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Since various freeway design features are simultaneously installed on roadways, it is important to assess their combined safety e�ects 
correctly. �is study investigated associations between multiple roadway cross-section design features on freeways and tra�c safety. 
In order to consider the interaction impact of multiple design features and nonlinearity of predictors concurrently, multivariate 
adaptive regression splines (MARS) models were developed for all types and freight vehicle crashes. In MARS models, a series of 
basis functions is applied to represent the space of predictors and the combined safety e�ectiveness of multiple design features can be 
interpreted by the interaction terms. �e generalized linear regression models (GLMs) with negative binomial (NB) distribution were 
also evaluated for comparison purposes. �e results determine that the MARS models show better model �tness than the NB models, 
due to its strength to re�ect the nonlinearity of crash predictors and interaction impacts among variables under di�erent ranges. 
Various interaction impacts among parameters under di�erent ranges based on knot values were found from the MARS models, 
whereas two interaction terms were found in the NB models. �e results also showed that the combined safety e�ects of multiple 
treatments from the NB models over-estimated the real combined safety e�ects when using the simple multiplication approach 
suggested by the HSM (Highway Safety Manual). �erefore, it can be recommended that the MARS is applied to evaluate the safety 
impacts of multiple treatments to consider both the interaction impacts among treatments and nonlinearity issues simultaneously.

1. Introduction

Tra�c safety has become one of the serious global concerns 
and many countries have taken safety plans and initiatives 
towards safer roadways. While roadway crashes occur over-
whelmingly due to driver failures (human errors), there is an 
adequate potential to increase the safety of road users through 
the roadways themselves. �erefore, designing roadways with 
appropriate facilities contributes to tra�c safety to prevent 
death and injury from crashes.

Among various roadway classi�cations such as rural two-
lane highways, rural multilane highways, urban arterials, and 
freeways, the freeway is a roadway where additional e�orts are 
needed to enhance tra�c safety. In freeway sections, the severe 
crash risk may increase because vehicles drive mostly at high 
speeds. Moreover, there is a high potential for large-truck 

involved crashes due to high truck volumes and the frequent 
presence of interchanges.

It is generally known that large trucks (i.e., commercial or 
freight vehicles) are substantial contributors to the roadway 
fatalities and injuries [1]. According to the National Highway 
Tra�c Safety Administration (NHTSA) [2], a 10-percent 
increase was found in 2017 in large-trucks involved in fatal 
crashes from 2016 in the United States. From 2016 to 2017, 
large truck fatalities per 100 million vehicle miles traveled 
increased by 6 percent. More speci�cally, the number of large-
truck involved injury crashes also increased from 102,000 in 
2016 to 107,000 in 2017. Also, the number of large trucks 
involved in property damage (only crashes) increased by 3 
percent, from 351,000 in 2016 to 363,000 in 2017.

�ere have been a number of studies which tried to assess 
the safety of freeway [3–7] by simple comparison methods and 
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traffic simulations. �ere are also studies that addressed freight 
safety by investigating the risk factors that contribute to sever-
ity of truck-involved crashes [8–17]. �ese studies determined 
the significant variables influencing severities of freight vehicle 
crashes such as a number of vehicles, speed, lighting condition, 
location type, age, gender, traffic volume, weather, time of day, 
etc. Although there has been a sufficient effort to examine 
relationships between injury levels of large-truck involved 
crashes and significant variables, the current literature on 
quantified safety effects of freeway design elements for freight 
vehicle crashes is limited.

