, we proceed as follows.
We estimate similarly with the above

‖∂t∇e‖L2(QT ) + ‖∇∆e‖L2(QT ) ≤ C‖e0‖H2 +C‖∇(u ·∇e)‖L2(QT ) +C‖∇(se)‖L2(QT )

≤ C‖e0‖H2 + C‖∇u‖L∞(QT )‖∇e‖L2(QT ) + ‖u‖L∞(QT )‖∇
2e‖L2(QT )

+C(‖∇s‖L2(QT )‖e‖L∞(QT ) + ‖∇e‖L2(QT )‖s‖L∞(QT )) <∞.
For the estimates of solution s, we have

1

2

d

dt
‖∆s‖2L2 + ‖∇∆s‖2L2

≤ ‖∇(u · ∇s)‖L2‖∇∆s‖L2 + ε‖∇(se)‖L2‖∇∆s‖L2

+C‖e‖L∞‖∆s‖2L2 + C‖e‖L6‖∇s‖L3‖∇∆s‖L2 + C‖s‖L∞‖∇e‖L2‖∇∆s‖L2 .

Using Young’s inequality, the righthand side high order term ‖∇∆s‖2L2 can be
absorbed in the lefthand side. By integrating with respect to time, we find

‖∆s‖2
L∞,2t,x (QT )

+ ‖∇∆s‖2
L2,2
t,x(QT )

≤ ‖∆s0‖2L2 +C‖∆s‖2
L2,2
t,x(QT )

+C‖∇e‖2L2(QT )
<∞.

• (H3 estimate) Finally, we can obtain the following H3 estimates for s.
By the use of maximal regularity of the heat equation, we have

‖∂te‖L2
tH

2
x

+ ‖∆e‖L2
tH

2
x
≤ C

(
‖e0‖H3 + ‖(u · ∇)e‖L2

tH
2
x

+ ‖se‖L2
tH

2
x

)
≤ C

(
‖e0‖H3 + ‖u‖L∞t H2

x
‖∇e‖L2

tH
2
x

+ ‖s‖L∞t H2
x
‖e‖L2

tH
2
x

)
<∞,

and
‖∂te‖L2

tH
2
x

+ ‖∆e‖L2
tH

2
x
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≤ C
(
‖e0‖H3 + ‖u‖L∞t (H3

x)
‖∇e‖L2

t (H
3
x)

+ ‖s‖L2
t (H

3
x)
‖e‖L∞t (H3

x)

)
<∞.

Similarly to the previous H2 estimates, we obtain

‖∇∆s‖2
L2,∞
x,t (QT )

+ ‖∆2s‖2
L2,2
x,t(QT )

<∞.

We are ready to prove Theorem 1.

Proof of Theorem 1 (i) From the previous apriori estimates, only remaining es-
timates are about the estimates in Mn. As in [15, Theorem 5.4.], the only nontrivial
part is that the contraction constant depends on Hm norm of (s0, e0) and not on
Mn norm of (s0, e0). In a different way, we provide the following direct estimates
for any integer k ≥ 1 inductively :

d

dt
‖|x|ke‖2L2 + ‖|x|k∇e‖2L2 + ε

∫
se2|x|2kdx ≤ C

(
‖|x|k−1e‖2L2 + ‖|x|k− 1

2 e‖2L2 + 1
)
,

d

dt
‖|x|ks‖2L2 + ‖|x|k∇s‖2L2 + ε

∫
es2|x|2kdx

≤ C
(
‖|x|k−1s‖2L2 + ‖|x|k−1e‖2L2‖|x|k−

1
2 s‖2L2 + 1

)
.

(2.3)

The above estimates are rather standard, and hence we provide the sketch of the
estimates −

∫
Rd |x|

2ks∇ · (s∇∆−1e)dx. We have

−
∫
Rd
|x|2ks∇ · (s∇∆−1e)dx =

1

2

∫
Rd
∇|x|2k · ∇∆−1es2dx− 1

2

∫
Rd
|x|2ks2edx.

The first term can be estimated as follows :

1

2

∫
Rd
∇|x|2k · ∇∆−1es2dx ≤ C‖|x|k− 1

2 s‖2L2‖∇∆−1e‖L∞

≤ C‖|x|k− 1
2 s‖2L2‖∇∆−1e‖W 1,r ,

where r > d. The term ‖∇∆−1e‖W 1,r can be bounded by ‖e‖Lp∩Lr for some p by
the Hardy-Littlewood-Sobolev inequality.

By using Young’s inequality and Gronwall’s inequality, we can have for any T > 0,

‖|x|k(s, e)‖L∞,2t,x (QT )
+ ‖|x|k∇(s, e)‖L2

t,x(QT )
<∞.

Similarly, we can have ‖|x|k∇(s, e)‖L∞,2t,x (QT )
<∞.

This together with the previous L1-estimates proves for any n > 0 and T > 0
‖(s, e)‖Km,n <∞. This completes the proof of Theorem 1 (i).

Proof of Theorem 1 (ii) For this regular solution obtained in Theorem 1 (i),
we can investigate the asymptotic behaviors of the total mass ms(t) and me(t),
especially in R3.

First, we show ‖e(t)‖L∞ → 0 as t→∞.
To be concrete, we will show that

‖e(t)‖L∞ ≤
C

t
d
2

.

We have
1

p

d

dt

∫
Rd
|e(t)|pdx+

4(p− 1)

p2

∫
Rd
|∇e

p
2 |2dx ≤ 0.
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Reminding that ‖f‖L2(Rd) ≤ C‖f‖
2
d+2

L1(Rd)‖∇f‖
d
d+2

L2(Rd), we note that

C‖e‖
p(d+2)
d

Lp(Rd)‖e‖
− 2p
d

L
p
2 (Rd)

≤ ‖∇e
p
2 ‖2L2(Rd).

We have
d

dt

∫
Rd
|e(t)|pdx+ C‖e‖

p(d+2)
d

Lp(Rd)‖e‖
− 2p
d

L
p
2 (Rd)

≤ 0. (2.4)

For convenience, we denote yp(t) := ‖e(t)‖Lp(Rd). We show that for sufficiently large

t > 1, p = 2k with k = 1, 2, · · · and a uniform constant C > 0

y2k(t) ≤ C

t(1−
1

2k
) d2
.

Indeed, for k = 1, we have

d

dt
y22(t) + Cy

2(d+2)
d

2 ≤ 0.

Solving the above differential inequality, we have

y2(t) ≤ Ct− d4 .
Suppose that the above is true up to k = m− 1 with m > 1. Then we obtain

d

dt
y2
m

2m (t) +
C

C
2m+1

d
m−1

t2
m−2y

d+2
d 2m

2m

≤ d

dt
y2
m

2m (t) + Cy
− 2
d 2
m

2m−1 y
d+2
d 2m

2m ≤ 0.

Solving the above inequality, we have

y2m(t) ≤ Cm−1
(
d

2C

) d

2m+1

t(1−
1

2m ) d2 .

Then Cm := Cm−1
(
d
2C

) d

2m+1 is uniformly bounded for m and we obtain

‖e(t)‖L∞ ≤
C

t
d
2

,

by letting m→∞.
Then we have (1.7) by the interpolation

yp(t) ≤
C

t(1−
1
p ) d2

.

Letting p→∞, we have

‖e(t)‖L∞ ≤
C

t
d
2

.

• (Total mass behavior of ms(t)) It is ready to prove the lower bound of mass of the
sperm cell density. Consider the case that d = 3. We have the differential inequality
(t0 is chosen to be larger than 1).

d

dt

∫
R3

s(t)dx+
C

t
3
2

∫
R3

s(t)dx ≥ 0, for t ≥ t0.

Then integrating with respect to time from t0 until t and setting y =
∫
R3 s(t)dx, we

have
dy

y
≥ −Cdt

t
3
2

,
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and thus,

y(t) ≥ y(t0) exp

(
2C

(
1√
t
− 1√

t0

))
. (2.5)

Since t ≥ t0, we have

ms(t) ≥
1

2
ms(t0).

• (L2 decay estimate of s(t)) To prove the lower bound of the mass for the egg cell
density, we should obtain L2 decay estimates for the sperm cell density.
Similarly, we obtain

1

2

d

dt
‖s‖2L2(R3) + ‖∇s(t)‖2L2(R3) + ε

∫
R3

es2dx = χ

∫
R3

es2 dx.

The right hand side of the above equality can be estimated by Hölder’s and Sobolev’s
inequality as follows :

χ

∫
R3

es2(t) dx ≤ χ‖e(t)‖
L

3
2 (R3)

‖s(t)‖2L6(R3) ≤ Cχ‖e(t)‖L 3
2 (R3)

‖∇s(t)‖2L2(R3).

