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Abstract: The oxygen vacancies in the TiOx active layer play the key role in determining the electrical
characteristics of TiOx–based memristors such as resistive-switching behaviour. In this paper, we
investigated the effect of a multi-layer stacking sequence of TiOx active layers on the resistive-switching
characteristics of memristor devices. In particular, the stacking sequence of the multi-layer TiOx

sub-layers, which have different oxygen contents, was varied. The optimal stacking sequence
condition was confirmed by measuring the current–voltage characteristics, and also the retention test
confirmed that the characteristics were maintained for more than 10,000 s. Finally, the simulation
using the Modified National Institute of Standards and Technology handwriting recognition data set
revealed that the multi-layer TiOx memristors showed a learning accuracy of 89.18%, demonstrating
the practical utilization of the multi-layer TiOx memristors in artificial intelligence systems.
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1. Introduction

Oxide-based memristive devices have attracted considerable interest due to their advantages
such as non-volatile memory function, fast switching speed, low power consumption, good durability,
process compatibility with complementary metal-oxide semiconductor technology, as well as the
possibility of being implemented in real hardware and board-integrated systems [1–6]. In particular,
the simple two-terminal crosspoint structure of memristors is expected to enable the high-density
integration of computing devices by adopting three-dimensional stacking architectures [1,7]. Due to
these advantages, various emerging electronics such as neuromorphic circuits and systems have been
demonstrated by utilizing the memristors as one of their key elements [8,9]. From a conceptual point of
view, the memristors are considered as the fourth fundamental circuit element in addition to resistors,
capacitors, and inductors, which relate the charge q and the magnetic flux ϕ [10]. As an electronic
device, on the other hand, the memristor behaves more like a memory device unit which stores
the information in the form of resistance and changes according to the direction of the applied bias.
Typically, the memristor devices are constructed with a metal−insulator−metal (MIM) structure with
an active layer sandwiched between the two counter electrodes (bottom and top electrodes). Based on
the history of the applied bias, the memristors are switched between high-resistive state (HRS) and
low-resistive state (LRS) by the modulation of the resistance of the active layer. For the active layers,
many different material candidates have been investigated such as TiO2, HfO2, NbO2, TaOx, ZnO and
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Al2O3 [11–15]. Also, for the formation of oxide active layers, deposition methods such as sputtering
and anodizing have been utilized [16–19]. Among the candidate materials, TiO2- or TiO2/TiO2-x-based
memristors have been intensively studied since the physical realization and understanding of the
memristors in 2008 [20]. In TiO2- or TiO2/TiO2−x memristors, the conducting state change is considered
to originate in the formation and rupture of conducting channels [1,21]. As described by Carta et al.,
localized reduced TiOx phases with lower O:Ti ratio are formed underneath the top electrode (TE)
under an applied electric field [22]. Since the reduced TiOx phases have a more metallic character than
the stoichiometric TiO2 phase, the electrical conductivity is increased and LRS is obtained. Carta et
al. also suggested that the reduction of the O:Ti ratio is involved with the migration of both O and
Ti atoms that move toward the opposite directions under an applied bias [22]. In addition, atomic
level simulations on the formation of conducting channels using kinetic Monte Carlo simulation have
been reported [21,23,24]. In particular, according to the report from Li et al., it is claimed that filament
formation is involved with the vacancy hopping induced localized electric field [21]. Based on these
previous studies on the TiO2- and TiO2/TiO2−x-based memristors, it is likely that the oxygen vacancies
play the key role in the operation of TiOx-based memristors.

Previously, various multilayer structure oxide memristors were investigated including TiO2−x/TiO2,
TiON/HfOy/HfOx, TiO2/ZrO2, and TaOx/HfAlyOx [25–28]. In this study, we constructed the active
layer with a four-layer stacked structure of TiOx films having different oxygen vacancy concentrations.
Specifically, by varying the O2 partial pressure during the sputtering process of TiOx films, TiOx

films with different oxygen-binding states could be obtained. Using these pre-defined deposition
conditions, memristors with different stacking sequences are fabricated. To identify the role of the
stacking sequence, we investigated the effect of stacking sequence on the memristive behaviours such
as bistable switching characteristics, current on/off ratio, as well as their retention stability. Finally, for
the practical demonstration of the fabricated device, we predicted the accuracy of Modified National
Institute of Standards and Technology (MNIST) handwritten recognition by applying our device
weight update characteristics.

