
applied
sciences

Article

Adaptive Real-Time Offloading Decision-Making for
Mobile Edges: Deep Reinforcement Learning
Framework and Simulation Results

Soohyun Park 1, Dohyun Kwon 1, Joongheon Kim 2,* , Youn Kyu Lee 3,* and Sungrae Cho 1,*
1 School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Korea;

shpark.cau@gmail.com (S.P.); kdh1102@cau.ac.kr (D.K.)
2 School of Electrical Engineering, Korea University, Seoul 02841, Korea
3 Multimedia Processing Lab., Samsung Advanced Institute of Technology, Suwon 16677, Korea
* Correspondence: joongheon@korea.ac.kr (J.K.); younkyu.lee@samsung.com (Y.K.L.); srcho@cau.ac.kr (S.C.);

Tel.: +82-2-3290-3223 (J.K.)

Received: 29 January 2020; Accepted: 27 February 2020; Published: 1 March 2020
����������
�������

Abstract: This paper proposes a novel dynamic offloading decision method which is inspired by
deep reinforcement learning (DRL). In order to realize real-time communications in mobile edge
computing systems, an efficient task offloading algorithm is required. When the decision of actions
(offloading enabled, i.e., computing in clouds or offloading disabled, i.e., computing in local edges) is
made by the proposed DRL-based dynamic algorithm in each unit time, it is required to consider
real-time/seamless data transmission and energy-efficiency in mobile edge devices. Therefore,
our proposed dynamic offloading decision algorithm is designed for the joint optimization of delay
and energy-efficient communications based on DRL framework. According to the performance
evaluation via data-intensive simulations, this paper verifies that the proposed dynamic algorithm
achieves desired performance.

Keywords: mobile edge computing; offloading; real-time; deep reinforcement learning; deep Q-network

1. Introduction

According to the fact that the 5G era has been realized based on networking technology innovation,
many new computing and communications paradigms are introduced such as millimeter-wave
communications, hyper-dense networks, and device-to-device proximal networking [1–3].
Among them, mobile edge computing (MEC) is one of the major technologies for realizing
data/computing distribution in order to improve cellular network performance [4]. Based on the
benefits of MEC technologies such as data rate improvement and quality enhancement, mobile cellular
users can enjoy high quality, seamless, and real-time communication networking services.

Together with the MEC technologies, many networked components are also of interest such as
cloud servers and connected devices/vehicles. As the number of connected devices/vehicles increases,
the amount of data transmitted to the MEC is also rapidly increasing. This obviously introduces serious
network limitations such as data processing performance limits, storage capacity limits, and the battery
use of terminal devices. Under the consideration of these limitations and problems, the use of cloud
computing server is more efficient to deal with big data (gathered from connected vehicles/devices
via MEC edges) than the local computing on terminals. On the other hand, for any cases where
the data cannot be handled in the cloud servers due to delay requirements and security reasons,
MEC devices should be able to handle or process the data from the connected vehicles/devices.
Therefore, we can observe the trade-off between cloud computing servers and MEC servers (local edge
computing servers). In summary, cloud servers have more power and centralized computing benefits

Appl. Sci. 2020, 10, 1663; doi:10.3390/app10051663 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1794-6076
https://orcid.org/0000-0003-1879-688X
http://dx.doi.org/10.3390/app10051663
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/5/1663?type=check_update&version=2

Appl. Sci. 2020, 10, 1663 2 of 16

comparing to MEC servers, whereas, it may have limitations when we have delay requirements and
security requirements/regulations. Figure 1 shows the combined architecture of local edge computing
and cloud computing. As the transmission from connected vehicles/devices (i.e., data upload and
download) delay goes down, it is much more suitable for real-time processing. It enables real-time
data processing and transmission using high-quality data in real-time broadcasting or video streaming.
Therefore, it is essential to design an algorithm which can handle the data transmission scheduling
(i.e., offloading decision-making, i.e., centralized vs. local computing). Note that the data from
connected vehicles/devices will be handled in cloud computing servers when offloading decision is
made, whereas the MEC servers will handle the data when the offloading is not preferred.

Figure 1. Edge computing and cloud computing architecture.

In order to handle this problem, many research contributions nowadays have been considering
deep learning and machine learning based methodologies. Among them, this paper considers
reinforcement learning based approaches because this given problem is for stochastic sequential
offloading decision-making. Among a lot of deep reinforcement learning (DRL) methodologies such as
Q-learning, Markov decision process (MDP) [5], deep Q-network (DQN), and deep deterministic policy
gradient (DDPG) [6,7], this paper designs a sequential offloading decision-making algorithm based on
DQN. The reason why this paper considers DQN is that it is the function approximation of Q-learning
using deep neural network (DNN) in order to take care of large-scale problem setting. The proposed
sequential offloading decision-making algorithm inspired by DQN aims at the maximization the
cumulative summation of the rewards for sequential offloading actions (centralized vs. local
computing). Therefore, it is obvious that the reinforcement learning is a way to proceed optimal
learning even in a dynamic environment under uncertainty. The reinforcement learning is applied
to a variety of environments such as artificial intelligence robotics development, automatic systems,
and self-driving technology development. This paper utilizes this DQN technology for offloading
decision-making (i.e., processing the transmitted data at centralized computing, i.e., cloud or local
computing, i.e., MEC) for real-time seamless high quality data communications under uncertainty
conditions, e.g., channel dynamics. The reason why DQN is selected among the given Q-learning,
MDP, DQN, and DDPG is as follows. The Q-learning and MDP are not related to DNN based
function approximation; and their solutions can be computed using dynamic programming. Therefore,
the computational complexity of Q-learning and MDP solution computation can be very high when
the search space becomes large. The DDPG based formulation is for continuous action domains.