Since ‖e(t)‖
L

3
2 (R3)

≤ C

t
1
2

, we choose t0 so large that Cχ

t
1
2
0

< 1
2 . Hence we have

d

dt
‖s(t)‖2L2(R3) + ‖∇s(t)‖2L2(R3) ≤ 0.

We infer that ‖s(t)‖L2 ≤ C

t
3
4

. By the interpolation inequality, we have

‖s(t)‖Lp ≤
C

t
3
2 (1−

1
p )

for 1 < p ≤ 2.

• (Lp decay estimate for s in 3D) We recall that the solution e to (1.3)2 satisfies
the equation

1

p

d

dt

∫
R3

|e|p +
4(p− 1)

p2

∫
R3

|∇e
p
2 |2 + ε

∫
R3

eps = 0. (2.6)

Multiplying a large constant M on both sides of (2.6) (M will be specified later
and depend on p), we have

M

p

d

dt

∫
R3

|e|p +
4M(p− 1)

p2

∫
R3

|∇e
p
2 |2 +Mε

∫
R3

eps = 0. (2.7)

Note first that the following interpolation inequality holds (see [15])

‖s‖p+1
Lp+1 ≤ C‖s‖

L
3
2
‖∇s

p
2 ‖2L2 ,

where C is uniformly bounded for all p ∈ (1, ∞). We compute

p− 1

p
χ

∫
R3

spe ≤ p− 1

p
χ

(∫
R3

s
p2−1
p · p

p−1

) p−1
p
(∫

R3

eps

) 1
p

=
p− 1

p
χ

(∫
R3

sp+1

) p−1
p
(∫

R2

eps

) 1
p

≤ C(Mε)−
1
p−1χ

p
p−1

∫
R3

sp+1 +
Mε

2

∫
R3

eps

≤ C(Mε)−
1
p−1 ‖s‖

L
3
2
‖∇s

p
2 ‖2L2 +

Mε

2

∫
R3

eps.
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The solution s(t) satisfies that

1

p

d

dt

∫
R3

|s|p +
4(p− 1)

p2

∫
R3

|∇s
p
2 |2 + ε

∫
R3

spe

≤ C(Mε)−
1
p−1 ‖s‖

L
3
2
‖∇s

p
2 ‖2L2 +

Mε

2

∫
R3

eps.

(2.8)

Adding (2.7) and (2.8), we have

1

p

d

dt

∫
R3

|s|p +
M

p

d

dt

∫
R3

|e|p +
4(p− 1)

p2

∫
R3

|∇s
p
2 |2 +

4M(p− 1)

p2

∫
R3

|∇e
p
2 |2

+ ε

∫
R3

spe+
Mε

2

∫
R3

eps ≤ C(Mε)−
1
p−1 ‖s‖

L
3
2
‖∇s

p
2 ‖2L2 . (2.9)

Taking M = 1
ε

(
Cp2‖s0‖

L
3
2

2(p−1)

)p−1
, we have

1

p

d

dt

∫
R3

|s|p +
M

p

d

dt

∫
R3

|e|p +
2(p− 1)

p2

∫
R3

|∇s
p
2 |2 +

4M(p− 1)

p2

∫
R3

|∇e
p
2 |2

+ε

∫
R3

spe+
Mε

2

∫
R3

eps ≤ 0.

This gives the decay estimate

‖s(t)‖Lp ≤
Cp

t
3
2 (1− 1

p )
for p ∈ (1, ∞). (2.10)

• (L∞ decay estimates) We prove that ‖∇s‖L∞t Lpx < C for any p ∈ (3,∞)

and ‖s(t)‖L∞ ≤ Ct−
3
2+ε for any small ε > 0 by the interpolation ‖s(t)‖L∞x ≤

C‖s(t)‖θ
Lqx
‖∇s(t)‖1−θ

Lpx
, where p > 3 and θ satisfies 3

q θ = p−3
p (1− θ).

To estimate ‖∇s‖L∞,pt,x
, we perform several parabolic regularity estimates for the

solution of the heat equation in the following lemmas.

Lemma 3. Let v be a solution of the equation

vt −∆v = f, v(0, x) = 0.

If f ∈ Lqt,x(R3 × [0,∞)) ∩ Lrt,x(R3 × [0,∞)) with q > 5p
5+p and 1 < r < 5p

5+p for

p ∈ (3,∞), then we have

‖∇v‖L∞,pt,x
< Cp

(
‖f‖Lqt,x + ‖f‖Lrt,x

)
. (2.11)

Also, if f ∈ Lp,αt,x (R3 × [0,∞)) ∩ Lβt,x(R3 × [0,∞)) with 1
α <

1
p + 1

3 and 1 < β < 3
2 ,

then we have

‖∇v‖Lpt,x < Cp

(
‖f‖Lp,αt,x + ‖f‖Lβt,x

)
. (2.12)

Proof. Note that we have ∇v =
∫ t
0
∇Γ(t− τ) ∗ f(τ)dτ , where Γ(x, t) = 1

(4πt)
3
2
e−
|x|2
4t

is a 3-dimensional heat kernel. Without loss of generality, we may assume t > 1.
Then we have

‖∇v‖Lpx ≤
∫ t

0

‖∇Γ(t− τ) ∗ f(τ)‖Lpdτ

=

∫ t−1

0

‖∇Γ(t− τ) ∗ f(τ)‖Lpdτ +

∫ t

t−1
‖∇Γ(t− τ) ∗ f(τ)‖Lpdτ := I1 + I2.
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I1 and I2 can be estimated as follows:

I1 ≤ C
∫ t−1

0

‖∇Γ(t− τ)‖Lr′x ‖f(τ)‖Lrxdτ ( where
1

r′
= 1 +

1

p
− 1

r
)

≤ C
∫ t−1

0

(t− τ)−
3
2 ( 1

r−
1
p )− 1

2 ‖f(τ)‖Lrxdτ

≤ C
[
(t− τ)−

5
2r+

3
2p+

1
2

]τ=t−1
τ=0

‖f‖Lrt,x

≤ C‖f‖Lrt,x (r <
5p

5 + p
is equivalent to − 5

2r
+

3

2p
+

1

2
< 0),

and

I2 ≤ C
∫ t

t−1
‖∇Γ(t− τ)‖

Lq
′
x
‖f(τ)‖Lqxdτ ( where

1

q′
= 1 +

1

p
− 1

q
)

≤ C
[
(t− τ)−

5
2q+

3
2p+

1
2

]τ=t−1
τ=t

‖f‖Lqt,x

≤ C‖f‖Lqt,x (q >
5p

5 + p
is equivalent to − 5

2q
+

3

2p
+

1

2
> 0).

Hence we obtain (2.11). Similarly, we have

‖∇v‖Lpt,x ≤ C
∥∥∥∥∫ t−1

0

‖∇Γ(t− τ) ∗ f(τ)‖Lpxdτ
∥∥∥∥
Lpt

+ C

∥∥∥∥∫ t

t−1
‖∇Γ(t− τ) ∗ f(τ)‖Lpxdτ

∥∥∥∥
Lpt

:= J1 + J2.

J1 and J2 can be estimated as follows:

J1 ≤ C
∥∥∥∥∫ t−1

0

‖∇Γ(t− τ)‖
Lβ
′
x
‖f(τ)‖Lβxdτ

∥∥∥∥
Lpt

( where
1

β′
= 1 +

1

p
− 1

β
)

≤ C
∥∥∥∥∫ t−1

0

(t− τ)−
3
2 ( 1

β−
1
p )− 1

2 ‖f(τ)‖Lβxdτ
∥∥∥∥
Lpt

≤ C‖f‖Lβt,x (β <
3

2
is equivalent to − 3

2

(
1

β
− 1

p

)
− 1

2
+

1

β
< 0),

and

J2 ≤ C
∥∥∥∥∫ t

t−1
‖∇Γ(t− τ)‖Lα′x ‖f(τ)‖Lαx dτ

∥∥∥∥
Lpt

( where
1

α′
= 1 +

1

p
− 1

α
)

≤ C
∥∥∥∥∫ t

t−1
(t− τ)−

3
2 ( 1

α−
1
p )− 1

2 ‖f(τ)‖Lαx dτ
∥∥∥∥
Lpt

≤ C‖f‖Lp,αt,x (
1

α
<

1

3
+

1

p
is equivalent to − 3

2

(
1

α
− 1

p

)
+

1

2
> 0),

where we used convolution type Young’s inequality by extending zero outside of the
interval of integrals. This completes the proof.

Lemma 4. Let (e(t), s(t)) be a solution in Theorem 2. Then, for any p ∈ (1, ∞),
there exists a positive constant Cp such that

‖∇2s‖Lpt,x + ‖∂ts‖Lpt,x ≤ Cp.
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Proof. Due to the maximal regularity, we have for p ∈ (1,∞)

‖∇2s‖Lpt,x+‖∂ts‖Lpt,x ≤ C(‖s0‖W 2,p+‖(u·∇)s‖Lpt,x+‖∇·(s∇∆−1e)‖Lpt,x+‖es‖Lpt,x).