For this reason, it is essential to evaluate freeway safety 
in a quantitative way specifically for freight vehicles in order 
to determine the relationships between freight safety and 
freeway design features. �e Highway Safety Manual (HSM) 
[18] presents scientific approaches to explore and estimate 
the expected changes of safety effects due to the 
implementation of treatment. One of the well-known 
approaches to quantify the safety effectiveness of specific 
roadway countermeasure is the cross-sectional method [19]. 
Whereas the cross-sectional method has been widely adopted 
to evaluate safety effectiveness of specific treatment due to 
its strength to acquire data easily compared to the before-
a�er methods and to separate a single treatment effect from 
the effects of other treatments applied [20–23], this approach 
needs to be applied carefully because of some potential issues 
(e.g., selection of variable bias, omitted variable, correlation 
effect, confounding effect, appropriate functional form, etc.) 
[24–28]. In order to overcome these issues, several alternative 
methods were explored such as matched pair control [29], 
case-control [30], fully Bayesian [31, 32], cross-validation 
process [33], generalized nonlinear regression [34, 35], 
propensity score matching [36–38], and data mining method 
[39]. However, most approaches examined only the main 
effect of each variable in the models, but not the effects of 
interaction between variables. �is point is essential and 
needs to be considered to overcome the issue of over- or 
under-estimation especially when the safety effects of 
multiple treatments are evaluated. Most of the previous 
studies have calculated single treatment safety effectiveness 
with no consideration of the combined effects of multiple 
treatments.

In this study, the multivariate adaptive regression splines 
(MARS) technique was applied to account for both nonline-
arity issues and interaction effects among variables. It is known 
that the MARS can control nonlinear impacts and interaction 
effects of independent variables for complex data structure 
and has an advantage in the safety analysis because it is a trans-
parent model unlike other data mining and machine learning 
techniques [40–42].

�erefore, the objectives of this study were to assess the 
safety effects of multiple roadway design elements. �e MARS 
model was evaluated to estimate the impacts of single and 
multiple treatments. �e safety effectiveness was calculated 
for large-trucks involved crashes using the cross-sectional 
method. Additionally, in order to present the general insights, 
the safety effects of different roadway characteristics were also 
estimated for total crashes.

2. Data

�e total 2,141 rural freeway segment sections with around 
1,566 miles in total length were observed from the roadway 
characteristic inventory (RCI) system managed by the Florida 
Department of Transportation (FDOT). It is worth to note 
that the collected freeway sections are segments without any 
ramp facilities (e.g., interchanges, junctions, etc.). In the RCI 
database, it is able to identify historical roadway characteristics 
of specific roadway sections for the given dates. To overcome 
the issue of misinterpretation in the nonlinear modeling pro-
cess, freeway segment sections with less than 0.1 mile length 
were excluded [42]. �e identified roadway characteristics data 
were coordinated with the crash data from the Crash Analysis 
Resource System (CARS), which is also offered by the FDOT. 
Two data sets were obtained for six years (2008−2013) and 
matched based on roadway ID and mile point for each freeway 
segment section. �e six-year time period was considered to 
obtain complete and stable datasets. Table 1 provides the 
descriptive statistics of the parameters. For the variable named 
Horizontal curve, freeway segments with any portion of sec-
tions including horizontal curve were considered as “1”. �e 
outside shoulder is the roadway shoulder on roadside, whereas 
inside shoulder is located next to the median barrier.

3. Methodology

3.1. Multivariate Adaptive Regression Splines.  �e MARS is a 
nonparametric regression that can be used to assess complex 
relationships using a series of basis functions [43]. �is 
technique is a form of regression analysis and can be seen 
as an extension of linear regression that could accommodate 
and model nonlinearities and interactions between variables. 
�e MARS captures the nonlinearity aspect of polynomial 
regression by generating cut-points (known as knots), which 
are similar to the step functions. It is generally known that the 
step function regression is an alternative to the polynomial 

Table 1: Descriptive statistics.

