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ABSTRACT Deep Convolutional Neural Networks (CNNs) can be overly dependent on training data,
causing a generalization problem in which trained models may not predict real-world datasets. To address
this problem, various regularization methods such as image manipulation and feature map regularization
have been proposed for their strong generalization ability. In this paper, we propose a regularization method
that applies both image manipulation and feature map regularization based on patches. The method proposed
in this paper has a regularization effect in two stages, which makes it possible to better generalize the model.
Consequently, it improves the performance of the model. Moreover, our method adds features extracted from
other images in the hidden state stage, which not only makes the model robust to noise but also captures the
distribution of each label. Through experiments, we show that our method performs competently on models
that generate a large number of parameter and multiple feature maps for the CIFAR and Tiny-ImageNet
datasets.

INDEX TERMS Convolutional neural network, manifold, regularization, computer vision.

I. INTRODUCTION
With the application of deep convolutional neural networks
(CNNs) in diverse computer vision tasks (e.g., image caption-
ing [1], [2], object recognition [3], [4], and semantic segmen-
tation [5]), a range of models have been explored, including
multi-path networks [6], deep networks [7], and networks
utilizing the attention mechanism [8]. These models have the
necessary tendency to learn more parameters to increase their
representational power. Moreover, as deep CNNs learn sparse
representations, their decision boundaries are less clear than
those of conventional statistical methods [9]. Consequently,
excessive dependence on training data causes a generalization
failure [10].Models that fail to generalizemay cause a decline
in the performance of the test data. To address these chal-
lenges, diverse regularization methods have been proposed.

Various regularization methods have been proposed to deal
with CNN’s excessive dependence on training data. The most
widely utilized regularization method involves the direct aug-
mentation of images. Some methods simply crop, rotate, and
flip the images [11], whereas others eliminate or combine
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image information to generate new images. The research into
the technique that eliminates partial information of the image
considers the entire object area as well as the discriminatory
part of the object in training. Thereby, it can improve gen-
eralization and localization, but some beneficial information
may be removed from the image. Furthermore, the method
of combining images has the limitation that the images are
visually unnatural. Several methods have been explored to
overcome this problem and one of them is CutMix [12].
CutMix preserves the image information by cropping the
image in patches and adding them to a new image.

Furthermore, regularization methods for manipulating
feature maps in a hidden state have been extensively
researched. Regularization methods that eliminate some
value from feature maps [13], [14], add noise to feature
maps [15]–[17] or combine feature maps in hidden states
have been proposed. However, the methods involving the
elimination of values and addition of extra noise methods
slow the convergence speed because they directly affect gra-
dient. In addition, the methods of combining feature maps via
additional networks and obtaining regularization effects may
prompt additional computational costs depending on how the
feature maps were combined [9], [18].
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A method of patch-based regularization that applies both
image augmentation and feature map regularization is pro-
posed. The proposed method creates a new image by mixing
input images on a patch basis, whereas the label of the new
image, the label of the patch, and the label of the existing
input image are mixed in proportion to the patch size. Then,
a CNN is applied to the generated new image to generate a
feature map. Next, the generated feature map undergoes lin-
ear interpolation with a feature map of the patch in proportion
to the patch size.

The proposed method can be applied effectively in image
manipulation and feature map regularization to obtain reg-
ularization effects. In the image manipulation stage, two
images can be combined, based on the patch to generate
a new image without information loss, as in CutMix [12].
Additionally, we added patch-based other image features
through interpolation between feature maps of new images in
the feature map regularization stage. This allows the model
to simultaneously learn the image distribution of other labels
and to generate a model robust to noise.

We used the CIFAR [19] and Tiny ImageNet [20]
datasets to test the proposed method in ResNet [21] and
WideResNet-28 [22] models. The top-1 accuracy perfor-
mance of CIFAR-10 improved by 8.03% to 15.07% over
the baseline and that of CIFAR-100 improved by 18.60%
to 29.28% over the baseline. Tiny ImageNet displayed an
improved top-1 accuracy performance between 2.54% and
5.28% over the baseline. Particularly, models that involved
massive parameters and generated multiple feature maps per-
formed better.