2. Experimental Procedure

For the fabrication of TiOx-based memristor devices, a glass substrate was sonicated in acetone
and isopropyl alcohol (IPA) for 10 min each. Then, the substrate was rinsed with IPA and dried with N2

gas. On the cleaned glass substrate, a 50 nm-thick Al electrode was deposited by thermal evaporation
with a deposition rate of ~2 Å/s as a bottom electrode (BE). The patterning of the Al electrode was
carried out by using a metal shadow mask and the width of the electrode was 50 µm. Next, for the
deposition of multi-layer TiOx active layers, a radio-frequency magnetron sputtering system was used
with sputtering power and deposition pressure of 100 W and 5 × 10−3 Torr, respectively. To control the
oxygen content in the TiOx film, the argon (Ar) and oxygen (O2) gas flow rates were varied. Figure 1
shows the stacking sequence of the active layer. The patterning of TiOx active layers was carried out
by using a metal shadow mask which had a dimension of 1500 × 1500 µm. Finally, a 50 nm-thick Al
top electrode was deposited by thermal evaporation and patterned by using a metal shadow mask.
The width of the top electrode was 100 µm.

The atomic binding states of TiOx films were analyzed by using X-ray photoelectron spectroscopy
(XPS; Thermo Fisher Scientific, Waltham, MA, USA, ESCALAB 250). For the XPS analysis, each TiOx

sample was prepared separately. The current-voltage characteristic and the retention characteristics of
the memristors were analyzed by using a semiconductor parameter analyzer (Agilent Technologies,
Santa Clara, CA, USA, 4155C) which is attached to a probe station in dark ambient condition.
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approximately 14.0 nm, 11.5 nm, 11.5 nm, and 9.0 nm, respectively. The O1s spectra measured by 
using the X-ray photoelectron spectroscopy (XPS) for, (b) A-TiOx, (c) B-TiOx, (d) C-TiOx, and  
(e) D-TiOx films. 
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sequences of A-B-C-D (type I), A-C-B-D (type II), A-D-C-B (type III), and A-C-D-B (type IV), 
respectively. In all cases, the most oxygen-deficient layer, A-TiOx film was placed in the 
bottom-most part, while the other layers were positioned with different combinations. Here, the TE 
electrode was set as ground and the bias applied to the BE was swept in the range of −3 V to +3 V to 
induce the SET and RESET processes. As indicated, the devices with types I, II, and IV stacking 
sequences showed memristive characteristics, clearly indicating the SET and RESET processes. In 
the meanwhile, the type III device showed only insulating behaviour without the bistable 
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Figure 1. (a) Schematic device structures of the memristors having four TiOx sub-layers with different
oxygen vacancy (Ovac) contents. The stacking sequence of the TiOx sub-layers was varied (types I,
II, III, and IV). The thicknesses of the A-TiOx, B-TiOx, C-TiOx, and D-TiOx films were approximately
14.0 nm, 11.5 nm, 11.5 nm, and 9.0 nm, respectively. The O1s spectra measured by using the X-ray
photoelectron spectroscopy (XPS) for, (b) A-TiOx, (c) B-TiOx, (d) C-TiOx, and (e) D-TiOx films.