Variable Mean S.D. Min. Max.
Total crashes 5.153 7.472 0 49
Truck-involved crashes 1.765 3.550 0 16
Natural logarithm of AADT 
(veh/day) 11.066 0.666 9.250 12.453

Section length (mile) 0.731 0.931 0.101 6.972
Number of lanes 2.683 0.795 2 5
Maximum speed limit (mph) 64.981 5.843 50 70
Horizontal curve (1 = yes, 
0 = no) 1 = 739 sites, 0 = 1402 sites

Inside shoulder rumble strips 
(1 = yes, 0 = no) 1 = 1494 sites, 0 = 647 sites

Outside shoulder rumble 
strips (1 = yes, 0 = no) 1 = 1534 sites, 0 = 607 sites

Lane width (�) 12.034 0.199 11 15
Inside shoulder width (�) 7.718 3.611 2 17
Outside shoulder width (�) 9.922 1.741 2 17
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regression model. �e step function regression makes segment 
(or range) of a variable into bins and �ts a di�erent constant 
for each bin. On the other hand, the polynomial regression 
assesses a general nonlinear relationship by imposing a simple 
nonlinear functional form.

Abraham et al. [44] described MARS as a multivariate 
piecewise regression technique and the splines can be repre-
senting the space of predictors broken into a number of 
regions. It has become widespread particularly in data mining 
and data science areas since this technique makes no assump-
tion of any type of relationship between dependent and inde-
pendent variables. In the MARS, an explanatory variable is 
partitioned into intervals and a separate line segment is �t to 
each interval. �e MARS divides the space of independent 
variables into multiple knots and then suits a spline function 
between these knots.

�e MARS model can be described as follows: [45]

where,�̂ = response variable,�0 = coe�cient of the constant basis function,�� = coe�cient of the �th basis function,� = number of nonconstant basis functions,��(�) = �th basis function.
�ree main steps are needed to �t a MARS model  

[41, 42, 45]. In the �rst step, which is a constructive phase, 
basis functions are examined in several regions of the 
predictors using a forward stepwise selection procedure. 
�e predictor and the knot location that contribute 
signi�cantly to the model are searched and selected in an 
iterative way in this step. Also, the introduction of interaction 
is checked to enhance the model performance at each 
iteration. �e second step, known as the pruning phase, 
performs a backward deletion procedure to eliminate the 
least contributed basis functions. A generalized cross-
validation (GCV) criterion is generally used in this pruning 
step to �nd the best model. �e GCV criterion can be 
estimated by Equation (1). In the last step (selection phase), 
the optimum MARS model from a group of recommended 
models can be selected based on the �tting results of each 
[41, 42]

where,�� = response for observation �,� = number of observations,�(�) = complexity penalty function,� = de�ned cost for each basis function optimization.
In order to develop the MARS models, the ADAPTIVEREG 

procedure in the SAS program [46] was used. In the 
ADAPTIVEREG procedure, the maximum order of interac-
tions can be adjusted by the MAXORDER option, but there 

(1)�̂ = exp(�0 +
�∑
�=1
����(�)),

(2)GCV(�) = 1�
∑��=1(�� − �̂)2(1 − �(�)/�)2 ,

(3)�(�) = � + ��,

was no di�erence between selecting the default condition 
(2-way maximum interactions) and increasing the maximum 
number of interactions. It should be mentioned that whereas 
increasing the model complexity by adding more interactions 
might help improve predictive power for highly structured 
data, the applicability of model might be reduced. In this study, 
a 2-way maximum order of interactions was used consistently 
for two di�erent crash types (i.e., total crashes and large 
truck-involved crashes). Moreover, the basis functions were 
constructed for each crash type since the rate of changes can 
di�er within the range for di�erent types of crashes. �e basis 
functions can be constructed using truncated power functions 
based on knot values [47].

3.2. Cross-Sectional Method and Safety Performance 
Function. In the cross-sectional method, it is essential to 
develop a safety performance function (SPF). �e generalized 
linear regression model with negative binomial (NB) 
distribution (known as the NB model) is used to develop a SPF 
to consider over-dispersed crash data properly. A SPF relates 
the crash frequency to tra�c and roadway characteristics. 
�ere are two types of SPFs, which are the full SPF and the 
simple SPF. �e full SPF relates the frequency of crashes to 
both tra�c and roadway characteristics, whereas the simple 
SPF is evaluated only based on a tra�c volume as a predictor. 
It is worth noting that the HSM provides the CMFs calculated 
based on the simple SPF only. However, the simple SPF is 
an oversimpli�ed function to re�ect the relationship between 
crash frequency and roadway characteristics since crash 
frequency is not only a�ected by the tra�c volume [48].