Appl. Sci. 2020, 10, 1663 3 of 16

In this paper, our formulation is for offloading decision-making whether the offloading should be
conducted or not. Thus, our action space is discrete (0 or 1), i.e., continuous domain DDPG is not
suitable; and finally DQN is the best solution among given options.

In mobile edge computing research, several algorithms were proposed in order to optimize their
own objectives [8–12]. However, none of them are considering offloading decision for determining
whether it has to conduct offloading or not. The proposed algorithm in this paper is the improvement of
our previous contributions in [13]. Comparing to our previous work in [13], the proposed algorithm in
this paper includes more detailed mathematical formulations and descriptions. Furthermore, various
data-intensive performance evaluation results are included in this paper.

These kinds of DRL-based algorithms including our proposed DQN-based method can be widely
used and are practical due to the function approximation nature of DNN. With DQN, the states and
actions are used as input and output values in DNN training. Once the training is done, we can
simply infer our approximated optimal actions by putting current states into the trained DNN.
Thus, the computation itself during the inference is light-weight (even though training itself is not) and
thus using a DQN-based method is realistic in real-time decision-making systems, as also discussed
in [14].

The rest of this paper is constituted as follows. Section 2 introduces preliminaries,
i.e., deep learning foundations and related work, i.e., reinforcement learning algorithms for mobile
edge computing. Section 3 proposes our system model. Section 4 describes the details of our algorithm
with explanation about DQN. In Section 5, we describe the details of simulations and results. Finally,
Section 6 concludes this paper and presents future research directions.

2. Background and Related Work

2.1. Deep Learning and Deep Reinforcement Learning Foundations

Nowadays, there are huge interests on deep learning algorithms and applications by industry
and academia. The deep learning is essentially for conducting artificial intelligence (AI) tasks using
neural network framework. The neural network is for enabling nonlinear computation (so called
activation function) in terms of its own AI tasks. If the neural network has more and more hidden
layers, the nonlinearity increases. Previously, having many hidden layers was not possible due
to a gradient vanishing problem (i.e., the problem where the parameters in hidden layers are not
trained and converge to zero). However, the problem was solved by utilizing other types of activation
functions, e.g., rectified linear unit (ReLU). Finally, the neural network starts to have many hidden
layers; thus, the nonlinearity increases a lot. Eventually, the performance is dramatically increased,
even better than human beings in some areas. This neural network is called deep learning because it has
deep many hidden layers. Once the neural network is trained with many data, the parameters within
the neural network are trained. Thus, we can move to the inference procedure which takes inputs,
then the input will be calculated with the trained parameters, and then the outputs can be derived.

Among many deep learning frameworks, if the inputs and outputs of neural network are states
and their corresponding actions, respectively, it means we can train the neural network with states and
their corresponding actions. Once the training is done, the neural network is now capable of deriving
approximated actions depending on input states. Semantically, it means that the neural network can
sequentially derive approximated optimal actions in current input states. Thus, this neural network
is capable of sequential decision-making for time-series states inputs. This is deep learning based
reinforcement learning, and thus it is called deep reinforcement learning, which is mainly discussed in
this paper.

2.2. Related Work: Reinforcement Learning for Mobile Edge Computing

There are remarkable research results that are based on reinforcement learning techniques for
sequential stochastic decision-making in various computing research domains. For the application