3. Results and Discussion

Figure 1a shows the schematic device structures of the memristors having four TiOx sub-layers
with different oxygen vacancy (Ovac) contents. Here, the stacking sequence of the four TiOx sub-layers
was varied to find the structure to enhance the resistive switching characteristics of the device (types I, II,
III, and IV). The four TiOx sub-layers with different oxygen vacancy contents were fabricated by using
different sputtering conditions by varying the gas flow rates of Ar and O2 gases (Ar:O2 = 50:5 sccm,
50:7 sccm, 50:10 sccm and 50:13 sccm). The corresponding TiOx films are designated as A-TiOx, B-TiOx,
C-TiOx, and D-TiOx, in the order of decreasing oxygen vacancy content (Figure 1a). Consequently, the
A-TiOx film is relatively oxygen-deficient, while the D-TiOx film is relatively oxygen-rich. Also, the
thicknesses of A-TiOx, B-TiOx, C-TiOx, and D-TiOx films were approximately 14.0 nm, 11.5 nm, 11.5 nm,
and 9.0 nm, respectively. To determine the variation of oxygen vacancy content, an XPS analysis was
carried out. Figure 1b–e show the corresponding O1s spectra of the A-TiOx, B-TiOx, C-TiOx, and
D-TiOx films, respectively. Here, the fitted curve was deconvoluted to two main peaks centred at
around ~530 eV and 531.0~531.5 eV. The peaks at ~530 eV and 531.0–531.5 eV represent the oxygen
species in metal–oxygen–metal (M–O–M) and near the oxygen vacancy (O–M–Ovac) [29], respectively.
By increasing the PO2, the portion of oxygen vacancy was gradually decreased. For instance, in the
case of A-TiOx film, the portion of O–M–Ovac was 35.9%, while it decreased to 33.5%, 30.1%, and 26.7%
for the B-TiOx, C-TiOx, and D-TiOx film, respectively.

Since the oxygen vacancy concentration in an oxide film is strongly related to the electrical
conductivity of the film [30] and the oxygen vacancies play the key role in the operation of TiOx-based
memristors, it is likely that the stacking sequence of oxygen-rich and oxygen-deficient TiOx films
would influence the operation of the device. To investigate the effect of multi-layer stacking sequence
on the resistive switching characteristics of the memristors, devices having four different stacking
sequences were fabricated as schematically shown in Figure 1a. Figure 2a–d show the representative
current-voltage (I–V) characteristics of the memristors having the stacking sequences of A-B-C-D (type
I), A-C-B-D (type II), A-D-C-B (type III), and A-C-D-B (type IV), respectively. In all cases, the most
oxygen-deficient layer, A-TiOx film was placed in the bottom-most part, while the other layers were
positioned with different combinations. Here, the TE electrode was set as ground and the bias applied
to the BE was swept in the range of −3 V to +3 V to induce the SET and RESET processes. As indicated,
the devices with types I, II, and IV stacking sequences showed memristive characteristics, clearly
indicating the SET and RESET processes. In the meanwhile, the type III device showed only insulating
behaviour without the bistable behaviour. In the case of the type II device (Figure 2b), the device first
showed HRS (OFF state) upon sweeping the bias from 0 V to +3 V. Then, at around +2.3 V, transition to
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the LRS (ON state) starts to occur, which is regarded as the SET process. After reaching +3 V, the LRS
maintains, exhibiting the memorizing behaviour. Then, by sweeping the bias to the negative direction,
a transition from LRS to HRS occurs at around −2.7 V, which indicates the RESET process. Similar
memristive characteristics and switching behaviours were also observed in devices with other stacking
sequences such as types I and IV, with slightly different SET and RESET voltages. However, the
ION/IOFF ratio was different depending on the device structure. In the tested device structures, the type
II device (BE/A-C-B-D/TE) showed the highest ION/IOFF ratio value of ~45 (in average), while, the type
I and type IV devices showed ION/IOFF ratio values of ~16 and ~17, respectively. The type III device
(BE/A-D-C-B/TE), however, showed no switching behaviour and only insulating I–V characteristics
were observed. Figure 2 also shows the I–V data which are repeated for five consecutive cycles. All the
devices showed relatively stable I–V behaviour, while the type IV device showed a slight change in
the current levels. As shown in Figure 2, during the SET and RESET processes, the current changes
gradually, indicating the interface-type mechanism is dominant rather than the filament-type [31].
Concerning the variation of memristive behavior by the stacking sequence, we expect that the supply
and migration of oxygen vacancies from the underneath TiOx sub-layers to the TE/top-TiOx interface
are important [31]. In our results, the type I, II, and IV devices showed the memristive behaviour while
the type III device showed insulating characteristics. In particular, in the cases of types I and II, the
most oxygen-rich TiOx layer (D-TiOx) with the lowest concentration of oxygen vacancies is placed on
the top-most layer, contacting the TE, while the relatively oxygen-deficient TiOx layers with larger
concentrations of oxygen vacancies are placed underneath. Therefore, during the SET process, these
relatively oxygen-deficient TiOx layers can efficiently supply the oxygen vacancies and can contribute
to the interface-type resistive switching behaviour. Comparing the type I and II devices, the positions
of B- and C-TiOx layers are different, where in type II, the second-most oxygen-deficient TiOx layer
(B-TiOx) is placed beneath the top D-TiOx layer. Therefore, compared to type I device, more oxygen
vacancies can be supplied to the top D-TiOx layer, allowing larger resistive variation during switching.
In the cases of types III and IV, the most oxygen-rich D-TiOx layer is placed in the middle parts of the
stacking. Therefore, the supply of oxygen vacancies towards the TE/top-TiOx interface can be relatively
smaller compared to type I and II devices. Also, considering that the oxygen vacancies migrate toward
the TE/top-TiOx interface during the SET process, the decrease of resistance in the D-TiOx layer can be
higher in type IV device compared to type III.
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IV), respectively. The top electrode (TE) was set as ground and the bias applied to the bottom 
electrode (BE) was swept in the sequence of 0 V → +3 V → −3 V → 0 V. The measurement was 
repeated five times in each case. 