�e cross-sectional method can be used to estimate and 
quantify the safety e�ectiveness by taking the ratio of the aver-
age crash frequency of sites with the element to the average 
crash frequency of sites without the element [18]. In particular, 
the safety impact (i.e., crash modi�cation factor (CMF)) is 
calculated from the coe�cient of the variable associated with 
the treatment as the exponent of the coe�cient when the form 
of the model is log-linear in the cross-sectional studies. �e 
functional form of calculating safety e�ects in the cross-sec-
tional method is shown in Equation (2).

where,
βk = coe�cients for the variables k in SPF,
xkt = linear predictor k of treated condition (changed 

condition),
xkb = linear predictor k of untreated condition (baseline 

condition).
In this study, the NB models were also evaluated for com-

parison purposes. Akaike Information Criterion (AIC) value 
was used to compare the performances of NB and MARS 
models. �e AIC value has been widely applied to observe 
preferred model due to its strength of including a penalty on 
increasing the number of estimated parameters in assessing 
the likelihood function [28]. �e AIC value can be calculated 
by Equation (3) as follows:

where,
k = �e number of estimated parameters in the model;

(4)CMF = exp {�� × (��� − ���)},

(5)AIC = 2� − 2��(�),
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�e NB regression models for large truck-involved and 
total crashes were developed as shown in Table 4 to compare 
model performance with the MARS models. In general, the 
estimated parameters are statistically signi�cant at the 95% 
con�dence level except for two cases (i.e., Inside shoulder 
width in the NB model for large truck-involved crashes and 
Outside rumble strips in NB mode for total crashes). �e 
results show that the MARS models generally provide better 
model �ts than the NB models. �is may be because the MARS 
can account for both nonlinear e�ects and interaction impacts 
between variables. �e results also indicate that various inter-
acting impacts among basis functions under di�erent ranges 
based on knot values were found from the MARS models 
whereas only two interaction impacts were found in the NB 
models (i.e., interaction between AADT and number of lanes, 
and interaction between Lane width and Curve in NB model 
for large truck-involved crashes).

In this study, the safety e�ects of di�erent freeway design 
elements for di�erent crash types were quanti�ed using the 
cross-sectional study. �e safety e�ectiveness of a change in a 
speci�c design feature can be calculated using the coe�cient of 
the parameter in the exponential functional form. Table 5 and 
Table 6 provide a summary of the exponential functional forms 
to estimate safety e�ects for large truck-involved and total 
crashes. �e results indicate that through the MARS models, 
more safety impact estimation functions for di�erent freeway 
design elements under various nonlinear ranges can be captured 
within consideration of interacting with other design features.

Moreover, another advantage of using MARS is the 
strength of considering interaction e�ects between variables. 
As explained in the HSM, when multiple roadway design 

L = �e maximum value of the likelihood function for the 
model.

As Park and Abdel-Aty [28] discussed, prediction models 
using data that are aggregated or averaged can lead to biased 
estimates. A use of disaggregated data can be one way to 
account for this bias and the selection of an appropriate func-
tional form is crucial to enhance the model reliability [26]. For 
this reason, in this study, MARS models were developed to 
re�ect nonlinear relationships between crash rates and predic-
tors under di�erent conditions with various interaction terms.