Appl. Sci. 2020, 10, 1663 4 of 16

of deep reinforcement learning to mobile edge computing, the research contributions in [8–11] had
been discussed about the optimization for their own objective functions. Even if they considered many
criteria for the offloading, there are not contributions that aim at the optimal sequential decision-making
for offloading decisions, i.e., whether it has to conduct offloading (i.e., centralized computing) or not
(i.e., local edge computing). For the design and implementation of intelligent and efficient systems,
Feng et al. proposed a hybrid intelligent control mechanism which combines high-level time PetriNet
and reinforcement learning frameworks [15]. The control system of the model is mathematically
designed by hybrid time PetriNet and additional methods are utilized based on Q-learning, which is
a special type of deep reinforcement learning for minimizing transitions delay time. Even though
the paper is successful for delay minimization, the other important factors, e.g., energy consumption
optimization and offloading, are not discussed in this paper. Furthermore, Bhagat et al. designed
a self-sufficient intelligent agent that can be learned based on the information collected from the
agent’s environment by combining DRL algorithms and soft bio-inspired structures [16]. They also
presented several examples in various real-world scenarios. Furthermore, the paper described various
research results that conduct DRL methods in soft robotics research domains. Even though the
algorithm in this paper improves the performance by utilizing bio-inspired methodologies, it is
not discussing about communication-related performance improvements, e.g., delay and energy
optimization. In autonomous driving research, Zhang et al. improved the instability seen by Q-learning
which is using a double deep Q-learning network as an automatic stochastic sequential decision-making
approach for vehicle controls [17]. This paper is novel and conducts efficient tasks in vehicle controls;
the algorithm is not scalable for conventional mobile edge computing environment because the
parameter setting and formulations are all based on application-specific vehicle controls. Xu et al.
designed a sequential intelligent decision-making scheme for highway autonomous driving [18].
This decision-making policy is learned via Q-learning, which is one of the well-known reinforcement
learning algorithms based on the series of simulated driving scenarios data. In addition, there are
a number of control-related studies for safe autonomous driving in highway environments [19,20].
Shin et al. proposed a novel inverse-reinforcement and imitation learning algorithm, which is one
of major reinforcement learning algorithms nowadays, for autonomous driving control under the
benefits of augmented random search [21,22]. In addition, there exists RL applications to game playing.
Silver et al. designed and implemented AlphaGo-Zero, which evaluates the location decision using
adaptive tree search techniques and determines the movement using trained deep learning based on
reinforcement learning [23]. The AlphaGo Zero conducted the learning procedures through its own
self without a guide or knowledge of human data and game rules, and it improved the performance
of the tree search techniques. Finally, the AlphaGo Zero has achieved more than 100 wins against
AlphaGo, which won against world-champion human Go players. The algorithms in [18–23] conduct
engineering for their specific applications well such as autonomous driving and game AI. Therefore,
they are all independent of the communications and networks specific key consideration factors such
as energy and delay optimization. Therefore, none of our related research literature papers are directly
associated with ours. If we directly utilize their algorithms to our mobile edge computing systems
without any modifications, the algorithm definitely presents poor performances due to the lack of
mathematical considerations in terms of energy and delay optimization.

Appl. Sci. 2020, 10, 1663 5 of 16

3. System Model

3.1. Reference System Model and Formulation

In this scenario, terminal devices (i.e., CCTV camera, drones equipped camera, and vehicle
black-box) are wirelessly connected to an edge server which is located nearby as shown in Figure 2.
When the terminal device collects video continuously/seamlessly, there exists the limits of battery
and storage capacity depending on the size of devices. Based on this limitation, it is not possible
to store or compute all of the data on the device itself in any time. Furthermore, even if all data
can be processed, a delay which is caused by the processing limit of the device occurs. This can
make serious problems in environments where real-time communications is essentially necessary, e.g.,
mission-critical communications. For this reason, it is necessary to use virtual servers that have better
performance than terminal devices. Moreover, using the edge server can be a way to overcome these
problems related to the limitation of the terminal devices. However, using edge computing technique
(i.e., data offloading) is always not the best solution. We have to consider the delay time of wireless
data transmission between the terminal device and the edge server.

Figure 2. Reference system model.

For this reason, we propose a novel offloading decision algorithm that minimizes the combination
of energy consumption and delay at each terminal device. The algorithm we proposed in this paper
is based on DQN, which is one of reinforcement learning algorithms that maximizes cumulative
summation of rewards. Using this DQN-based algorithm, each terminal device can decide whether it
will do offload or not. For this purpose, the corresponding actions and rewards values in DQN-based
formulation are as follows:

• State S , {TD capacity, StandBy Q capacity, ES capacity}
• Action A , {0, 1}
• Reward Rcombi , β× (γ×Rdelay +(1−γ)×Renergy)+ (1− β)×Rcapacity (Refer to (6), in Section 4)

where TD capacity, StandBy Q capacity, and ES capacity stand for the capacity of terminal device,
stand-by Q capacity, and the capacity of edge server, respectively. Here, the standByQ means the
waiting buffer of each terminal device. The data/information that is decided to be offloaded is stored
the standByQ. Next, each action means whether it needs to be offloaded or not. Here, the value 1 means
offloading happens at time step t, whereas the value 0 means processing the data locally at time step t
(i.e., offloading does not happen). The details of the proposed algorithm are explained in Section 4.

3.2. Offloading Decision: Trade-Off between Energy Consumption and Delay

In mobile edge computing (MEC) scenarios, each terminal device has limitations in terms of
storage capacity, computing performance, and battery lifetime. Each terminal can offload its data

Appl. Sci. 2020, 10, 1663 6 of 16

(or task) to its associated nearby edge server and also does not need to operated by itself. The MEC
can (i) save the energy of each device, (ii) prevent data loss due to insufficient storage capacity,
and (iii) reduce delay due to the lack of computing performance. To make good use of the advantages,
it is necessary to decide what to offload and when to offload. The execution delay and energy
consumption of each terminal device can be distinguished into two parts, i.e., local computing and
edge computing as explained in (1) and (2). In edge computing architectures, the values include the
transmission to edge server, processing on the edge server, and downloading from the edge server.

Delayo f f load = Uploadingdelay + ESprocessingdelay + Downloadingdelay,

Delaylocal = TDprocessingdelay (1)

where Delayo f f load and Delaylocal are the delays when the offloading happens or not, respectively.

Energyo f f load = Uploadingenergy + ESprocessingenergy + Downloadingenergy,

Energylocal = TDprocessingenergy (2)

where Energyo f f load and Energylocal are the energy consumption when the offloading happens or not
(based on offloading decision-making by DQN), respectively.