Figure 2. The representative current–voltage (I–V) characteristics of memristors having the stacking
sequences of (a) A-B-C-D (type I), (b) A-C-B-D (type II), (c) A-D-C-B (type III), and (d) A-C-D-B (type
IV), respectively. The top electrode (TE) was set as ground and the bias applied to the bottom electrode
(BE) was swept in the sequence of 0 V→ +3 V→ −3 V→ 0 V. The measurement was repeated five
times in each case.
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The data retention characteristics of memristors are important for realizing highly stable memory
devices as well as neuromorphic or synaptic devices. Figure 3a shows the data retention characteristics
of type I, II, and IV devices. Here, the LRS and HRS states were programmed with pulsed biases of
+3 V and −3 V, respectively (pulse widths of 100 ms). Also, the programmed states were read for an
interval of 200 s up to 10,000 s, with a read voltage of +1 V. As displayed, devices with types I, II, and
IV showed stable operation up to 10,000 s without a considerable change in the current levels of ON
(ION) and OFF (IOFF) states. Therefore, the ION/IOFF ratios are maintained correspondingly as shown
in Figure 3b. Among the tested devices, the type II memristors exhibited the highest ION/IOFF ratio,
while the type I memristor showed the lowest ION/IOFF ratio. Nonetheless, the results indicate that
regardless of the stacking sequence, the TiOx-based memristors showed relatively stable operations.
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Symmetric synaptic weight update characteristics between long-term potentiation (LTP) and
long-term depression (LTD) is a crucial factor in designing synaptic devices that directly affects learning
accuracy of neuromorphic computing [32,33]. As shown in Figure 4, we measured the long-term
plasticity of the type II device by applying a pulse train consisting of potentiation (VPOT), depression
(VDEP) and read pulses. The VPOT was fixed at +2 V during the potentiation process while the VDEP was
varied as −1 V and −2 V as shown in Figure 4a (“A” pulse train) and b (“B” pulse train), respectively.
Each potentiation and depression was performed for 300 cycles each. The duration time of each pulse
was 50 ms and the pulse interval was ~1.45 s (see the inset of Figure 4 showing the pulse train of
the three cycles). As shown in Figure 4, bidirectional switching behaviour was obtained in which
the channel conductance was set to various conducting states between 0.136 µS and 2.02 µS for both
conductance rise and fall processes. The acquired channel conductance represents a non-volatile
behaviour. Thus, increasing and decreasing the channel conductance can be regarded as synaptic LTP
and LTD, respectively. In addition to the symmetry, the change in linear conductance between LTP and
LTD processes is also an important factor [32,33]. So, we calculated the nonlinearity values between
LTP and LTD processes through the potentiation and depression data. The nonlinearity factors (α) were
extracted from the characteristic curves shown in Figure 4. We use the device behavioural model [34],
where the conductance change is represented with the following equations [34]:

GLTP = B
(
1− e(

P
A )
)
+ Gmin (1)

GLTD = B
(
1− e(

P−Pmax
A )
)
+ Gmax (2)

B = (GLTP −Gmin)/
(
1− e(

−Pmax
A )
)

(3)
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where, P is number of pulses, B is a fitting parameter, A is the nonlinearity of potentiation (αpot) and
depression (αdep), GLTP and GLTD are the conductance for LTP and LTD, and Gmax, Gmin and Pmax are
the experimental data which represent the maximum conductance, minimum conductance and the
maximum number of pulses required to change the device states between minimum and maximum
conductance. The non-linearity values for “A” pulse train were αpot = 2.4 and αdep = −4.6 for the
potentiation and depression, respectively (Figure 4a). The non-linearity values for “B” pulse train were
αpot = 2.2 and αdep = −8.74 (Figure 4b).
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different depression pulse voltage (a) “A” pulse train condition (VPOT = +2 V, VDEP = −1 V), and (b)
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Using the “NeuroSim+” platform, a supervised artificial neural network learning simulation of
the MNIST handwritten recognition data set was performed by applying the non-linearity, conductance
level, and the cycle-to-cycle variation of our device [34,35]. In the simulation, we used a three-layer
neural network with 400 pre-neurons, 100 hidden neurons and 10 output neurons which correspond
to 10 classes of digits (0–9). The detail of the three-layer multilayer perceptron network is shown in
Figure 5a [36]. The TiOx multi-layer memristor acts as a memory element in a crossbar array and their
memristor conductivity change was used as the weight update to run the back-propagation algorithm.
Here, the crossbar is considered as part of a “neuron core” that executes vector-matrix multiplication
(inference) and outer-product updates (learning) operations [37]. The sum of the input neuron signal
vector and the first layer of the synaptic weight is transferred to the input vector of the hidden layer
after activation and binarization [9]. For each epoch, 60,000 training data set were used for training,
and accuracy was obtained using a 10,000 test data set.

By using algorithmic methods which was stochastic gradient descent (SGD) and adaptive moment
estimation (ADAM) weight update, the accuracy of MNIST handwritten recognition was obtained.
As shown in Figure 5b, in the case of the “A” pulse train condition (VPOT = +2 V, VDEP = −1 V), the
accuracy was 82.99% when using the SGD, and 89.18% when using the ADAM. On the other hand, in
the case of ‘B’ pulse train condition (VPOT = +2 V, VDEP = −2 V), the accuracy was 20.80% when using
the SGD, and 59.52% when using the ADAM. Because the LTD non-linearity value of the “A” pulse train
condition is smaller compared to that of the “B” pulse train condition, it is advantageous for learning
process which resulted in a higher accuracy. The learning algorithm also plays an important role in
accuracy. The SGD method calculates an error from the current weight, predicting a direction in which
the weight should change, and learns at a predetermined step size. However, the ADAM method stored
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the exponential average of the slopes calculated so far to modulate the weight direction, and also stored
the exponent average of the squared slopes to set the step size [38,39]. Thus, when using the ADAM
method, there were more data to store, but accurate learning could be achieved using our device.
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4. Conclusions

In this paper, we demonstrated the multi-layer TiOx memristors for potential memory and
neuromorphic applications. The four TiOx sub-layers with different oxygen vacancy content were
fabricated by using different sputtering conditions by varying the gas flow rates of Ar and O2. Also,
through the XPS analysis, the ratio of M–O–M and M–Ovac of oxygen peaks at different gas flow
conditions was determined. By comparing the memristor characteristics according to the stacking
sequence of the memristor device with a multi-layer structure, it was confirmed that the ION/IOFF ratio
value is the highest as 45 in the type II stacking sequence structure. Also, by measuring the retention
time in the on state and off state, it was confirmed that the current is maintained without degradation
over 10,000 s. In addition, the long-term plasticity (LTP/LTD) was measured for the type II stacking
sequence structure to obtain LTP and LTD non-linearity according to different depression voltage
pulses. Two depression pulse voltage conditions and algorithm methods (SGD and ADAM) were used,
and the highest accuracy of 89.18% was obtained when VDEP = −1 V and with the ADAM algorithm.