4. Results and Discussion

Tables 2 and 3 present the estimated MARS models for large 
truck-involved and total crashes. Overall, the estimated basis 
functions are statistically signi�cant at a 95% con�dence level 
except for three cases (i.e., Basis 19 function in MARS model 
for large truck-involved crashes and, Basis 3 and Basis 16 func-
tions in MARS model for total crashes). In the MARS model 
for large truck-involved crashes, the �rst basis function, Basis 
1, is MAX(Ln(AADT)−11.608,0) and where the knot value is 
11.608. �e Basis 1 function can be included in the model 
when the logarithm of AADT is greater than 11.608 and the 
Basis 1 function is 0 for otherwise. Other basis functions are 
constructed in a similar manner by using di�erent knot values. 
�e results also showed that more interaction terms and safety 
e�ects of cross-section elements (inside/outside shoulder rum-
ble strips, widths of inside/outside shoulder, and widths of 
driving lane) were found for large truck-involved crashes com-
pared to total crashes.

Table 2: MARS model for large truck-involved crashes.

Basis function Basis function information Coe�cient Standard error �-value
— Constant 2.6041 0.0613 <0.0001
Basis1 MAX(Ln(AADT)—11.608235645,0) 1.4315 0.2805 <0.0001
Basis2 MAX(11.608235645—Ln(AADT),0) −1.7528 0.0691 <0.0001
Basis4 Basis2 ∗ MAX(Number of lanes—3,0) 69.7533 17.9027 <0.0001
Basis6 MAX(Number of lanes—3,0) −2.6296 0.6865 0.0001
Basis7 MAX(3—Number of lanes,0) 0.2331 0.0739 0.0016
Basis8 Basis6 ∗ MAX(Ln(AADT)—11.571194373,0) −172.570 47.0739 0.0002
Basis9 Basis6 ∗ MAX(11.571194373—ln_adt,0) −69.6772 17.9034 <0.0001
Basis10 Basis6 ∗ MAX(Ln(AADT)—11.55694235,0) 172.7181 47.0717 0.0002
Basis11 Inside rumble strips −0.1590 0.0501 0.0479
Basis12 Curve 0.4391 0.0789 <0.0001
Basis13 Basis12 ∗ inside rumble strips −0.0591 0.0114 0.0013
Basis14 Outside rumble strips −0.1050 0.0282 0.0031
Basis16 Basis1 ∗ MAX(Inside shoulder width—12,0) 0.8159 0.1552 <0.0001
Basis17 Basis1 ∗ MAX( 12—Inside shoulder width,0) 0.1250 0.0554 0.0241
Basis18 Basis12 ∗ MAX(Inside shoulder width—10,0) −0.1662 0.0265 <0.0001
Basis19 Basis12 ∗ MAX(10—Inside shoulder width,0) −0.0258 0.0141 0.0664
Basis20 MAX(Outside shoulder width—10,0) −0.0417 0.0021 <0.0001
Basis21 MAX(10—Outside shoulder width,0) 0.0807 0.0077 <0.0001
Basis22 Basis12 ∗ MAX(14—Lane width,0) 0.1011 0.0312 0.0028
Basis24 Basis21 ∗ MAX(12—Inside shoulder width,0) 0.0140 0.0061 0.0231
Basis26 Basis14 ∗ MAX(Outside shoulder width—8,0) 0.0183 0.0065 0.0494
AIC = 10332.36
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on the MARS model. As suggested in the HSM, the multiple 
treatments (i.e., combination of addition of outside rumble 
strips and widening outside shoulder width by 6¸) safety 
impact can be calculated by multiplication of single impacts 
and the combined safety e�ectiveness is 37% large truck 
involved crashes reduction. On the other hand, the safety 
e�ects of multiple treatments using the MARS model can be 
estimated by Equation (4) as follows:

It should be noted that the basis functions in Equation (5) are 
from Table 2. �e results show that a 35% reduction in large 
truck involved crashes can be expected. �is indicates that the 
combined safety e�ects over-estimated the real safety e�ects 
of multiple treatments by around 4 percent when using the 
HSM approach (multiply single CMFs to estimate combined 

(6)

exp{(�14 ⋅ ��14 + �20 ⋅ ��20 + �21 ⋅ ��21 + �26 ⋅ ��26)
− ���� �
��
	

�}.

features are changed (i.e., treated), the combined safety e�ects 
of multiple treatments can be estimated by the multiplication 
of multiple single safety impacts. However, the HSM also cau-
tioned that simple multiplication of multiple safety impacts 
might over- or under-estimate the number of predicted 
crashes. In order to overcome this problem, the application of 
the MARS models can be implied to evaluate the safety e�ects 
of multiple treatments due to its strength of accounting for the 
interaction impacts among parameters.