As discussed in the literature, offloading decisions are made depending on the following three
criteria, i.e., (i) minimization of execution delay, (ii) minimization of energy consumption while
satisfying tolerance delay, and (iii) trade-off between energy consumption and execution delay
depending on the environment of the applications of offloading in each terminal device [24].

When the goal is the minimization of total execution delay regardless of energy consumption,
each device will conduct the internal offloading policy and it decides whether offloading should
happen or not, i.e., local computing or offloading computing [25]. If the goal is the minimization of the
energy consumption of each device, it uses the smallest energy resources even if the delay increases.
This paper considers both execution delay and energy consumption of each terminal. Furthermore,
for real-time communications, more weights are allocated to the minimization of total delays than
energy consumption. In this postulated environment, each terminal determines whether it has to
offload or not, according to DQN-based offloading decision-making algorithm which is based on
reinforcement learning instead of general offloading determination [26,27].

4. Proposed DQN-Based Offloading Decision Algorithm

In this section, a DQN-based novel offloading compression decision (OCD) algorithm is proposed.
The brief introduction to the algorithm is explained in Figure 3.

Appl. Sci. 2020, 10, 1663 7 of 16

DRL-based Offloading

Decision

- DRL-based Computation: (3), (4), (5)

- Reward Formulation: (6), (7), (8), (9)

Local Computing

Edge Computing

Figure 3. Execution process for the proposed DQN-based novel offloading compression decision algorithm.

4.1. Deep Reinforcement Learning

In theory, the reinforcement learning is a method where an agent learns the set of actions which
purposes maximizing cumulative summation of rewards. The reward is defined as a return value that
the agent can get. The agent receives the reward and information about the changed state at time step
t + 1 from the environment. Using this reward and observation, the agent learns a policy π, and we
say the policy as optimal policy π∗ when the reward is always optimal through the policy [28,29].
The reward value can be calculated using Q-function. Q̂(s, a) is a reward of current state and it is a
summation of return value r and Q̂(s′, a′) which is a maximum reward value expected to be received
in the future [30]. The corresponding mathematical formulation is as follows:

Q̂(s, a) ← r + max Q̂(s′, a′) (3)

Q̂(s, a) ← (1− α)Q̂(s, a) + α

[
r + γ max

a′
Q̂(s′, a′)

]
(4)

Appl. Sci. 2020, 10, 1663 8 of 16

where (4) is an equation that contains a learning rate α and a discounting rate γ to (3).
Here, DQN is a way to learn the Q-function using a deep neural network. Through layers,

the output informs all or the possible actions and the corresponding reward of each action [31].
The application of deep neural network overcomes the size of memory that has been the limitation
of Q-table in Q-learning; and an efficient function output is possible for large amounts of data.
The expressions (5) show that it minimizes a difference between the optimal value and real value
(i.e., predicted value). The optimal value is a target value that the agent aims to get. The equation form
is similar to the cost f unction of linear regression problem:

min
θ

T

∑
t=0

[
Q̂(st, at|θ)−

(
rt + γ max

a′
Q̂(st+1, a′|θ)

)]2
(5)

However, since both the target and predicted values use the same network and similar learning
data, DQN has a problem with correlation between samples and non-stationary target. The change
of target value when performing network update in Qpre is the cause of the non-stationary target
problem. Furthermore, because of that problem, it is impossible to make the predicted value similar
to the target value, and the agent will learn policies in a different direction than the target. To solve
this problem, we can use DQN. It can store data collected by agent in reply buffer and use only data
that is extracted from the buffer. In addition, in DQN, the pretend network and the target network
are separated. Therefore, the updates of the pretend network θ cannot make an impact to the target
network. According to these characteristics of DQN, the agent can get appropriate policies [32–34].

4.2. DQN-Based Offloading and Compression Decision

For the DQN-based offloading decision algorithm, the states, actions, and rewards are defined
as mentioned in Section 3.1. This proposed algorithm is formally described in Algorithm 1. In this
subsection, we explain the details of the proposed algorithm. Each state is the observation that the
agent gets after taking an action from the environment. We set the capacity of TD, StandBy Q, and ES as
state, and it represents the capacities’ changes over time. Likewise, the agent will get a reward (Rcombi)
in each step. The reward we set is the combination of three aspects of the reward, i.e., the reward
of execution delay, the reward of energy consumption, and the reward of terminal device’s capacity.
The agent uses the state information and reward to make a better action decision:

Rcombi = (γ× Rdelay + (1− γ)× Renergy)× β + Rcapacity × (1− β) (6)

where Rcombi stands for the reward function definition which is the combination of Rdelay (reward under
the consideration of execution delays), Renergy (reward under the consideration of energy consumption),
and Rcapacity (reward under the consideration of capacity) where the three reward components are
defined as follows:

Rdelay = 1− Ddqn/Dlocal , (7)

Renergy = 1− Edqn/Elocal , (8)

Rcapacity = −1× tasktodo× 0.01, (9)

where Ddqn and Edqn are

Ddqn =
N

∑
n=1

αn ∗ Do f f load
n + (1− αn) ∗ Dlocal

n , (10)

Edqn =
N

∑
n=1

αn ∗ Eo f f load
n + (1− αn) ∗ Elocal

n , (11)

Appl. Sci. 2020, 10, 1663 9 of 16

When offloading computing is decided in each step based on DQN, Dlocal and Elocal stand for
the execution delay and energy consumption when the tasks are processed in the local at time step
t. Similarly, Do f f load and Eo f f load are the values when the tasks are processed in the edge server.
Finally, the total execution delay and energy consumption for all the tasks are represented as (10) and
(11). Thus, semantically, the (10) and (11) are the linear combinations of execution delay and energy
consumption depending on offloading decisions.