Author Contributions: M.K. and K.Y. performed the experiments and the data analysis; S.-P.J., S.K.P. and Y.-H.K.
contributed to draft the manuscript and carry-out the data analysis and evaluation. S.K.P. and Y.-H.K. made the
substantial contribution to the concept of experiments and was responsible for leading the project. All authors
read and approved the final manuscript.

Funding: This research was partially supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No. NRF-2019M3F3A1A02071601), and the Chung-Ang University
Research Scholarship Grants in 2018.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, W.; Gao, B.; Chi, M.; Xia, Q.; Yang, J.J.; Qian, H.; Wu, H. Understanding memristive switching via in situ
characterization and device modeling. Nat. Commun. 2019, 10, 1–13. [CrossRef] [PubMed]

2. Bayat, F.M.; Prezioso, M.; Chakrabarti, B.; Nili, H.; Kataeva, I.; Strukov, D. Implementation of multilayer
perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 2018, 9, 1–7.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41467-019-11411-6
http://www.ncbi.nlm.nih.gov/pubmed/31371705
http://dx.doi.org/10.1038/s41467-018-04482-4
http://www.ncbi.nlm.nih.gov/pubmed/29899421


Micromachines 2020, 11, 154 8 of 9

3. Mikhaylov, A.N.; Morozov, O.A.; Ovchinnikov, P.E.; Antonov, I.N.; Belov, A.I.; Korolev, D.S.; Sharapov, A.N.;
Gryaznov, E.G.; Gorshkov, O.N.; Pigareva, Y.I. One-board design and simulation of double-layer perceptron
based on metal-oxide memristive nanostructures. IEEE Trans. Emerg. Topics Comput. 2018, 2, 371–379.
[CrossRef]

4. Cai, F.; Correll, J.M.; Lee, S.H.; Lim, Y.; Bothra, V.; Zhang, Z.; Flynn, M.P.; Lu, W.D. A fully integrated
reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2019,
2, 290–299. [CrossRef]

5. Mehonic, A.; Cueff, S.; Wojdak, M.; Hudziak, S.; Jambois, O.; Labbé, C.; Garrido, B.; Rizk, R.; Kenyon, A.J.
Resistive switching in silicon suboxide films. J. Appl. Phys. 2012, 111, 074507. [CrossRef]

6. Mikhaylov, A.N.; Belov, A.I.; Guseinov, D.V.; Korolev, D.S.; Antonov, I.N.; Efimovykh, D.V.; Tikhov, S.V.;
Kasatkin, A.P.; Gorshkov, O.N.; Tetelbaum, D.I. Bipolar resistive switching and charge transport in silicon
oxide memristor. Mater. Sci. Eng. B 2015, 194, 48–54. [CrossRef]

7. Wong, H.P.; Lee, H.; Yu, S.; Chen, Y.; Wu, Y.; Chen, P.; Lee, B.; Chen, F.T.; Tsai, M. Metal–Oxide RRAM.
Proc. IEEE 2012, 100, 1951–1970. [CrossRef]

8. Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al.
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017,
16, 101–108. [CrossRef]

9. Choi, S.; Tan, S.H.; Li, Z.; Kim, Y.; Choi, C.; Chen, P.-Y.; Yeon, H.; Yu, S.; Kim, J. SiGe epitaxial memory for
neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater.
2018, 17, 335–340. [CrossRef]

10. Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
11. The Memristor Revisited. Available online: https://www.nature.com/articles/s41928-018-0083-3 (accessed on

3 January 2020).
12. He, W.; Sun, H.; Zhou, Y.; Lu, K.; Xue, K.; Miao, X. Customized binary and multi-level HfO2−x-based

memristors tuned by oxidation conditions. Sci. Rep. 2017, 7, 10070. [CrossRef]
13. Kumar, S.; Strachan, J.P.; Williams, R.S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue

computing. Nature 2017, 548, 318–321. [CrossRef] [PubMed]
14. Kim, W.; Chattopadhyay, A.; Siemon, A.; Linn, E.; Waser, R.; Rana, V. Multistate Memristive Tantalum Oxide