We note that

‖se‖p
Lpt,x

=

∫ ∞
0

‖se‖pLpdt ≤
∫ ∞
0

‖s‖pL2p‖e‖pL2pdt

≤ C
∫ ∞
0

(1 + t)
3
2−3pdt < C if p ≥ 1,

where C is independent of time.
We also have the following inequality due to the maximal regularity and (2.12),

‖(u · ∇)s‖Lpt,x ≤ ‖u‖L∞t,x‖∇s‖Lpt,x

≤ C(‖s0‖W 1,p + ‖us‖Lpt,x + ‖s∇∆−1e‖Lpt,x + ‖es‖Lp,αt,x ∩Lβt,x),

where 1
α <

1
p + 1

3 and 1 < β < 3
2 . We easily see that

‖us‖Lpt,x ≤ ‖u‖L2p
t,x
‖s‖L2p

t,x
≤ C if p ≥ 1,

and

‖es‖Lp,αt,x ∩Lβt,x ≤ C if β ≥ 1.

We find that

‖s∇∆−1e‖Lpt,x ≤
∥∥∥‖s‖L2p

x
‖∇∆−1e‖L2p

x

∥∥∥
Lpt

≤ C
∥∥∥‖s‖L2p

x
‖e‖Lp̃x

∥∥∥
Lpt

< C (
1

p̃
=

1

2p
+

1

3
).

Finally, we find that

‖∇ · (s∇∆−1e)‖Lpt,x = ‖se‖Lpt,x + ‖∇s · ∇∆−1e‖Lpt,x .

The last term in the right hand side can be estimated

‖∇s · ∇∆−1e‖Lpt,x ≤ C
∥∥∥‖∇s‖L2p

x
‖e‖Lp̃x

∥∥∥
Lpt

≤ C‖∇s‖L2p
t,x
‖e‖L2p,p̃

t,x
< C,

where 1
p̃ = 1

2p + 1
3 . This completes the proof.

Due to (2.11) and Lemma 4, we deduce that, for any p ∈ (3,∞) and q, r as in
Lemma 3,

‖∇s‖L∞,pt,x
≤ C‖∂ts−∆s‖Lqt,x∩Lrt,x ≤ C(‖∂ts‖Lqt,x∩Lrt,x + ‖∆s‖Lqt,x∩Lrt,x) ≤ Cp.

First, we choose p ∈ (3,∞). By the interpolation, we have

‖s‖L∞t,x ≤ C‖s‖
θ
L∞,mpt,x

‖∇s‖1−θ
L∞,pt,x

,

where θ = m(p−3)
mp−3m+3 and m > 0 will be chosen later.

Since we have uniform bound for ‖∇s‖L∞,pt,x
and decay estimates (2.10), we deduce

that

‖s(t)‖L∞x ≤ Ct
− 3

2 ·
(mp−1)(p−3)
p(mp−3m+3) .

If we choose m > 9(p−1)
p(p−3) , then − 3

2 ·
(mp−1)(p−3)
p(mp−3m+3) < −1. This implies that

‖s(t)‖L∞x ≤ Ct
−1−σ
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for some σ > 0. Also we note that − 3
2 ·

(mp−1)(p−3)
p(mp−3m+3) approaches to − 3

2 when m

approaches to ∞. It implies that ‖s(t)‖L∞x ≤ Ct
− 3

2+ε for any small ε > 0.
• (Total mass behavior of me(t)) Finally, we deduce that

d

dt

∫
R3

e(x, t)dx = −ε
∫
R3

es dx ≥ −ε‖e(t)‖L1‖s(t)‖L∞ .

Similarly to the estimate (2.5), we have me(t) ≥ 1
2me(t0) for some t0 and all t ≥ t0.

In the above, C depends on 1
χ (see e.g., L2 decay estimates), it implies that lower

bound approaches 0 as χ→∞.

Proof of Theorem 1 (iii) We already obtained the temporal decay of e in 2D
and 3D and s in 3D, that is, (1.4), hence we only consider the temporal decay of s
in 2D.
• (2D case) We recall that the solution e to (1.3)2 satisfies the equation

1

p

d

dt

∫
R2

|e|p +
4(p− 1)

p2

∫
R2

|∇e
p
2 |2 + ε

∫
R2

eps = 0. (2.13)

Multiplying a large constant M on both sides of (2.13) (M will be specified later),
we have

M

p

d

dt

∫
R2

|e|p +
4M(p− 1)

p2

∫
R2

|∇e
p
2 |2 +Mε

∫
R2

eps = 0. (2.14)

Note first that the following interpolation inequality holds (see [15])

‖s‖p+1
Lp+1 ≤ Cp‖s‖L1‖∇s

p
2 ‖2L2 .

We compute

p− 1

p
χ

∫
R2

spe ≤ C
(∫

R2

s
p2−1
p · p

p−1

) p−1
p
(∫

R2

eps

) 1
p

= C

(∫
R2

sp+1

) p−1
p
(∫

R2

eps

) 1
p

≤ CM−1
∫
R2

sp+1 +
Mε

2

∫
R2

eps

≤ CM−1‖s‖L1‖∇s
p
2 ‖2L2 +

Mε

2

∫
R2

eps.

The solution s(t) satisfies that

1

p

d

dt

∫
R2

|s|p +
4(p− 1)

p2

∫
R2

|∇s
p
2 |2 + ε

∫
R2

spe

≤ CM−1‖s‖L1‖∇s
p
2 ‖2L2 +

Mε

2

∫
R2

eps. (2.15)

Adding (2.14) and (2.15), we have

1

p

d

dt

∫
R2

|s|p +
M

p

d

dt

∫
R2

|e|p +
4(p− 1)

p2

∫
R2

|∇s
p
2 |2 +

4M(p− 1)

p2

∫
R2

|∇e
p
2 |2

+ ε

∫
R2

spe+
Mε

2

∫
R2

eps ≤ CM−1‖s‖L1‖∇s
p
2 ‖2L2 . (2.16)

Taking M =
Cp2‖s0‖L1

2(p−1) , we have

1

p

d

dt

∫
R2

|s|p +
M

p

d

dt

∫
R2

|e|p +
2(p− 1)

p2

∫
R2

|∇s
p
2 |2 +

4M(p− 1)

p2

∫
R2

|∇e
p
2 |2
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+ε

∫
R2

spe+
Mε

2

∫
R2

eps ≤ 0.

This gives the decay estimate

‖s(t)‖Lp ≤
Cp

t1−
1
p

for p ∈ (1, ∞).

This completes the proof of Theorem 1.

Remark 4. In two dimensions, we have ‖e(t)‖L∞ ≤ C
t . Then via similar compu-

tations as above, we obtain

ms(t) ≥
(
t0
t

)C
ms(t0) for t ≥ t0.

Hence, in two dimensions, we can not obtain the positive lower bound of the total
mass via same method in three dimensions and leave as an open problem.

3. Global well-posednes for the model (1.6). In this section, we prove the
global well-posedness of solutions to the system (1.6).

∂te+ (u · ∇)e−∆e = −ε(se),
∂ts+ (u · ∇)s−∆s = −χ∇ · (s∇c)− ε(se),
∂tc+ (u · ∇)c−∆c = e,
∂tu+ κ(u · ∇)u−∆u+∇p = −(s+ e)∇φ,
div u = 0,

in (x, t) ∈ Rd × (0, ∞),

We will set κ = 1 (Navier-Stokes system) when d = 2 and κ = 0 (Stokes system)
when d = 3 as mentioned in Section 1.