Based on the definitions of (10) and (11), the rewards Rdelay in (7) and Renergy in (8) are defined as
the difference between the value when the tasks are performed locally and the value by the decision
algorithm based on DQN. As a result, the learning is carried out to minimize Ddqn and Edqn while
it maximizes Rdelay and Renergy. Furthermore, the reward Rcapacity in (9) is a value to represent an
overflow the terminal’s capacity. Note that Rcapacity is meaningful only under certain conditions
according to Algorithm 2. If local computing (i.e., no offloading) is decided by the algorithm and the
capacity of terminal device is not sufficient to process task at time step t, the negative reward, Rcapacity,
is applied.

Algorithm 1 DQN-based offloading decision

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ

3: Initialize target action-value function Q̂ with weights θ̄ = θ

4: for episode = 1, M do

5: Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ (s1)
6: for t = 1, T do

7: With probability ε selects a random action at
8: Otherwise select at = argmaxaQ (φ (st) , a; θ)
9: Execute action aT in emulator and observe reward re

t , rd
t and image xt+1

10: Set rt = α * re
t + (1− α) * rd

t + rc
t with weight parameter α

11: Set st+1 = st, at, xt+1 and process φt+1 = φ (st+1)
12: Store transition (φt, at, rt, φt+1) in D
13: Sample random minibatch of transitions

(
φj, aj, rj, φj+‘

)
from D

14: if Episode terminates at step j + 1 then

15: yj = rj
16: else

17: yj = rj + γmaxa′Q̂
(
φj+1, a′; θ̄

)
18: end if
19: Compute a gradient descent step on

(
yj −Q

(
φj, aj; θ

))2 with respect to the network

parameters θ

20: Every C steps reset Q̂=Q
21: end for
22: end for

Appl. Sci. 2020, 10, 1663 10 of 16

Algorithm 2 Threshold-based compression decision

if task is decided to offload then

2: if StandByQcap >= tasktodo then

compression is not necessary, store the data in the Q
4: else

compress and offload the compressed task to edge server
6: end if

else if task is decided to process locally then

8: if TDcap >= tasktodo then

perform the task at terminal device without any negative reward
10: else

perform the task at terminal device
12: a negative reward Rcapacity(rc

t) is added
end if

14: end if

5. Performance Evaluation

This section presents the simulation setting and the performance evaluation results of the proposed
DRL-based dynamic offloading decision-making algorithm. We simulate the values of execution delay
and energy consumption for the offloading decision tasks computed by the proposed algorithm in
each time step. We calculate the values for the processing based on (10) and (11), and we compare the
values with the cases of fully local computing and fully offloading.

5.1. Simulation Setting

We assume our simulation setting parameters as follows. Each terminal device has the maximal
capacity of 200 (normalized); and also has an internal queue (i.e., standBy Q) which has the maximal
capacity of 500. In addition, the capacity of edge server is 10,000. This assumption is reasonable
because edge servers are generally powerful comparing to user terminal devices, i.e., order of
100 as used in [35]. The capacities of terminal device queue, stanBy Q, and the edge server are
set between maximum capacities at the start of the episode. The episode is terminated when the
agent performs 30,000 tasks. In addition, the task which the agent should do is selected between
50 and 350 continuously (i.e., uniform distribution) and, if there are any tasks left at the time step,
the remaining tasks are accumulated in each time step. We also set the parameters to calculate the
execution delay and energy consumption of the terminal device and edge server, as presented in Table 1.
The values of each parameter are based on the 100 task executions and they are the representations
of ratios for the local computing values when the execution time and energy consumption are set to
1. We also assume that the terminal device can process 100 tasks at one-time step and also the edge
server can process 1250 tasks at the same time. In our DQN-based learning architecture, the input size
of the model is set to 4. The input size stands for the number of dimension of observation (TD capacity,
Q capacity, ES server capacity, and remaining tasks). The output size is 2, which stands for the number
of dimensions of actions (offloading or not).

The assumed values can be updated depending on the development of hardware and computing
systems. Despite these parameter updates, our scheme can be superior to the other static schemes.
Furthermore, we can conduct more data-intensive simulations with various settings or real-world
implementation as one of future research directions.

Appl. Sci. 2020, 10, 1663 11 of 16

Table 1. Simulation parameters.