Devices for Ternary Arithmetic. Sci. Rep. 2016, 6, 36652. [CrossRef] [PubMed]
15. Barnes, B.K.; Das, K.S. Resistance Switching and Memristive Hysteresis in Visible-Light-Activated Adsorbed

ZnO Thin Films. Sci. Rep. 2018, 8, 2184. [CrossRef] [PubMed]
16. Salaoru, I.; Prodromakis, T.; Khiat, A.; Toumazou, C. Resistive switching of oxygen enhanced TiO2 thin-film

devices. Appl. Phys. Lett. 2013, 102, 013506. [CrossRef]
17. Zaffora, A.; Macaluso, R.; Habazaki, H.; Valov, I.; Santamaria, M. Electrochemically prepared oxides for

resistive switching devices. Electrochim. Acta 2018, 274, 103–111. [CrossRef]
18. Aglieri, V.; Zaffora, A.; Lullo, G.; Santamaria, M.; Di Franco, F.; Lo Cicero, U.; Mosca, M.; Macaluso, R.

Resistive switching in microscale anodic titanium dioxide-based memristors. Superlattices Microstruct. 2018,
113, 135–142. [CrossRef]

19. Bousoulas, P.; Michelakaki, I.; Tsoukalas, D. Influence of Ti top electrode thickness on the resistive switching
properties of forming free and self-rectified TiO2−x thin films. Thin Solid Films 2014, 571, 23–31. [CrossRef]

20. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453,
80–83. [CrossRef]

21. Li, D.; Li, M.; Zahid, F.; Wang, J.; Guo, H. Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo
study. J. Appl. Phys. 2012, 112, 073512. [CrossRef]

22. Carta, D.; Salaoru, I.; Khiat, A.; Regoutz, A.; Mitterbauer, C.; Harrison, N.M.; Prodromakis, T. Investigation
of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach. ACS Appl.
Mater. Interfaces 2016, 8, 19605–19611. [CrossRef]

23. Sadi, T.; Mehonic, A.; Montesi, L.; Buckwell, M.; Kenyon, A.; Asenov, A. Investigation of resistance switching
in SiOxRRAM cells using a 3D multi-scale kinetic Monte Carlo simulator. J. Phys. Condens. Matter 2018,
30, 084005. [CrossRef] [PubMed]

24. Guseinov, D.; Korolev, D.; Belov, A.; Okulich, E.; Okulich, V.; Tetelbaum, D.; Mikhaylov, A. Flexible
Monte-Carlo approach to simulate electroforming and resistive switching in filamentary metal-oxide
memristive devices. Model. Simul. Mater. Sci. Eng. 2019, 28, 015007. [CrossRef]

http://dx.doi.org/10.1109/TETCI.2018.2829922
http://dx.doi.org/10.1038/s41928-019-0270-x
http://dx.doi.org/10.1063/1.3701581
http://dx.doi.org/10.1016/j.mseb.2014.12.029
http://dx.doi.org/10.1109/JPROC.2012.2190369
http://dx.doi.org/10.1038/nmat4756
http://dx.doi.org/10.1038/s41563-017-0001-5
http://dx.doi.org/10.1109/TCT.1971.1083337
https://www.nature.com/articles/s41928-018-0083-3
http://dx.doi.org/10.1038/s41598-017-09413-9
http://dx.doi.org/10.1038/nature23307
http://www.ncbi.nlm.nih.gov/pubmed/28792931
http://dx.doi.org/10.1038/srep36652
http://www.ncbi.nlm.nih.gov/pubmed/27834352
http://dx.doi.org/10.1038/s41598-018-20598-5
http://www.ncbi.nlm.nih.gov/pubmed/29391500
http://dx.doi.org/10.1063/1.4774089
http://dx.doi.org/10.1016/j.electacta.2018.04.087
http://dx.doi.org/10.1016/j.spmi.2017.10.031
http://dx.doi.org/10.1016/j.tsf.2014.09.041
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1063/1.4757584
http://dx.doi.org/10.1021/acsami.6b04919
http://dx.doi.org/10.1088/1361-648X/aaa7c1
http://www.ncbi.nlm.nih.gov/pubmed/29334362
http://dx.doi.org/10.1088/1361-651X/ab580e