II. RELATED WORKS
Image manipulation is the most widely used regularization
method, and it is largely divided into the following two types:
Image Manipulation and Regularization in feature maps.

A. IMAGE MANIPULATION
Image manipulation refers to transforming an image to create
a new image and involves diverse techniques such as image
flipping, cropping, and rotating, as well as color space trans-
formation and random erasing [11], [23]. Cutout [24] is a
method that randomly drops a square region from the input
image. These techniques are easily applicable but may cause
information loss; the noise may also become detrimental to
the performance in the case of images biased towards specific
textures or shapes or in case of geometrically biased images.

Recently, various methods have been researched to not
only convert a single image but also to mix two or more
images. Among them, the Mixup [25] method mixes two
images on a pixel basis for augmentation. Pairing sample [26]
is also a method of mixing two images by average RGB
pixels. In addition to mixing pixels, there has been a study
to connect images to each region [27]. Despite its effective-
ness in regularization, Mixup and Pairing sample have the
limitation of an unnatural look of the images. To overcome
this problem, devoted the study of mixing images using deep

learning model to give intuitiveness of images [28]. However,
in this case, it resulted in a large computational cost due to
the necessity of learning the models for mixing separately.
The CutMix [12] method rectifies the problem of a resultant
shortfall by not just eliminating the pixels in the patches,
as in Cutout, but also by filling them with pixels from other
images. This patch-based image mixing achieves not just
augmentation but also localization effects.

B. REGULARIZATION IN FEATURE MAPS
In addition to image augmentation, regularization in feature
maps is another method universally used in many models.
This method draws on the feature map obtained from the
hidden state of a model, not the input image.

Dropout [13] is the most widely used and robust technique
for dropping features from the hidden states for achieving
regularization. Another popular technique, Dropblocks [14]
does not simply drop features into random, but instead drops
features into the hidden state via localization. Besides, for
some tasks such as object detection, a dropout with various
techniques including attention mechanism have been exam-
ined [29], [30]. Batch normalization [31] can prevent the
decline in performance by solving the gradient vanishing
problem in the nonlinearity function with an internal covari-
ate shift, which directly influences the gradient and thereby
renders a model robust against noises. Yet, the speed of con-
vergence slows down in the batch normalization compared
with other methods.

Furthermore, techniques for mixing noises with feature
maps are also being continuously explored. In actual tests,
however, unsound data may become involved. Therefore,
learning by intentionally adding noises enables the models
to focus on the essentials of the tasks rather than texture
biases [32], [33]. This method does not simply use random
noise values, but also adds probability distribution values
based on statistical grounds into noise [16], [17]. Among
various noise with different distributions, the Gaussian dis-
tribution is most widely used. Still, depending on the modes
of application, Gaussian noise has been proven to cause sub-
stantial confusion for these models [11]. In addition, an ongo-
ing study is delving into different methods, other than the
Gaussian distribution, for adding noises to cause confusion
to the distribution of the datasets and enable the models to
perform tasks more robustly [15].

C. MIXING IN FEATURE MAP
Applying manipulation techniques to feature maps is also of
interest to researchers. Mixing in feature maps is a widely
used technique for regularization in hidden states, where the
feature maps of the extracted characteristics of the images are
mixed through different operations and affect the gradients of
the models.

Manifold Mixup [9] addresses challenges such the sharp
decision boundaries and the short distance to data by mixing
in hidden states. Moreover, a method using several networks
for Mixup in hidden states has been suggested [18]. In the
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FIGURE 1. Illustration of the regularization method on three images when images are given in batches. The figure shows the process of
image manipulation and feature map regularization. In feature map regularization, the feature maps are interpolated in the ratio of λ.
Here, Beta(α, α).

method, a triple network structure is used to extract the fea-
tures of two images with two shallow networks. Then, a new
network is used to mix up the two feature maps.

In this paper, we propose a method for efficiently achiev-
ing both image manipulation and feature map regularization
effects. The proposed method transforms the input images
with image manipulation and performs linear interpolation
on the feature maps for Mixup. The method applies the reg-
ularization to the model in two steps, enabling robust feature
representation against noises and better generalization of the
models.