Parameter Value

Processing delay at terminal 1.0
Processing delay at edge server 0.08
Transmission delay (uploading) 0.25

Transmission delay (downloading) 0.05
Processing energy at terminal 1.0

Processing energy at edge server 0.05
Transmission energy (uploading) 0.15

Transmission energy (downloading) 0.05

5.2. Simulation Results and Discussions

In this paper, the values of Rdelay and Renergy are no more than 1. In addition, we set the ratio
of results by local computing and the OCD algorithm as an indicator of the reward. Furthermore,
we set Rcapacity as a negative reward in order to have 20% of Rcombi in (6). According to this setting,
the maximum value of Rcombi is 0.8. We can see the rewards per time step in Figure 4. The red graph
presents the case where y = 0. In the reward of delay and the reward of energy graph, Ddqn and Edqn
have the same values with Dlocal and Elocal when the proposed OCD algorithm decides to take an
action for non-offloading, i.e., local computing. As a result, the reward values are to be 0, when the
OCD algorithm decides offloading Ddqn; and Edqn has a value other than zero. If the values of delay
and energy consumption are less than Dlocal and Elocal , the rewards are above the y = 0. On the other
hand, they are below y = 0 if Ddqn and Edqn are greater than the values by local computing. In Figure 4,
the first graph is the combination of the below two graphs. It is as shown in Figure 5, and it stands for
the reward that the agent receives at every time step. In Figure 5, the red line presents the accumulated
reward. Although the OCD algorithm always makes optimal offloading decisions, the reward is not
always positive. As a result, the total value of the reward can decrease when the negative reward is
accumulated. In particular, there is a constant return of negative rewards from 130 to 150 intervals.

We compare the result of 30,000 tasks performed by OCD algorithm with the results performed by
fully local computing (i.e., no offloading) and edge computing. The executed simulation gets results as
shown in Figure 6 and Table 2. If there are tasks that are not processed at time step t due to capacity
limit, the tasks are accumulated as the tasks to be handled at the next time step. Thus, in the execution
delay and energy consumption side, local computing continues to increase the values. Furthermore,
from the time step 30, the time to execute tasks is the longest and it reduces TD’s energy as maximum.
The full offloading has the biggest values at the first time, and it has the smallest growth rate until all
the tasks are executed. The reason why the initial values of full offloading is a longer transmission
time. The proposed OCD algorithm (DQN-based) has significantly better performance than the local
computing by TD. In terms of execution delay, the value of the proposed OCD algorithm (DQN-based)
is the lowest until time step 110. However, as the time step goes by, and the task size increases,
the results of the proposed OCD algorithm (DQN-based) are better than the results of full offloading.
In the energy consumption side, the proposed DQN-based algorithm always has the smallest values.
These results show that the proposed OCD algorithm (DQN-based) is the most suitable in real-time
wireless communication applications.

Appl. Sci. 2020, 10, 1663 12 of 16

(a)

(b)

(c)

Figure 4. Reward of each time step t. (a) represents the figure of Rcombi values that is a combination of
Rdelay, Renergy, and Rcapacity. (b) is a graph of Rdelay per time step, (c) is about Renergy.

Appl. Sci. 2020, 10, 1663 13 of 16

Figure 5. Accumulated reward.

Figure 6. Performance evaluation results (comparison among DQN-based, full offloading, and local
offloading): execution delay (left) and energy consumption (right).

Table 2. Energy consumption and latency values with 10,000 tasks.

DQN Based Local Computing Full Offloading

Energy consumption 52.448 315.830 71.845
Execution delay 153.320 563.830 122.374

Lastly, we conduct the simulations in order to present the novelty of DQN-based algorithm
than the other methods. One of the offloading decision algorithms is designed based on well-known
greedy algorithms, as discussed in [36]. We remind readers that our proposed BRL-based offloading
decisions will be made based on the DQN-based framework under the consideration of our rewards
(i.e., combination of delay, energy, and capacity). On the other hand, the greedy algorithm can be used
for offloading decision-making based on uploading data sizes (i.e., related to delays), i.e., this algorithm
firstly sorts its own data to transmit at first. Then, it transmits the data sequentially.

As shown in Figure 7, this greedy-based algorithm introduces more average delays than our
proposed DQN-based algorithm. Note that the average delay is defined as follows when N number of
packets are simulated for the average delay calculation:

1
N ∑N

i=1

(
tDeparture
i − tArrival

i

)
(12)

Appl. Sci. 2020, 10, 1663 14 of 16

where tDeparture
i and tArrival

i are the times when the i-th packet is left from the queue and when the
i-th packet is arrived at the queue, respectively. As the average data size for offloading increases,
the delays increase. In the DQN-based algorithm, optimal control will be made which considers
delay, energy, and capacity, during offloading decisions. Thus, the delays are smaller than the
greedy-based decision-making. As shown on the right-hand side of Figure 7, our proposed DQN-based
decision-making algorithm outperforms the greedy; and the gaps become larger when the average
data sizes increase.

Figure 7. Performance evaluation results (Proposed DQN-based vs. Greedy): Average delays (left) and
performance gap (right).

6. Concluding Remarks and Future Work

This paper proposes a novel deep Q-network based offloading decision-making method in
mobile edge computing systems. For utilizing real-time and high-quality communications in mobile
edge networks, efficient offloading algorithms and task scheduling in MEC servers are essentially
required. In this paper, therefore, a new dynamic offloading algorithm is proposed, and the
algorithm improves its performance based on DQN. For performance evaluation, the results of our
simulation can be changed due to environment settings or reward decision parameters. According
to the simulation-based evaluation, we verify that the proposed DQN-based algorithm achieves
desired performance.