Note that the solution (e, s, c, u, p) satisfies the scaling invariant property if φ
has the following scaling property : φ(x, t) = φλ(x, t) := φ(λx, λ2t). That is,

(eλ(x, t), sλ(x, t), cλ(x, t), uλ(x, t), pλ(x, t))

= (λ2e(λx, λ2t), λ2s(λx, λ2t), c(λx, λ2t), λu(λx, λ2t), λ2p(λx, λ2t)) (3.1)

is also a solution to (1.6) if (e, s, c, u, p) is a solution.
The local-in-time existence of the solutions to (1.6) is obtained by the contrac-

tion as for Proposition 1. Hence we omit its proof. Moreover similar estimates
as (2.3) for the Mn norm of (e, s, c)(·, T ) are bounded by ‖(e0, s0, c0)‖Mn

and
‖(e, s, c, u)‖C(0,T ;Hm). Thus the local solution is extended if ‖(e, s, c, u))‖C(0,T ;Hm)

is uniformly bounded.
Let T ∗ be the maximal time of existence of the local solution and T be any

time until T ∗. In what follows we shall establish a priori estimates for ‖(e, s, c, u)‖
C(0,T ;Hm) where m = [d2 ] + 1. All integrations are over QT . We often omit QT in
LqtL

p
x(QT ).
L1 estimates of e, s, c and Lp estimates of e, c are immediate. We have∫

Rd
e(T ) dx+ ε

∫ T

0

∫
Rd

(se)dxdt =

∫
Rd
e0 dx,∫

Rd
s(T ) dx+ ε

∫ T

0

∫
Rd

(se)dxdt =

∫
Rd
s0 dx,∫

Rd
c(T ) dx =

∫
Rd
c0 dx+

∫ T

0

∫
Rd
e(x, t) dxdt.
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For 1 < p <∞ we have

1

p

d

dt
‖e(t)‖pLp +

4(p− 1)

p2
‖∇e

p
2 ‖2L2 + ε

∫
Rd

(sep)(x, t)dx = 0,

1

p

d

dt
‖c(t)‖pLp +

4(p− 1)

p2
‖∇c

p
2 ‖2L2 =

∫
Rd

(ecp−1)(x, t)dx ≤ ‖e‖Lp‖c‖p−1Lp .

Hence it holds that

‖e‖pL∞(0,T∗;Lp) + ‖∇e
p
2 ‖2L2(0,T∗;L2) ≤ C‖e0‖

p
Lp ,

‖c‖pL∞(0,T∗;Lp) + ‖∇c
p
2 ‖2L2(0,T∗;L2) ≤ C

(
‖c0‖Lp +

∫ T

0

‖e‖pdt

)p
≤ C(‖c0‖Lp + T‖e0‖Lp)p.

To obtain other Lp and higher norm estimates we first consider the estimates of u;{
∂tu+ (u · ∇)u−∆u+∇p = −(s+ e)∇φ, ∇ · u = 0 in R2 × (0, T )

u(x, 0) = u0(x) in R2.
(3.2)

Let us denote the Stokes operator by Gt. Namely Gt ∗ u0 is the solution of the free
Stokes equations (f = 0)

∂tu−∆u+∇p = f, ∇ · u = 0

with initial data u0. It is well known that Gt satisfies that (see e.g. [12])

‖Gt ∗ f‖Lp ≤ Ct
1
p−1‖f‖L1 , ‖∇Gt ∗ f‖Lp ≤ Ct

1
p−

3
2 ‖f‖L1 1 ≤ p ≤ ∞ (3.3)

in two dimensions. For the inhomogeneous Stokes equations the following maximal
regularity estimate is known [12];∫ T

0

‖∂tu‖qLpxdt+

∫ T

0

‖∆u‖q
Lpx
dt+

∫ T

0

‖∇p‖qLpdt ≤ C

(
‖u0‖qW 2,p +

∫ T

0

‖f‖qLpdt

)
(3.4)

for 1 < p, q <∞.

Lemma 5. Let d = 2 and s, e, u be the local solution of (1.6) in Km,n. The solution
u to (3.2) belongs to L∞(0, T ;L2)∩L2(0, T ;W 1,q)∩L4(0, T ;L4) for any q ∈ [1, 2).

Proof. We remind that total masses of s and e are decreasing. Thus, s∇φ, e∇φ
belong to L∞([0, T0);L1(R2)), since φ is assumed to satisfies

∥∥∇lφ∥∥
L∞

< ∞ for

1 ≤ |l| ≤ m.
Let Q := (0, T ) × R2. We decompose the solution u to the equations (3.2) to

v + w in Q, where v satisfies the Stokes system:{
∂tv −∆v +∇p1 = −(s+ e)∇φ, div v = 0 in Q,

v(x, 0) = u0(x) in R2,
(3.5)

and w satisfies a perturbed homogeneous Navier-Stokes equations with zero initial
data:{

∂tw −∆w +∇p2 = −((v + w) · ∇)v − ((v + w) · ∇)w, div w = 0, in Q,
w(x, 0) = 0 in R2.

(3.6)
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For convenience, we denote f := −(s+ e)∇φ. By (3.3) we have

‖v‖L∞,pt,x (QT ) ≤ C‖u0‖Lp + C

(∫ T0

0

t
1
p−1dt

)
‖f‖L∞,1t,x (QT )

<∞.

for any p ∈ [1, ∞). Similarly, we have

‖∇v‖L∞,qt,x (QT )
≤ C‖∇u0‖Lq + C

(∫ T0

0

t
1
q−

3
2 dt

)
‖f‖L∞,1t,x (QT )

<∞

for any q ∈ [1, 2). Note that ‖f‖L∞,1t,x (QT )
≤ C(‖s0‖L1(R2) + ‖e0‖L1(R2)). Summing

up, we obtain

‖v‖L∞,pt,x (QT ) + ‖∇v‖L∞,qt,x (QT )
≤ C = C(T0), p ∈ [1, ∞), q ∈ [1, 2), (3.7)

which yields that

v ∈ L∞(0, T0;L2) ∩ L2(0, T0;W 1,q) ∩ L4(0, T0;L4) q ∈ [1, 2).

For the Navier-Stokes part w, the followings come from the facts that∫
R2

((v+w) ·∇)w ·wdx = 0, and

∫
R2

((v+w) ·∇)v ·wdx = −
∫
R2

((v+w) ·∇)w ·vdx :

1

2

d

dt
‖w‖2L2 + ‖∇w‖2L2 ≤

∣∣∣∣∫
R2

((v + w) · ∇)w · vdx
∣∣∣∣

≤ ‖v‖2L4‖∇w‖L2 + ‖w‖L4‖∇w‖L2‖v‖L4

≤ ‖v‖2L4‖∇w‖L2 + C‖w‖
1
2

L2‖∇w‖
3
2

L2‖v‖L4

≤ 1

2
‖∇w‖2L2 + C‖v‖4L4(‖w‖2L2 + 1)

which implies

w ∈ L∞,2t,x (QT ) ∩ L2(0, T ;H1
0 )

by the Gronwall’s inequality. It remains to show that w ∈
⋂

1≤q<2 L
2(0, T ;W 1,q).

Using the Stokes operator, we write w as

∇w(x, t) = −
∫ t

0

∇Gt−s ∗ ((v · ∇)v + (v · ∇)w + (w · ∇)v + (w · ∇)w) (s)ds.

= −
∫ t

0

∇Gt−s ∗ ((v · ∇)v(s))ds−
∫ t

0

∇Gt−s ∗ ((v · ∇)w(s))ds

−
∫ t

0

∇Gt−s ∗ ((w · ∇)v(s))ds−
∫ t

0

∇Gt−s ∗ ((w · ∇)w(s))ds := I1 + I2 + I3 + I4.

What it follows, we separately compute Ii, i = 1, 2, 3, 4.

‖I1(t)‖Lq ≤
∫ t

0

‖∇Gt−s ∗ ((v∇)v)(s)‖Lqds ≤ C
∫ t

0

(t− s)
1
q−

3
2 ‖v∇v‖L1(R2)(s)ds

≤ C
∫ t

0

(t− s)
1
q−

3
2 ‖v‖Lq′ (s) ‖∇v‖Lq (s)ds ≤ C(T0) ‖v‖

L∞,q
′

t,x (QT )
‖∇v‖L∞,qt,x (QT )

.

Similarly,

‖I2(t)‖Lq ≤ C
∫ t

0

(t− s)
1
q−

3
2 ‖v∇w‖L1(R2)(s)ds

≤ C ‖v‖L∞,2t,x (QT )

∫ t

0

(t− s)
1
q−

3
2 ‖∇w‖L2(R2)(s)ds.
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Therefore, using the convolution inequality, we have

‖I2‖L2,q
t,x(QT )

≤ C(T0) ‖v‖L∞,2t,x (QT )
‖∇w‖L2

t,x(QT )
.

For I3, using w ∈ L4(QT ), we observe that

‖I3(t)‖Lq ≤ C
∫ t

0

(t− s)
1
q−

3
2 ‖w∇v‖L1(R2)(s)ds

≤ C
∫ t

0

(t− s)
1
q−

3
2 ‖w‖L4(R2)(s)‖∇v‖L 4

3 (R2)
(s)ds

≤ C‖∇v‖
L
∞, 4

3
t,x (QT )

∫ t

0

(t− s)
1
q−

3
2 ‖w‖L4(R2)(s)ds.

Using the convolution inequality again, we obtain

‖I3‖L2,q
t,x(QT )

≤ C(T ) ‖∇v‖
L
∞, 4

3
t,x (QT )

‖w‖L4
t,x(QT )

.