III. METHOD
The proposed method consists of two steps. First, the image
manipulation step combines the images based on patches to
generate new images. Second, the feature map regularization
step uses the generated images to perform a convolution
network operation. Then, linear interpolation is performed
on the feature maps generated in this process. The proposed
method is outlined in Fig. 1.

The algorithm relevant to the proposedmethod is discussed
in the following sections.

A. IMAGE MANIPULATION
The image manipulation step uses a ratio λ for mixing the
two training samples (as in Cutmix). A training image x ∈
RW×H×C is combined with the patch Px ∈ RW1−λ×H1−λ×C

extracted in the ratio 1-λ from another training image with a
different label to generate a new image, x̂ ∈ RW×H×C . The
new images label ŷ is generated by combining ya with the
patch’s label Py. The patch and the new training sample (x̂, ŷ)
are generated as follows:

Px ,Py = xb(1− λ), yb(1− λ)

x̂ = xa � B+ xb � (1− B)

ŷ = yaλ+ yb(1− λ) (1)

Here, (x̂, ŷ) is the image and label from which the patch
is extracted. (xa, ya) is the training sample extracted from
the original mini-batch index. (xb, yb) is the training sample
extracted following a shuffle in the index within the mini-
batch. As in the Mixup method, the combination ratio λ is
sampled from the beta distribution Beta(α, α). For (xb, yb),
a patch is generated in the ratio 1-λ. The patch coordinate
is extracted using uniform distribution, whereas the patch
size is determined in proportion to λ of the image size. B ∈
{0, 1}W×H is a binary mask where the patch and position size
are filled with 1 and the remaining with 0. The pixel at posi-
tion Px in xa is removed by the element-wise multiplication
of B and xa.

The element-wise multiplication is performed on 1−B and
xb to extract the pixels at position Px from xb. Thereafter,
we create a new image x̂ by adding xa from which the pixel
at the patch is removed and xb containing only the pixel from
that patch. ŷ is created by combining ya with Py.

For the training dataset D = {(x1, y1), . . . , (xk , yk )},
we use (1) to generate a new training dataset D̂ =

{(x̂1, ŷ1), . . . , (x̂k , ŷk )}.
In the training step, we proceed with the test by setting α

to 1, that is, by sampling λ in the uniform distribution.

B. FEATURE MAP REGULARIZATION
The images generated in the imagemanipulation step are used
as inputs for the convolutional layer to generate feature maps,
which are in turn linearly interpolated to create new feature
maps. By inputting the generated images into a convolutional
model, we calculate the hidden state vector f derived from
the convolutional layer l.

f lx̂ = C l
(x̂) (2)

Here, C is a convolutional model that has l convolutional lay-
ers. f lx̂ is a feature map that is calculated by l’s convolutional
layers, by inputting image x̂.
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We perform the regularization through linear interpolation
as given in (3), on the feature map generated in the convolu-
tion layer.

f lx̂ka ,x̂kb
= (1− λ)f lx̂ka + λf

l
x̂kb

(3)

x̂ka is the new image generated with images xa and xb com-
bined. x̂kb is the image where xb is combined with another
training image. f lx̂ka ,x̂kb

is the feature map generated for the lth
layer and the x̂kb image. The newly generated image’s feature
map and the feature map of the patch image used to generate
the image are linearly interpolated in the mixing ratio λ to
generate a new feature map.

Equation (3) is applied to a new training dataset D̂. Instead
of simply going through the convolution operation on the
existing feature map, the proposed method can cause further
confusion to models by combining the feature map with the
distribution of another label within the data, which has been
experimentally proven to implement a more robust feature
representation. In our experiment, l was used with uniform
distribution for sampling. The experiments section describes
layer l, which is more efficient for the regularization.