As future research directions, various factors can be considered in order to conduct more
realistic performance evaluation (e.g., channel allocation, channel quality, and mobility of devices)
and real-world implementation (e.g., with Raspberry Pi). In addition, more detailed discussions
about energy consumption and energy-efficiency are desired. Therefore, we will include this in
our future investigation. Moreover, the computational overhead is definitely considerable for our
future work because considering the overhead is meaningful in mobile edge computing research.
Lastly, the proposed algorithm in this paper runs in a centralized manner. It would be much scalable
and practical if the computation can be done in a distributed manner. Therefore, our next work should
be dedicated to the design and implementation of fully distributed multi-agent reinforcement learning
algorithm which does not require centralized computation.

Author Contributions: S.P., J.K., and S.C. were the main researchers who initiated and organized research reported
in the paper, and all authors including S.P., D.K., and J.K. were responsible for analyzing the simulation results
and writing the paper. Y.K.L. provided more realistic network setting and its related most suitable algorithm
modification. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Chung-Ang University Graduate Research Scholarship in 2019
(for Soohyun Park) and the National Research Foundation of Korea (2019M3E4A1080391).

Acknowledgments: J.K., Y.K.L., and S.C. are the corresponding authors of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 1663 15 of 16

References

1. Kim, J.; Molisch, A.F. Fast Millimeter-Wave Beam Training with Receive Beamforming. J. Commun. Netw.
2014, 16, 512–522. [CrossRef]

2. Kwon, D.; Kim, S.-W.; Kim, J.; Mohaisen, A. Interference-Aware Adaptive Beam Alignment for Hyper-Dense
IEEE 802.11ax Internet-of-Things Networks. Sensors 2018, 18, 3364. [CrossRef] [PubMed]

3. Kim, J.; Caire, G.; Molisch, A.F. Quality-Aware Streaming and Scheduling for Device-to-Device Video
Delivery. IEEE/ACM Trans. Netw. 2016, 24, 2319–2331. [CrossRef]

4. Dao, N.-N.; Vu, D.-N.; Na, W.; Kim, J.; Cho, S. SGCO: Stabilized Green Crosshaul Orchestration for Dense
IoT Offloading Services. IEEE J. Sel. Areas Commun. 2018, 36, 2538–2548. [CrossRef]

5. Choi, M.; No, A.; Ji, M.; Kim, J. Markov Decision Policies for Dynamic Video Delivery in Wireless Caching
Networks. IEEE Trans. Wirel. Commun. 2019, 18, 5705–5718. [CrossRef]

6. Kwon, D.; Kim, J. Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles.
In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13
December 2019.

7. Kwon, D.; Kim, J. Optimal Trajectory Learning for UAV-BS Video Provisioning System: A Deep
Reinforcement Learning Approach. In Proceedings of the IEEE International Conference on Information
Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11 January 2019.

8. Wu, H. Multi-Objective Decision-Making for Mobile Cloud Offloading: A Survey. IEEE Access 2018,
6, 3962–3976. [CrossRef]

9. Wu, H.; Sun, Y.; Wolter, K. Energy-Efficient Decision Making for Mobile Cloud Offloading. IEEE Trans.
Cloud Comput. 2020, 2020, 1–15. [CrossRef]

10. Kim, B.; Min, H.; Heo, J.; Jung, J. Dynamic Computation Offloading Scheme for Drone-based Surveillance
Systems. Sensors 2018, 18, 2982. [CrossRef]

11. Huang, L.; Feng, X.; Zhang, C.; Qian, L.; Wu, Y. Deep Reinforcement Learning-based Joint Task Offloading
and Bandwidth Allocation for Multi-User Mobile Edge Computing. Digit. Commun. Netw. 2019, 5, 10–17.
[CrossRef]

12. Akherfi, K.; Gerndt, M.; Harroud, H. Mobile Cloud Computing for Computation Offloading: Issues and
Challenges. Appl. Comput. Inform. 2018, 14, 1–16. [CrossRef]

13. Park, S.; Kim, J.; Kwon, D.; Shin, M.; Kim, J. Joint Offloading and Streaming in Mobile Edges: A Deep
Reinforcement Learning Approach. In Proceedings of the IEEE VTS Asia Pacific Wireless Communications
Symposium (APWCS), Singapore, 28–30 August 2019.

14. Shin, M.; Choi, D.-H.; Kim, J. Cooperative Management for PV/ESS-Enabled Electric-Vehicle Charging Stations:
A Multi-Agent Deep Reinforcement Learning Approach. IEEE Trans. Ind. Inform. 2020, 16, 3493–3503. [CrossRef]

15. Feng, L.; Obayshi, M.; Kuremoto, T.; Kobayashi, K. An Intelligent Control System Construction using
High-Level Time Petri Net and Reinforcement Learning. In Proceedings of the IEEE International Conference
on Control, Automation and Systems (ICCAS), Gyeonggi-do, Korea, 27–30 October 2010.

16. Bhagat, S.; Banerjee, H.; Tse, Z.T.H.; Ren, H. Deep Reinforcement Learning for Soft, Flexible Robots: Brief
Review with Impending Challenges. Robotics 2019, 8, 4. [CrossRef]

17. Zhang, Y.; Sun, P.; Yin, Y.; Lin, L.; Wang, X. Human-Like Autonomous Vehicle Speed Control by Deep
Reinforcement Learning with Double Q-Learning. In Proceedings of the IEEE Intelligent Vehicles Symposium
(IV), Changshu, China, 26–30 June 2018.