Finally, we compute

‖I4(t)‖Lq ≤ C
∫ t

0

(t− s)
1
q−

3
2 ‖w∇w‖L1(R2)(s)ds

≤ C
∫ t

0

(t− s)
1
q−

3
2 ‖w‖L2 (s) ‖∇w‖L2 (s)ds

≤ C ‖w‖L∞,2t,x (QT )

∫ t

0

(t− s)
1
q−

3
2 ‖∇w‖L2(R2)(s)ds.

Similarly we get

‖I4‖L2,q
t,x(QT )

≤ C(T ) ‖w‖L∞,2t,x (QT )
‖∇w‖L2(QT )

.

Summing up estimates, we obtain that ∇w ∈
⋂

1≤q<2 L
2(0, T ;Lq(R2)). This com-

pletes the proof.

Remark 5. If we consider

∂tu−∆u+∇p = −(s+ e)∇φ, ∇ · u = 0 in R3 × (0, T )
u(x, 0) = u0(x) in R3.

(3.8)

then similarly to Lemma 5, we can prove that the solution u to (3.8) belongs to
L∞(0, T ;Lp) ∩ L∞(0, T ;W 1,q) for any p ∈ [1, 3) and q ∈ [1, 32 ).

We proceed other Lp and higher order estimates to conclude the global well-
posedness part of Theorem 2. We treat spatial two and three dimensional cases
separately.

Proof of Theorem 2 (i) (d = 2) If we consider the equation

∂tc−∆c = −∇ · (uc) + e,

then by the maximal regularity of the heat equation (2.1) we obtain

‖∇c‖L4
t,x
≤ C(‖uc‖L4

t,x
+ ‖∇∆−1e‖L4

t,x
) + C‖∇c0‖L4

x

≤ C(‖c‖L∞t,x‖u‖L4
t,x

+ ‖e‖
L4
tL

3/2
x

) + C‖∇c0‖L4
x
<∞, (3.9)
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where the last inequality is due to Lp estimates of c, e and Lemma 5. Multiplying
both sides of the equation of s by sp−1 and integrating over R2, we deduce that

1

p

d

dt
‖s‖pLp+

4(p− 1)

p2
‖∇s

p
2 ‖2L2 ≤

2(p− 1)

p
χ

∣∣∣∣∫
R2

s
p
2∇c · ∇s

p
2

∣∣∣∣
≤ 2(p− 1)

p
χ‖s

p
2 ‖

1
2

L2‖∇c‖L4‖∇s
p
2 ‖

3
2

L2

≤ Cχ4‖∇c‖4L4
x
‖s‖pLp +

2(p− 1)

p2
‖∇s

p
2 ‖2L2 .

(3.10)

Hence we have

sup
0≤t≤T

‖s(t)‖pLp ≤ ‖s0‖
p
Lp exp

(
Cχ4‖∇c‖4L4

t,x

)
<∞ for all p ∈ [2, ∞). (3.11)

Therefore, s ∈ L∞(0, T ;Lp) and ∇s
p
2 ∈ L2(0, T ;L2) for all p ∈ [2, ∞).

On the other hand, we have

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ C(‖s‖L2 + ‖e‖L2)‖u‖L2 .

It gives us that u ∈ L∞(0, T ;L2) and ∇u ∈ L2(0, T ;L2).

1

2

d

dt
‖∇u‖2L2 + ‖∆u‖2L2 ≤ C(‖s‖2L2 + ‖e‖2L2 + ‖∇u‖4L2) +

1

2
‖∆u‖2L2 .

Therefore, we also have ∇u ∈ L∞(0, T ;L2) and ∆u ∈ L2(0, T ;L2), that is

u ∈ L∞(0, T ;L2), ∇u ∈ L∞(0, T ;L2), ∆u ∈ L2(0, T ;L2). (3.12)

In general the maximal regularity of the heat equation and the Lp estimates of c, e
yield that

‖∇c‖Lpt,x ≤ C(‖u‖Lpt,x + 1) <∞,
‖∆c‖Lpt,x ≤ C(‖u · ∇c‖Lpt,x + 1) ≤ C(‖u‖Lqt,x‖∇c‖Lpq/(q−p)t,x

+ 1) <∞ (3.13)

for all p ∈ [2, ∞) and q > p. We can replace c with e in the above. Applying the
maximal regularity of the heat equation to s equation together with the previous
estimates, we have

‖∇s‖Lpt,x , ‖∆s‖Lpt,x <∞ for all p ∈ [2, ∞). (3.14)

Then by the bootstraping argument, we complete the proof of the Case I. Indeed
(3.12) and (3.14) yields Lp estimate for ∇c,∇e. Then Lp estimate of ∇s follows
from the boundedness of ‖∆c‖Lpt,x in (3.13) as is obtained ‖s‖Lp in (3.11). Those

Lp estimates are used to yield ∇u ∈ L∞(0, T ;L2),∇2u ∈ L∞(0, T ;L2),∇3u ∈
L2(0, T ;L2), which closes the H1 estimate of e, c, s, u. Maximal regularity estimates
for ∇c,∇e,∇s prove the boundedness of ‖∇c,∇e,∇s‖LptW 2,p

x
for all p ∈ [2,∞),

which corresponds to one more derivative version of (3.13) and (3.14). The H2

estimates can be similarly done.
(ii) (d = 3) We assume that χ2‖∇φ‖2L∞‖s0‖2L1 is sufficiently small. Note that

χ2‖∇φ‖2L∞‖s0‖2L1 is scaling invariant quantity.
In the three dimensional case the regularity of u obtained in Remark 5 is not

enough to prove (3.9) and (3.10) as is in two dimensions. We need to prove an
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entropy type inequality for s (3.19) for three dimensions. Taking log s as a test
function for the equation (1.6)2, we have

d

dt

∫
R3

s log sdx+ 4

∫
R3

|∇
√
s|2dx =

∫
R3

χ∇s · ∇cdx− ε
∫
R3

se(1 + log s)dx

We estimate∣∣∣∣∫
R3

χ∇s∇c
∣∣∣∣ = 2χ

∣∣∣∣∫
R3

√
s∇
√
s · ∇cdx

∣∣∣∣ ≤ Cχ‖∇√s‖L2‖
√
s‖
L

30
11
‖∇c‖

L
15
2

≤ 2‖∇
√
s‖2L2 + Cχ2‖s‖

L
15
11
‖∇c‖2

L
15
2
.

Also we note that

−
∫
{x:s(x)≤1}

se log sdx ≤ C
∫
R3

edx.

Hence we deduce that

d

dt

∫
R3

s log sdx+ 2

∫
R3

|∇
√
s|2dx ≤ Cχ2‖s‖

L
15
11
‖∇c‖2

L
15
2

+ C

∫
R3

edx

≤ C
(
χ2‖s‖

3
5

L1‖s‖
2
5

L3‖∇c‖2
L

15
2

+ ‖e0‖L1

)
≤ C

(
χ2‖s0‖

3
5

L1‖s‖
2
5

L3‖∇c‖2
L

15
2

+ ‖e0‖L1

)
.

Integrating in time gives us that∫
R3

s(t) log s(t)dx−
∫
R3

s0 log s0dx+
1

2

∫ t

0

∫
R3

|∇
√
s|2dxds

≤ C

[
χ2‖s0‖

3
5

L1

(∫ t

0

‖s‖L3ds

) 2
5
(∫ t

0

‖∇c‖
10
3

L
15
2
ds

) 3
5

+ t‖e0‖L1

]
.

Considering the equation of c

ct −∆c = −∇ · (uc) + e,

and by the fact that e ∈ L∞t,x, we have

‖∇c‖
L

10
3
, 15

2
t,x

≤ C(‖uc‖
L

10
3
, 15

2
t,x

+ ‖e‖
L

10
3
, 15

2
t,x

) + ‖∇c0‖
L

15
2
x

≤ C(‖u‖
L

10
3
, 15

2
t,x

+ 1) ≤ C(‖∇2u‖
L

10
3
, 5
4

t,x

+ 1) ≤ C(‖s‖
L

10
3
, 5
4

t,x

‖∇φ‖L∞t,x + 1),

where the last inequality is from (3.4). Since we have ‖s‖
L

5
4
x

≤ C‖s‖
7
10

L1
x
‖s‖

3
10

L3
x
, we

deduce that ∫
R3

s log sdx−
∫
R3

s0 log s0dx+
1

2

∫ t

0

∫
R3

|∇
√
s|2dxds

≤ Cχ2‖s‖
2
5

L1,3
t,x

(
‖s‖

3
5

L1,3
t,x

‖∇φ‖2L∞t,x‖s0‖
2
L1
x

+ 1

)
+ Ct‖e0‖L1

≤
[
C∗χ

2‖∇φ‖2L∞t,x‖s0‖
2
L1
x

+
1

8

]
‖∇
√
s‖2L2

t,x
+ Ct.