IV. EXPERIEMENTS
A. DATASETS
For the experiment, CIFAR-10, CIFAR-100 [19], and Tiny
ImageNet [20] data were used. To compare the performance
with previous works, CIFAR datasets, which are the most
widely used benchmark datasets, were used. We used Tiny
ImageNet data with more images and labels than the CIFAR
datasets. CIFAR-10 and CIFAR-100 data are intended for
image classification and consist of 60,000 color images
(50,000 training images and 10,000 test images), where each
image size is 32×32. Additionally, the number of data labels
in each dataset is 10 and 100, respectively. Tiny ImageNet
data are also intended for image classification and consist
of 100,000 images, each of which measures 64× 64 in size,
and has 200 labels.

B. IMPLEMENTATION DETAILS
We used a GTX-1080ti GPU for training the models, with the
widely used ResNet [21] as the model. A WideResNet [22]
variant of ResNet was used. Specifically, 18-, 34-, and 50-
layer ResNet and 28-layer WideResNet were used. The batch
size for the CIFAR data was set to 64, and that for Tiny
ImageNet data was set to 128. The training epochs of each
model were set to 250 and 300 for the CIFAR and Tiny
ImageNet data, respectively. We used the Stochastic Gradient
Descent (SGD) [34] for optimization. For the CIFAR data,
the learning rate was initially set to 0.25 and decayed by a
factor of 0.2 at the 60th, 120th, 160th, and 200th epochs,
respectively. For the Tiny ImageNet, the learning rate was
initially set to 0.1 and decayed by a factor of 0.1 at the
75th, 150th, 225th, and 300th epochs, respectively.Moreover,
given that overfitting easily occurs in the baseline in compar-
ison with other models, we used early stoppage as necessary.

TABLE 1. Summary of test top-1 accuracy rates(%) in comparison with
CIFAR-10 dataset. For cutmix and manifold mixup, we trained the ResNet
models with different hyperparameters and reported the best results.

TABLE 2. Summary of the test top-1 accuracy rates(%) in comparison
with the CIFAR-100 dataset. For cutmix and manifold mixup,
the hyperparameter settings are the same as described in Table 1.

We describe the best performances of our method and other
methods during training. We used accuracy and Error metrics
to evaluate the classification task. These metrics indicate the
accuracy and error rate of the predicted values of the trained
model concerning the ground-truth values.

C. EXPERIMENT WITH CIFAR DATASET
Each dataset was used for an experiment in the baseline
model and other different models. We compared our methods
with the baseline, augmentation, and other regularization
methods. The augmentation settings were random cropping
and random flipping. Other regularization methods used for
comparison were Cutout [24], DropBlock [14], Mixup [25],
CutMix [12], and Manifold Mixup [9].

Each method was used in the experiment based on the
optimal hyper parameter valuesmentioned in each article. For
Cutout, the learning rate was set to 0.1, the number of holes
to 1, and the hole length to 16. For Dropblock, the keep-prob
was set to 0.9 and the block size to 4. In Mixup, the learning
rate was set to 0.1, α to 1.0, and decay to 1e-4. In CutMix,
the learning rate was set to 0.25 and α to 1.0. The results are
summarized in Table 1, Table 2, and Table 3. The results show
the top-1 accuracy achieved by testing each method in the
ResNet-18, ResNet-34, ResNet-50, WideResNet-28 models.

Table1 and table2 show the results of the CIFAR-10
and CIFAR-100 datasets in the ResNet-18, ResNet-34,
and ResNet-50 models. Our method achieved a 96.79%
top-1 accuracy in ResNet-34 on the CIFAR-10 dataset,
which is 15.07 higher than the baseline performance
of 81.72%. On the CIFAR-100 dataset, our method achieved
80.34%, 81.84%, 81.69% top-1 accuracy in the ResNet-18,
ResNet-34, and ResNet-50 models, respectively, which is
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TABLE 3. Test top-1 accuracy rates(%) on Test dataset in
WideResNet-28 model. C10 means CIFAR10 dataset, and C100 means
CIFAR-100 dataset.

FIGURE 2. Top-1 test error(%) plot on CIFAR-100 classification. On the left
(a) is the result of the ResNet-34 model, and on the right (b) is the result
of WideResNet-28.

24.55%, 29.28% and 24.09% higher than the baseline per-
formance.