For example, an addition of outside rumble strips on free-
way section is expected to reduce large truck involved crashes 
by 19% according to the safety e�ects estimation function 
using the NB model from Table 5. Besides, the evaluated safety 
impact for the same treatment using the MARS model is found 
to be a 10% reduction. Similarly, increasing outside shoulder 
width from 6¸ to 12¸ (i.e., widening outside shoulder width 
by 6¸) decreases large truck involved crashes by 22% using 
the NB model, whereas 33% reduction can be expected based 

Table 3: MARS model for total crashes.

Basis function Basis function information Coe�cient Standard error �-value
— Constant 3.7795 0.0823 <0.0001
Basis1 MAX(Ln(AADT)—11.440354772,0) — — —
Basis2 MAX(11.440354772—Ln(AADT),0) −1.1183 0.1148 <0.0001
Basis3 Inside rumble strips −0.1828 0.1001 0.0679
Basis4 Basis1 ∗ MAX(Inside shoulder width—13,0) 0.6995 0.1628 <0.0001
Basis5 Basis1 ∗ MAX(13—Inside shoulder width,0) 0.1054 0.0350 0.0026
Basis7 Basis1 ∗ MAX(14—Inside shoulder width,0) 0.1052 0.0378 0.0054
Basis8 Curve — — —
Basis10 Basis8 ∗ MAX(Inside shoulder width—9,0) −0.1264 0.0291 <0.0001
Basis12 Basis3 ∗ MAX(Ln(AADT)—12.022636468,0) −4.5393 1.5719 0.0039
Basis13 Basis3 ∗ MAX(12.022636468—Ln(AADT),0) 0.2148 0.0963 0.0257
Basis14 Basis8 ∗ MAX(Ln(AADT)—10.599605317,0) 0.2415 0.0669 0.0003
Basis15 Basis8 ∗ MAX(10.599605317—Ln(AADT),0) −0.3449 0.1616 0.0329
Basis16 Basis3 ∗ MAX(Inside shoulder width—13,0) 0.1178 0.0709 0.0963
Basis18 MAX(Inside shoulder width—13,0) −0.1160 0.0495 0.0191
Basis19 MAX(13—Inside shoulder width,0) −0.0365 0.0095 0.0001
Basis20 Outside rumble strips −0.1062 0.0459 0.0437
AIC = 15920.28

Table 4: Developed NB models.

N/S: not signi�cant.

Parameter
Large truck-involved crashes Total crashes

Coe�cient SE �-value Coe�cient SE �-value
Constant −17.7705 1.4104 <0.0001 −12.5632 0.3252 <0.0001
Ln(AADT) 2.0638 0.0587 <0.0001 1.3673 0.0278 <0.0001
Inside rumble strips −0.3856 0.0969 <0.0001 −0.2389 0.0696 0.0006
Inside shoulder width −0.0140 0.0074 0.0572 N/S N/S N/S
Outside rumble strips −0.2086 0.0979 0.0332 −0.1692 0.0711 0.0669
Outside shoulder width −0.0417 0.0129 0.0013 N/S N/S N/S
Curve 0.2053 0.0479 <0.0001 0.1073 0.0344 0.0018
No. of lanes ∗ Ln(AADT) −0.0106 0.0033 0.0016 N/S N/S N/S
Lane width ∗ curve −0.2600 0.1089 0.0169 N/S N/S N/S
AIC 11800.52 16516.13
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