Therefore, from the assumption that C∗χ
2‖∇φ‖2L∞t,x‖s0‖

2
L1
x
≤ 1

8 , then we can have∫
R3

s log sdx+
1

4

∫ t

0

∫
R3

|∇
√
s|2dxdτ < Ct. (3.15)
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Let (log s)− be a negative part of log s and 〈x〉 = (1 + |x|2)
1
2 . Decomposing the

domain {x|s(x) ≤ 1} into D1 ∪D2 =: {x|0 ≤ s(x) ≤ e−|x|} ∪ {x|e−|x| ≤ s(x) ≤ 1}
and using s(log s)− < C

√
s for the integral over D1, we have∫

R3

s(log s)− ≤ C
∫
R3

e−
|x|
2 + C

∫
R3

〈x〉s. (3.16)

Integration by parts gives us that

d

dt

∫
R3

〈x〉s =

∫
R3

s(u · ∇)〈x〉+

∫
R3

s∆〈x〉+

∫
R3

χs∇c · ∇〈x〉 − ε
∫
R3

〈x〉se.

Since |∇〈x〉|+ |∆〈x〉| ≤ C, we have∣∣∣∣∫
R3

s(u · ∇)〈x〉
∣∣∣∣ ≤ C‖√s‖2L 12

5
‖u‖L6 ≤ C‖

√
s‖

3
2

L2‖∇
√
s‖

1
2

L2‖u‖L6

≤ δ‖∇
√
s‖2L2 + C‖s0‖L1‖∇u‖2L2 + C

and ∣∣∣∣∫
R3

s∆〈x〉
∣∣∣∣+

∣∣∣∣∫
R3

χs∇c · ∇〈x〉
∣∣∣∣ ≤ C + C‖∇

√
s‖

1
2

L2‖∇c‖L6

≤ C + δ‖∇
√
s‖2L2 + C‖∇c‖2L6 ,

for sufficiently small δ > 0.
Also from the equation ∂tc−∆c = −∇ · (uc) + e, we have

‖∇c‖2
L2,6
t,x
≤ C(‖uc‖2

L2,6
t,x

+ 1) ≤ C(‖u‖2
L2,6
t,x

+ 1) ≤ C(‖∇u‖2
L2,2
t,x

+ 1).

Considering (3.16) and adding 2
∫
R3 s(log s)− on the both sides of (3.15), we obtain∫

R3

s(t)| log s(t)|dx+
1

8

∫ t

0

∫
R3

|∇
√
s|2dxdτ < C(t+ 1) + C∗∗

∫ t

0

‖∇u‖2L2 . (3.17)

From the equation of u, we deduce that

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ C(‖s‖

L
6
5

+ ‖e‖
L

6
5

)‖u‖L6

≤ C + δ‖∇
√
s‖2L2 + δ‖∇u‖2L2 .

Multiplying 4C∗∗ on the both sides of the above inequality and integrating with
respect to time, we have

2C∗∗

∫
R3

|u|2(t)dx+ 2C∗∗

∫ t

0

∫
R3

|∇u|2 ≤ Ct+ 4C∗∗δ

∫ t

0

‖∇
√
s‖2L2dτ. (3.18)

If we add (3.17) and (3.18), then we have∫
R3

s(t)| log s(t)|dx+ 2C∗∗

∫
R3

|u|2(t)dx

+
1

16

∫ t

0

∫
R3

|∇
√
s|2 + C∗∗

∫ t

0

∫
R3

|∇u|2 ≤ C(1 + t). (3.19)

Hence we have

∇
√
s ∈ L2(0, t;L2(R3)) i.e., s ∈ L1(0, t;L3(R3)).

From the interpolation, it gives us that

s ∈ Lq,pt,x with
3

p
+

2

q
= 3, 1 ≤ p ≤ 3. (3.20)
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By the maximal regularity estimate for Stokes equation (3.4), we obtain

‖∆u‖5
L

5, 15
13

t,x

≤ C(‖u0‖5
W 2, 15

13
+ ‖s‖5

L
5, 15

13
t,x

) < C(‖u0‖
W 2, 15

13
+ ‖s0‖4L1 + δ

∫ t

0

‖∇
√
s‖2L2),

and hence u ∈ L5
t,x by the Sobolev embedding. Also we have

1

2

d

dt
‖∇c‖2L2 + ‖∆c‖2L2 =

∫
R3

u∇c∆c−
∫
R3

e∆c

≤ ‖u‖L5‖∇c‖
L

10
3
‖∆c‖L2 +

1

8
‖∆c‖2L2 + C

≤ C‖u‖L5‖∇c‖
2
5

L2‖∆c‖
8
5

L2 +
1

8
‖∆c‖2L2 + C

≤ C‖u‖5L5‖∇c‖2L2 +
1

4
‖∆c‖2L2 + C.

Hence we have ∇c ∈ L∞,2t,x and ∆c ∈ L2
t,x.

Also from the equation ∂tc−∆c = −∇ · (uc) + e, we have

‖∇c‖L5
x,t
≤ C(‖uc‖L5

x,t
+ 1) ≤ C(‖u‖L5

x,t
+ 1) <∞.

Hence we have

1

2

d

dt

∫
R3

|s|2 +

∫
R3

|∇s|2 ≤ C
∣∣∣∣∫

R3

s∇c · ∇s
∣∣∣∣

≤ C‖s‖
L

10
3
‖∇c‖L5‖∇s‖L2

≤ ‖∇s‖
8
5

L2‖s‖
2
5

L2‖∇c‖L5 ≤ 1

2
‖∇s‖2L2 + C‖∇c‖5L5‖s‖2L2 .

By using Gronwall’s inequality, we have s ∈ L∞,2t,x and ∇s ∈ L2
t,x. The higher order

estimates can be obtained in a similar fashion. A brief sketch of the proof is as
follows : as in [3, Theorem 1], we can show that

‖∇u‖L5
t,x
≤ C(‖s‖

L
5, 15

8
t,x

+ 1)

and

‖∇2c‖L∞,2t,x
+ ‖∇3c‖L2

t,x
≤ C(‖∇u‖L5

t,x
+ 1).

Also we can show that if T ∗ is a finite maximal existence time, then

‖∇c‖L2,∞
t,x (QT∗ )

=∞.

But, by the previous estimates and the standard continuation argument, we can
complete the proof of existence of solution in (ii). For the positive lower bound of
the total mass, we can obtain the lower bounds in (ii). The proof of the last part
in (ii) is parallel to the proof of Theorem 1 (ii) and we omit the details.
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4. Decay estimates in Theorem 2. In this section we prove the part (iii) of
Theorem 2. From the equation of e, we have

d

dt

∫
Rd
|e(t)|pdx+ C‖e‖

p(d+2)
d

Lp(Rd)‖e‖
− 2p
d

L
p
2 (Rd)

≤ 0.

Following the same proof for Theorem1 (ii) (see (2.4) below), we have (1.7)

‖e(t)‖Lp .
1

t(1−
1
p ) d2

, 1 < p ≤ ∞.

Next we will obtain the decay estimate of ‖c‖Lq when d = 3.
Noting first that ‖c(t)‖L1 ≤ Ct for sufficiently large t, we have

1

3

d

dt

∫
R3

|c|3 + t−1
(∫

R3

|c|3
) 4

3

.
1

3

d

dt

∫
R3

|c|3 +
8

9

∫
R3

∣∣∣∇c 3
2

∣∣∣2 . t−1‖c‖2L3 ,

where we used that ‖c‖L3 ≤ ‖c‖
1
4

L1 ‖c‖
3
4

L9 . Setting x(t) = ‖c(t)‖L3 and dividing both

sides by ‖c(t)‖2L3 , the above inequality can be rewritten as x′(t) ≤ t−1(C1−C2x
2(t))

for some constants C1 and C2. Since it is a separable form of 1st order ordinary
differential inequality, direct computations show that ‖c(t)‖L3 is uniformly bounded.
Its verification is rather standard, and thus we skip its details.

We next show that ‖c(t)‖Lq is uniformly bounded for 3 < q ≤ ∞, d = 3. Let

3 < q <∞. Using ‖e(t)‖Lq . t−
3
2 (1−

1
q ), we have

1

q

d

dt

∫
R3

|c|q +
4(q − 1)

q2

∫
R3

∣∣∣∇c q2 ∣∣∣2 =

∫
R3

ecq−1 ≤ ‖e‖Lq ‖c‖
q−1
Lq . t−

3
2 (1−

1
q ) ‖c‖q−1Lq .