For more details, we visualized the error values of
each epoch of ResNet-34 and WideResNet-28 for the
CIFAR-100 datasets. Fig. 2(a) shows that our model con-
verges slightly slower than the baseline in the early stage, but
becomes more stable after the first learning rate scheduling.
Compared with the baseline, the error value increases in some
sections. In our model, however, the error values gradually
decrease throughout the training. A similar trend can be found
in Fig. 2(b). It shows that the convergence is slightly slower
in the early stages, as before, but it can be confirmed that
it converges faster after the first learning rate scheduling.
In particular, the baseline has not shown much difference
since the first learning rate scheduling in comparison with
our method.

To test the performance of our proposed method, we com-
pared it with state-of-the-art augmentation methods. For
the CIFAR-10 data, our method outperformed other exist-
ing methods in ResNet-34. In contrast, CutMix and Mixup
outperformed our proposed method, respectively, in the
ResNet-18 and ResNet-50 models, although the difference
was marginal (approximately 0.2), which indicates that the
proposed method is sufficiently effective.

Moreover, in CIFAR-100, regardless of the models,
the proposed method achieved the highest performance and
demonstrated approx. 2% performance improvement, exert-
ing a substantial effect on the model generalization.

Table 3 shows the performance comparison against other
state-of-the-art data augmentation and regularization meth-
ods of the CIFAR dataset in the WideResNet-28 model. Our
method achieves a 97.28% top-1 accuracy on CIFAR-10 and

TABLE 4. Summary of test accuracy with the Tiny ImageNet dataset. For
Cutmix and Manifold mixup, we trained the ResNet models with different
hyperparameters and reported the best results.

an 84.21% top-1 accuracy on CIFAR-100. Our method out-
performs CutMix andManifoldMixup, by 0.37% and 0.04%,
respectively on CIFAR-10. On CIFAR-100, it surpasses
CutMix and Manifold Mixup, by 1.59% and 0.24% respec-
tively.

The experimental results indicate a performance improve-
ment in the deep ResNet orWideResNetmodels in generating
massive feature maps in comparison with the shallow ResNet
model. Indeed, with the CIFAR-100 data, ResNet-18 showed
an approximately 0.2% performance improvement compared
with other methods, whereas theWideResNet-28 achieved an
approximately 1% performance improvement.

According to the experimental results, we achieved
improved performance for those models where our meth-
ods produced multiple feature maps. Moreover, the results
confirm that performing regularization in both the input and
hidden state phases has a robust regularization effect on the
model.

D. EXPERIMENT WITH TINY IMAGENET DATASET
To explore if our method works well with data that are
larger than CIFAR and have diverse labels, we used the
Tiny ImageNet data set. Each dataset was used in the
experiments in the baseline model and other models. As in
the aforementioned experiments, each method was applied
with the optimal hyperparameters mentioned in each arti-
cle. Each method was tested in ResNet-18, ResNet-34, and
ResNet-50 models. The results are summarized in Table 4.

The experimental results from the Tiny ImageNet data
were comparable to those from the earlier experiment. First,
compared with the baseline, a performance improvement
between 2.54% and 5.28% was achieved in terms of the
top-1 accuracy. Apart from the performance improvement,
the trend thereof is also comparable to earlier experimental
results. For the top-1 accuracy in ResNet-18, our method
outperforms other methods, especially in the deeper models.

Particularly, in ResNet-50, our method shows more than
2% performance improvement compared to Cutmix. Hence,
in models that are deeper and have more parameters to learn,
our method is more effective for generalization.
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FIGURE 3. The visualization results of class activation mapping applying
baseline and our method in ResNet-34 to Tiny ImageNet data.

FIGURE 4. Results of experiments with the proposed method under fixed
layer depth. Tiny ImageNet data in ResNet-50(a); CIFAR-100 data in
WideResNet-28(b).

E. CLASS ACTIVATION MAPPING VISUALIZATION
The proposed method is not only an image manipulation
but also a linear interpolation of two feature maps. Because
a powerful regularization scheme overlaps, the model may
not focus on the main information in the image. Therefore,
we plotted a class activation map (CAM) [35] to visually
check if the model properly captures the main information
of the image.