18. Xu, X.; Zuo, L.; Li, X.; Qian, L.; Ren, J.; Sunm, Z. A Reinforcement Learning Approach to Autonomous
Decision Making of Intelligent Vehicles on Highways. IEEE Trans. Syst. Man Cybern. Syst. 2018. [CrossRef]

19. Zheng, R.; Liu, C.; Guo, Q. A Decision-Making Method for Autonomous Vehicles based on Simulation
and Reinforcement Learning. In Proceedings of the International Conference on Machine Learning and
Cybernetics (ICMLC), Tianjin, China, 14–17 July 2013.

20. Sqryn, M.; Sharma, A.; Parkar, D.; Shrimal, M. Distributed Deep Reinforcement Learning on the Cloud for
Autonomous Driving. In Proceedings of the IEEE/ACM International Workshop on Software Engineering
for AI in Autonomous Systems (SEFAIAS), Gothenburg, Sweden, 28 May 2018.

21. Shin, M.; Kim, J. Randomized Adversarial Imitation Learning for Autonomous Driving. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), Macau, China, 10–16 August 2019.

http://dx.doi.org/10.1109/JCN.2014.000090
http://dx.doi.org/10.3390/s18103364
http://www.ncbi.nlm.nih.gov/pubmed/30304788
http://dx.doi.org/10.1109/TNET.2015.2452272
http://dx.doi.org/10.1109/JSAC.2018.2874124
http://dx.doi.org/10.1109/TWC.2019.2938755
http://dx.doi.org/10.1109/ACCESS.2018.2791504
http://dx.doi.org/10.1109/TCC.2018.2789446
http://dx.doi.org/10.3390/s18092982
http://dx.doi.org/10.1016/j.dcan.2018.10.003
http://dx.doi.org/10.1016/j.aci.2016.11.002
http://dx.doi.org/10.1109/TII.2019.2944183
http://dx.doi.org/10.3390/robotics8010004
http://dx.doi.org/10.1109/TSMC.2018.2870983

Appl. Sci. 2020, 10, 1663 16 of 16

22. Shin, M.; Kim, J. Adversarial Imitation Learning via Random Search. In Proceedings of the International
Joint Conference on Meural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.

23. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai,
M.; Bolton, A.; et al. Mastering the Game of Go without Human Knowledge. Nature 2017, 550, 354–359.
[CrossRef] [PubMed]

24. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J.
2016, 3, 637–646. [CrossRef]

25. Chen, X.; Jiao, L.; Li, X.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud
Computing. IEEE/ACM Trans. Netw. 2016, 24, 2795–2808. [CrossRef]

26. Munoz, O.; Iserte, A.P.; Vidal, J.; Molina, M. Energy-Latency Trande-off for Multiuser Wireless Computation
Offloading. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC)
Workshop on Cloud Technologies and Energy Efficiency in Mobile Communication Networks, Istanbul,
Turkey, 6–9 April 2014.

27. Wang, J.; Zhao, L.; Liu, J.; Kato, N. Smart Resource Allocation for Mobile Edge Computing: A Deep
Reinforcement Learning Approach. IEEE Trans. Emerg. Top. Comput. 2020. [CrossRef]

28. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
29. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning

with Function Approximation. In Proceedings of the Advances in Neural Information Processing Systems
(NIPS), Denver, CO, USA, 1 January 2000; pp. 1057–1063.

30. Zhu, L.; He, Y.; Yu, F.R.; Ning, B.; Tang, T.; Zhao, N. Communication-based Train Control System Performance
Optimization using Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2017, 66, 10705–10717.
[CrossRef]

31. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Petersen, S. Human-Level
Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]

32. Nair, A.; Srinivasan, P.; Blackwell, S.; Alcicek, C.; Fearon, R.; Maria, A.; Panneershelvam, V.; Suleyman, M.;
Beattie, C.; Petersen, S.; et al. Massively Parallel Methods for Deep Reinforcement Learning. arXiv 2015,
arXiv:preprint/1507.04296.

33. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement Learning in Robotics: A Survey. Int. J. Robot. Res. 2013,
32, 1238–1274. [CrossRef]

34. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep Reinforcement Learning: A Brief
Survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [CrossRef]

35. Bozorgchenani, A.; Tarchi, D.; Corazza, G.E. An Energy and Delay-Efficient Partial Offloading Technique
for Fog Computing Architectures. In Proceedings of the IEEE Global Communications Conference
(GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6.

36. Feng, W.; Yang, C.; Zhou, X. Multi-User and Multi-Task Offloading Decision Algorithms Based on Imbalanced
Edge Cloud. IEEE Access 2019, 7, 95970–95977. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TETC.2019.2902661
http://dx.doi.org/10.1109/TVT.2017.2724060
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1109/ACCESS.2019.2928377
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Deep Learning and Deep Reinforcement Learning Foundations
	Related Work: Reinforcement Learning for Mobile Edge Computing

	System Model
	Reference System Model and Formulation
	Offloading Decision: Trade-Off between Energy Consumption and Delay

	Proposed DQN-Based Offloading Decision Algorithm
	Deep Reinforcement Learning
	DQN-Based Offloading and Compression Decision

	Performance Evaluation
	Simulation Setting
	Simulation Results and Discussions

	Concluding Remarks and Future Work
	References