Noting that

‖c‖Lq ≤ ‖c‖
2
q−1

L3 ‖c‖
q−3
q−1

L3q . ‖c‖
q−3
q−1

L3q .
∥∥∥c q2 ∥∥∥ 2(q−3)

q(q−1)

L6
.
∥∥∥∇c q2 ∥∥∥ 2(q−3)

q(q−1)

L2
,

we see that

1

q

d

dt

∫
R3

|c|q +
4

q2

(∫
R3

|c|q
) q−1
q−3

. t−
3
2 (1−

1
q ) ‖c‖q−1Lq ,

which can be rewritten as, denoting y(t) := ‖c(t)‖Lq and dividing both sides by
y(t)q−1,

y′(t) +
1

q2
(y(t))

3(q−1)
q−3 . t−

3
2 (1−

1
q ). (4.1)

Since y(t) is a solution to the equation

1

q

d

dt
yq(t) = − 4

q2

∫
R3

∣∣∣∇c q2 ∣∣∣2 +

∫
R3

ecq−1

and c(t) is smooth solution constructed in (ii) of Theorem 2, we can show − 4
q2

∫
R3∣∣∇c q2 ∣∣2 +

∫
R3 ec

q−1 is continuous with respect to time. For example, we estimate∫
|∇c

q
2 |2(t2)−

∫
|∇c

q
2 |2(t1)

≤ ‖c
q
2−1(t2)− c

q
2−1(t1)‖2L4‖∇c(t2)‖2L4 + ‖c

q
2−1‖2L4‖∇c(t2)−∇c(t1)‖2L4 .

Then it implies that y′(t) is continuous with respect to time. By integrating (4.1)
with respect to time, we use comparison argument with the solution

z′(t) +
1

q2
(z(t))

3(q−1)
q−3 ' t−

3
2 (1−

1
q ) (4.2)
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By solving the differential equation (4.2), we can deduce (1.8)

‖c(t)‖Lq . t−
3
2 (

1
3−

1
q ), q > 3.

Next, we prove (1.9) for d = 2. First introduce the function spaces used in [2].

‖c‖Nq := sup
t
t
1
2−

1
q ‖∇c‖Lq(R2) , 2 < q < 4,

‖s‖Kp := sup
t
t1−

1
p ‖s‖Lp(R2) ,

4

3
< p < 2,

‖e‖Kl := sup
t
t1−

1
l ‖e‖Ll(R2) , 1 < l ≤ ∞,

‖ω‖Kr := sup
t
t1−

1
r ‖ω‖Lr(R2) , 1 < r < 2.

(4.3)

From (1.7), we already obtain ‖e‖Kl ≤ C(ε1).

Let Γ(x, t) be the two dimensional heat kernel, i.e.,

Γ(x, t) = (4πt)−1 exp
(
−|x|2/4t

)
.

If we set

S(t)u =

∫
R2

Γ(x− y, t)u(y)dy,

then we write the equations as the integral representation.

s(t) = S(t)s0−
∫ t

0

∇S(t−τ)·[χs(τ)∇c(τ) + u(τ)s(τ)] dτ−ε
∫ t

0

S(t−τ)(s(τ) e(τ)) dτ,

e(t) = S(t)e0 −
∫ t

0

S(t− τ) [u(τ) · ∇e(τ) + εs(τ)e(τ)] dτ,

c(t) = S(t)c0 −
∫ t

0

S(t− τ)(u(τ) · ∇c(τ)− e(τ)) dτ,

and

ω(t) = G(t)ω0 −
∫ t

0

∇⊥G(t− τ) · (s(τ) + e(τ))∇φdτ −
∫ t

0

∇G(t− τ)u(τ)ω(τ) dτ.

Let us remind the linear heat kernel estimates in R2;

‖∇αS(t)f‖Lq ≤ Ct−(1/r−1/q)−|α|/2‖f‖Lr , 1 ≤ r ≤ q ≤ ∞,

‖∇S(t)f‖Lq ≤ Ct−( 1
2−

1
q )‖∇f‖L2 , 2 ≤ q ≤ ∞,

(4.4)

and∫ t

0

‖∇S(t− τ)f(τ)‖Lqdτ ≤ C
∫ t

0

1

(t− τ)
3
2−

1
α0

· 1

τ1−
1
l

dτ‖f‖Kl ≤ C
1

t
1
2−

1
q

‖f‖Kl

(4.5)

with 1 + 1
q = 1

α0
+ 1

l . Also we use the following elementary results on the integral

for any a > 0, b > 0 and 0 < a, b < 1∫ t

0

1

(t− s)1−a
1

s1−b
ds ≤ C

t1−(a+b)
, (a > 0, b > 0),

∫ t
2

0

1

(t− s)b
1

s1−a
ds ≤ C

tb−a
,

∫ t

t
2

1

(t− s)1−a
1

sb
ds ≤ C

tb−a
(a > 0, b ≥ 0).
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Using the estimate of the heat kernel, we obtain

‖s(t)‖Lp . t−1+
1
p ‖s0‖L1 + χ

∫ t

0

‖∇S(t− τ)(s(τ)∇c(τ))‖Lpdτ

+

∫ t

0

‖∇S(t− τ)(u(τ)s(τ))‖Lpdτ + ε

∫ t

0

‖S(t− τ)(s(τ)e(τ))‖Lpdτ

. t−1+
1
p ‖s0‖L1 + χ

∫ t

0

1

(t− τ)
3
2−

1
α

‖s(τ)‖Lp‖∇c(τ)‖Lqdτ

+

∫ t

0

1

(t− τ)
3
2−

1
α′
‖u(τ)‖

L
2r

2−r
‖s(τ)‖Lpdτ + ε

∫ t

0

1

(t− τ)(1−
1
β )
‖s(τ)‖Lp‖e(τ)‖Lldτ

:= t−1+
1
p ‖s0‖L1 + I1 + I2 + I3,

where 1 + 1
p = 1

α + 1
p + 1

q , 1 + 1
2 −

1
r = 1

α′ , and 1 + 1
p = 1

β + 1
p + 1

l . We estimate I1,

I2 and I3 as follows:

I1 . χ

∫ t

0

1

(t− τ)
3
2−

1
α

· 1

τ
3
2−

1
p−

1
q

dτ‖s‖Kp‖c‖Nq .
χ

t1−
1
p

‖s‖Kp‖c‖Nq ,

I2 .
∫ t

0

1

(t− τ)
3
2−

1
α′
· 1

τ2−
1
r−

1
p

dτ‖ω‖Kr‖s‖Kp .
1

t1−
1
p

‖ω‖Kr‖s‖Kp ,

and

I3 . ε

∫ t

0

1

(t− τ)1−
1
β

· 1

τ2−
1
p−

1
l

dτ‖s‖Kp‖e‖Kl .
ε

t1−
1
p

‖s‖Kp‖e‖Kl ,

where we use the embedding ‖u‖
L

2r
2−r

. ‖ω‖Lr , hence 1 < r < 2 is required.

Therefore, we deduce that for any exponent p, q, r, l in (4.3)

‖s‖Kp ≤ C‖s0‖L1 + C‖s‖Kp(χ‖c‖Nq + ‖ω‖Kr + ε‖e‖Kl). (4.6)

Similarly, we obtain

‖e‖Kl ≤ C‖e0‖L1 + C‖e‖Kl(‖ω‖Kr + ε‖s‖Kp). (4.7)

By applying (4.4), (4.5) to the c equation we easily deduce that

‖c‖Nq ≤ C‖∇c0‖L2 + C‖c‖Nq‖ω‖Kr + C∗‖e‖Kl . (4.8)

Next by similar computaions as in [2, Lemma 3], we obtain that

‖ω‖Kr ≤ C‖ω0‖L1 + C‖∇φ‖L2(‖s‖Kp + ‖e‖Kl) + C‖ω‖2Kr . (4.9)

Here we set M1 := C∗ and M2 = C‖∇φ‖L2 , where C∗ and C‖∇φ‖L2 are the
constants in (4.8) and (4.9) respectively. Indeed,

‖ω(t)‖Lr

. t−1+
1
r ‖ω0‖L1 +

∫ t

0

‖∇G(t− τ)(s+ e)(τ)∇φ‖Lr +

∫ t

0

‖∇G(t− τ)u(τ)ω(s)‖Lr

. t−1+
1
r ‖ω0‖L1 +

∫ t

0

1

(t− τ)
3
2−

1
α

‖s(τ)‖Lp ‖∇φ‖L2 +
1

(t− τ)
3
2−

1
β

‖e(τ)‖Ll ‖∇φ‖L2

+

∫ t

0

1

(t− τ)
3
2−

1
α′
‖u‖

L
2r

2−r
‖ω‖Lr = t−1+

1
r ‖ω0‖L1 + J1 + J2 + J3,
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where 1
r = 1

α + 1
p −

1
2 , 1

r = 1
β + 1

p −
1
2 and 1

α′ = 3
2 −

1
r . Similar estimates as above

yield that

J1 .
∫ t

0

1

(t− τ)
3
2−

1
α

1

τ1−
1
p

ds ‖∇φ‖L2 ‖s‖Kp .
1

t1−
1
r

‖∇φ‖L2 ‖s‖Kp

and

J2 .
1

t1−
1
r

‖∇φ‖L2 ‖e‖Kl .