The result of the CAM according to each label of input
images is given in Fig. 3. As seen in Fig. 3, the CAM result
of the baseline finds no important features and is widely
activated on the entire images. In the case of our method,
it can easily be seen that the important features for image clas-
sification are activated. The reason for this result is that our
method effectively utilizes image manipulation and feature
map regularization to learn important features in an image.

F. ABLATION STUDY
1) LAYER IN OUR-METHOD
The proposed method involves linear interpolation on feature
maps within hidden states. Here, the layer where the method
was applied was randomly selected. Fig. 4 shows the result of
fixing the layer onto which our method was applied.

The experimental details are same as those mentioned ear-
lier (Section IV-B). In the experiment, ResNet-50 (Fig. 4 (a))
and WideResNet-28(Fig. 4 (b)) were used for the

TABLE 5. Test accuracy of our method for different hyper-parameter α on
Tiny ImageNet.

TABLE 6. Performance of different interpolation methods on CIFAR-10.

Tiny ImageNet and CIFAR-100 data, respectively. We
denoted 1 in the index for linear interpolation after the first
convolution operation, batch normalization and activation
function. Values 2 to 5 in the index indicated that linear inter-
polation was performed after each stage and 6 denoted after
average pooling. The results show that random selection of
layers led to a better performance than a planned designation
of layers.

2) IMPACT OF HYPER-PARAMETER α
Table 5 shows the impact of the hyperparameter in extracting
the mixing ratio from the hidden states and the input step in
our method. We experimentally used Tiny ImageNet in the
ResNet-34 model as described earlier (Section IV-B). As the
results indicate, when the size of a patch and the original
image were similar in the mixing step, the performance was
better and improved with a range of choices.

3) COMPARISONS OF DIFFERENT INTERPOLATION METHOD
In our method, a preset was multiplied in the feature map
regularization step and a new feature map was generated with
linear interpolation. When generating a new feature map,
we performed the experiments with different methods. The
results are shown in Table 6.

The linear layer involves interpolation on two different
feature maps after going through the linear layer. The con-
cat linear layer involves the concatenation of two different
feature maps before going through the linear layer. The non-
linear layer involves using a nonlinear function. We used
the hyperbolic tangent function. The experimental results
show that when a new feature map is generated, using linear
interpolation leads to better results than as compared with
adding a linear layer and nonlinearity.

The results of this experiment show that mixing two feature
maps is effective, because it has better performance than the
basic baseline regardless of the method of mixing the two
feature maps. Moreover, we can confirm that mixing in our
way is the best performance. In the case of mixing the same
way as the concatenation of two featuremaps and reduction in
dimension by the linear layer, the baseline and performance
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changes are insignificant, while our method shows about 6%
improvement in performance compared with other mixing
methods as well as with the linear method and nonlinear
method.

V. CONCLUSION & FUTURE WORK
This paper proposes a method for regularizing both input
images and the feature maps thereof. The proposed method,
unlike existing ones, mixes a different image distribution, not
random noises, with the feature map on a patch basis in the
feature map regularization step.

As a result, the proposed method enabled the mod-
els to learn the distribution of images with differ-
ent labels as well as to eliminate noises, and it
ultimately outperformed other methods. When applied to
WideResNet-28 for the CIFAR data, the top-1 accuracy
was 97.28% for CIFAR-10 and 84.21% for CIFAR-100; the
improved performance for CIFAR-10 was between 0.04%
and 8.03% and that for CIFAR-100 was between 0.24%
and 18.6% over other methods. For the Tiny ImageNet
dataset, ResNet-34 and ResNet-50 achieved a top-1 accuracy
of 68.77% and 69.21%, respectively, and ResNet-34 showed
an improved performance between 0.3% and 4.75% com-
pared with other methods.

When using the convolutional network in different prac-
tical applications, instead of using a single regularization
technique, several techniques are used in combination (e.g.,
flip + crop, dropout + batch-normalization). Hence, instead
of using our proposed method alone, using it in combination
with other regularization methods will add to the effects of
robustness in regularization. In the future, we plan to expand
the method for applying noise to the model and study adver-
sarial attacks.
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