Micromachines 2020, 11, 154 9 of 9

25. Dash, C.S.; Sahoo, S.; Prabaharan, S.R.S. Resistive switching and impedance characteristics of
M/TiO2−x/TiO2/M nano-ionic memristor. Solid State Ionics 2018, 324, 218–225. [CrossRef]

26. Zhang, H.; Ju, X.; Yew, K.S.; Ang, D.S. Implementation of Simple but Powerful Trilayer Oxide-Based Artificial
Synapses with a Tailored Bio-Synapse-Like Structure. ACS Appl. Mater. Interfaces 2020, 12, 1036–1045.
[CrossRef] [PubMed]

27. Li, Y.; Li, X.; Fu, L.; Chen, R.; Wang, H.; Gao, X. Effect of interface layer engineering on resistive switching
characteristics of ZrO 2-based resistive switching devices. IEEE Trans. Electron Devices 2018, 65, 5390–5394.
[CrossRef]

28. Wu, W.; Wu, H.; Gao, B.; Deng, N.; Qian, H. Suppress variations of analog resistive memory for neuromorphic
computing by localizing Vo formation. J. Appl. Phys. 2018, 124, 152108. [CrossRef]

29. Skaja, K.; Andrä, M.; Rana, V.; Waser, R.; Dittmann, R.; Baeumer, C. Reduction of the forming voltage through
tailored oxygen non-stoichiometry in tantalum oxide ReRAM devices. Sci. Rep. 2018, 8, 10861. [CrossRef]

30. Gross, M.; Winnacker, A.; Wellmann, P.J. Electrical, optical and morphological properties of nanoparticle
indium–tin–oxide layers. Thin Solid Films 2007, 515, 8567–8572. [CrossRef]

31. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [CrossRef]
32. Jang, J.; Park, S.; Burr, G.W.; Hwang, H.; Jeong, Y. Optimization of Conductance Change in

Pr1–xCaxMnO3-Based Synaptic Devices for Neuromorphic Systems. IEEE Electron Device Lett. 2015,
36, 457–459. [CrossRef]

33. Wang, I.T.; Chang, C.-C.; Chiu, L.-W.; Chou, T.; Hou, T.-H. 3D Ta/TaOx/TiO2/Ti synaptic array and linearity
tuning of weight update for hardware neural network applications. Nanotechnology 2016, 27, 365204.
[CrossRef]

34. Chen, P.; Peng, X.; Yu, S. NeuroSim+: An integrated device-to-algorithm framework for benchmarking
synaptic devices and array architectures. In Proceedings of the IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 2–6 December 2017.

35. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2323. [CrossRef]

36. Kataeva, I.; Merrikh-Bayat, F.; Zamanidoost, E.; Strukov, D. Efficient training algorithms for neural networks
based on memristive crossbar circuits. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8.

37. Yang, C.-S.; Shang, D.-S.; Liu, N.; Fuller, E.J.; Agrawal, S.; Talin, A.A.; Li, Y.-Q.; Shen, B.-G.;
Sun, Y. All-Solid-State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing.
Adv. Funct. Mater. 2018, 28, 1804170. [CrossRef]

38. Darken, C.; Chang, J.; Moody, J. Learning rate schedules for faster stochastic gradient search. In Proceedings
of the 1992 IEEE Workshop Neural Networks for Signal Processing II, Helsingoer, Denmark, 31 August–2
September 1992; pp. 3–12.

39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations, San Diego, CA, USA, 7 May 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ssi.2018.07.012
http://dx.doi.org/10.1021/acsami.9b17026
http://www.ncbi.nlm.nih.gov/pubmed/31815426
http://dx.doi.org/10.1109/TED.2018.2876942
http://dx.doi.org/10.1063/1.5037896
http://dx.doi.org/10.1038/s41598-018-28992-9
http://dx.doi.org/10.1016/j.tsf.2007.03.136
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
http://dx.doi.org/10.1109/LED.2015.2418342
http://dx.doi.org/10.1088/0957-4484/27/36/365204
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1002/adfm.201804170
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Procedure 
	Results and Discussion 
	Conclusions 
	References