On the other hand, via ‖u(t)‖Ls . ‖ω(t)‖Lr with 1/r = 1/s+ 1/2, we obtain

J3 .
∫ t

0

1

(t− s) 3
2−

1
α′

1

s2(1−
1
r )
ds ‖ω‖2Kr .

1

t1−
1
r

‖ω‖2Kr .

Thus, we have (4.9). Multiplying (4.6) and (4.7) with 2M2 and 2(M1 +M2) (M1

and M2 are large constants, which are larger than ‖∇φ‖L2 and C∗), respectively,
and summing up above estimates, we have

M2‖s‖Kp + (M1 +M2)‖e‖Kl + ‖c‖Nq + ‖ω‖Kr

≤ C(‖s0‖L1 + ‖e0‖L1 + ‖ω0‖L1 + ‖∇c0‖L2) +
(
‖s‖Kp + ‖e‖Kl + ‖ω‖Kr + ‖c‖Nq

)2
.

Under the smallness assumption, we have

‖(s, e, ω)‖Kp,l,r + ‖c‖Nq . ‖s0‖L1 + ‖e0‖L1 + ‖∇c0‖L2 + ‖ω0‖L1 . ε1. (4.10)

Now we extend the range of p, r of ‖s‖Kp , ‖ω‖Kr and consider ‖c‖N∞ such that

‖s‖Kp := sup
t≥0

t1−
1
p ‖s(t)‖Lp , 2 ≤ p ≤ ∞,

‖c‖N∞ := sup
t≥0

t
1
2 ‖∇c(t)‖L∞ ,

‖ω‖Kr := sup
t≥0

t1−
1
r ‖ω(t)‖Lr , 1 < r ≤ ∞.

Since
∫ t
0
S(t− τ)(se)(τ)dτ is always nonnegative, we have

‖s‖L∞(t) . t−1‖s0‖L1 + χ

∫ t

0

‖∇S(t− τ)(s(τ)∇c(τ))‖L∞dτ

+

∫ t

0

‖∇S(t− τ)(u(τ)s(τ))‖L∞dτ := t−1‖s0‖L1 + I1 + I2.

I1 and I2 can be estimated as follows:

I1 .
∫ t

2

0

1

(t− τ)
3
2

‖s∇c‖L1(τ)dτ +

∫ t

t
2

1

(t− τ)
1
2

‖s∇c‖L∞(τ)dτ

.
∫ t

2

0

1

(t− τ)
3
2

‖s‖L1‖∇c‖L∞dτ +

∫ t

t
2

1

(t− τ)
1
2

‖s‖L∞‖∇c‖L∞dτ

.
ε1
t1
‖c‖N∞ +

1

t1
‖s‖K∞‖c‖N∞ ,

and

I2 .
∫ t

2

0

1

(t− τ)
3
2

‖us‖L1dτ +

∫ t

t
2

1

(t− τ)
3
2−

1

2−
‖us‖L2+dτ

.
∫ t

2

0

1

(t− τ)
3
2

‖u‖L2+‖s‖L2− +

∫ t

t
2

1

(t− τ)
3
2−

1

2−
‖u‖L2+ ‖s‖L∞
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.
1

t
3
2

∫ t
2

0

‖ω‖
L

α
α−1
‖s‖L2− +

∫ t

t
2

1

(t− τ)
3
2−

1

2−
‖ω‖

L
α
α−1
‖s‖L∞

.
1

t
‖s‖K2−

‖ω‖K α
α−1

+
1

t
‖s‖K∞‖ω‖K α

α−1
.
ε21
t

+
ε1
t
‖s‖K∞ ,

where α satisfy 2 < α and 2+ and 2− satisfy 1
2+ = 1

2 −
1
α and 1

2− = 1
2 + 1

α .
Adding these estimates, we obtain that

‖s‖K∞ . ‖s0‖L1 + ε1‖c‖N∞ + ‖s‖K∞(‖c‖N∞ + ε1) + ε21.

Using the similar methods with above and the estimates in [2], we have

‖c‖N∞ . ‖e0‖L1 + ε21 + ‖e‖K∞ + ε1‖c‖N∞ .
Indeed,

‖∇c‖L∞ (t) .
1

t
1
2

‖c0‖L∞ +

∫ t

0

‖∇S(t− τ)e‖L∞ (τ)dτ

+

∫ t

0

‖∇S(t− τ)(u∇c)‖L∞ (τ)dτ =
1

t
1
2

‖c0‖L∞ + J1 + J2.

Firstly, we estimate J1.

J1 .
∫ t/2

0

1

(t− τ)
3
2

‖e(τ)‖L1 ds+

∫ t

t/2

1

(t− τ)
1
2

‖e(τ)‖L∞ dτ

.
1

t
1
2

‖e‖L1 +
1

t
1
2

‖e‖K∞(R2) .
ε1

t
1
2

+
1

t
1
2

‖e‖K∞(R2) .

(4.11)

Before we estimate J2, we set 1/4+ = 1/4− 1/β and 1/4− = 1/4 + 1/β with β > 4.
We then estimate J2.

J2 .
∫ t/2

0

1

t− τ
‖u∇c‖L2 dτ +

∫ t

t/2

1

(t− τ)
3
2−

1

2−
‖u∇c‖L2+ (τ)dτ

.
1

t

∫ t/2

0

‖u‖L4+ ‖∇c‖L4− dτ +

∫ t

t/2

1

(t− τ)
3
2−

1

2−
‖u‖L2+ ‖∇c‖L∞ (τ)dτ

.
1

t

∫ t/2

0

‖ω‖
L

4β
3β−4

‖∇c‖L4− ds+

∫ t

t/2

1

(t− s)
3
2−

1

2−
‖ω‖

L
α
α−1
‖∇c‖L∞ (τ)dτ

.
1

t
1
2

‖ω‖K 4β
3β−4

(R2) ‖c‖N4− (R2) +
1

t
1
2

‖ω‖K α
α−1

(R2) ‖c‖N∞(R2)

.
ε21

t
1
2

+
ε1

t
1
2

‖c‖N∞(R2) ,

(4.12)

where the estimates for the low range of ‖ω‖Kp , ‖c‖Nq (4.10) is used and 2+, 2−, α
are same exponents as for I2 before. Combining (4.11)and (4.12), we have

‖∇c‖L∞ (t) .
1

t
1
2

‖c0‖L∞ +
ε21

t
1
2

+
1

t
1
2

‖e‖K∞(R2) +
ε1

t
1
2

‖c‖N∞(R2) .

Next, we estimate the vorticity for 2 ≤ r <∞.

‖ω(t)‖Lr . t−1+
1
r ‖ω0‖L1 +

∫ t

0

‖∇⊥G(t− τ)(s∇φ)(τ)‖Lrdτ

+

∫ t

0

‖∇⊥G(t− τ)(e∇φ)(τ)‖Lrdτ +

∫ t

0

‖∇G(t− τ)(uω)(τ)‖Lrdτ
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= t−1+
1
r ‖ω0‖L1 +K1 +K2 +K3.

If we consider r > 2, then we obtain

K1 .
∫ t/2

0

1

(t− τ)
3
2−

1
r

‖s(τ)‖
1
2

L1‖s(τ)‖
1
2

L∞‖∇φ‖L2+

∫ t

t/2

1

(t− τ)1−
1
r

‖s(τ)‖L∞‖∇φ‖L2

.
ε1

t1−
1
r

+
1

t1−
1
r

‖s‖K∞ .

Similarly, we have

K2 .
ε1

t1−
1
r

+
1

t1−
1
r

‖e‖K∞ .

If the exponents r∗, r̃ are defined by 1
r∗ = 1

2 −
1
r and 1

r∗ = 1
r̃ −

1
2 , then we estimate

K3 .
∫ t

2

0

1

(t− τ)
3
2−

1

2−
‖u‖L2+‖ω‖Lr +

∫ t

t
2

1

(t− τ)1−
1
r

‖u‖Lr∗ ‖ω‖Lr

.
1

t1−
1
r

‖ω‖K α
α−1
‖ω‖Kr +

1

t1−
1
r

‖ω‖Kr̃‖ω‖Kr .
ε1

t1−
1
r

‖ω‖Kr .

Thus, we have

‖ω‖Kr . ε1 + ‖s‖K∞ + ‖e‖K∞ + ε1‖ω‖Kr .
By collecting all the estimates in the above, we find that

‖s‖K∞ + ‖e‖K∞ + ‖c‖N∞ + ‖ω‖Kr . ε1.

This completes the proof.
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