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Abstract: In computer graphics and augmented reality applications, the illumination information in
an outdoor environment enables us to generate a realistic shadow for a virtual object. This paper
presents a method by which to estimate the illumination information using a human object in a
scene. A Gaussian mixture model, in which the mixtures of Gaussian distributions are symmetrical,
is employed to learn the background. The human object is then segmented from the input images and
the disparity map obtained by a stereo camera. The ground plane in the scene, which is important
for estimating the location of the human object on the ground, is then detected using the v-disparity
map. The altitude and the azimuth value of the sun are computed from the geometric relationship
of three scene elements: the ground, human object, and human-shadow region. The experimental
results showed that the proposed method can estimate the sun information accurately and generate a
shadow in the scene for a virtual object.

Keywords: augmented reality; outdoor environment; illumination estimation; shadow generation;
stereo camera

1. Introduction

Estimating the environmental illumination information of a scene is important for improving
the visual perception of a computer graphics (CG) augmented reality (AR) system. Environmental
illumination information is used to render CG objects with coherent virtual shadows. Many methods
have been introduced for generating the shadows of CG objects according to the light distribution
of indoor and outdoor environments, enabling users to have a more realistic AR experience [1–14].
The goal of our study was to estimate the outdoor illumination information for a scene containing a
human object.

Some methods employ illumination probes or imaging devices such as omnidirectional cameras
and fish-eye lenses [1–5]. These imaging devices must be radiometrically and geometrically calibrated,
and they must be set up in advance. Methods have also been proposed for generating augmented
rendering images with an environment map for an input video sequence [1,3]. However, these methods
must perform elaborate light source sampling in the environment map to cope with unwanted lighting
effects such as flickering. In addition, the environment map must be prefiltered to generate rendering
images that reflect the surface reflectance properties of a virtual object.

In previous studies on the estimation of indoor illumination information [6–8], it has been
important to determine the sampling positions on the shadow surface. Therefore, three-dimensional
(3D) model information about the object that casts shadows is required, and then a sampling strategy
with which to choose the sample points on the shadow regions according to the object’s geometry.
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Outdoor scenes are illuminated by light emitted mainly from the sun and sky [4]. The position of
the sun relative to the user’s location and orientation is computed as a directional light based on the
geospatial position of the mobile device and the current date and time [9]. However, if the user does
not hold the mobile device at a suitable angle, the estimates can vary significantly. That means the
method is highly affected by the angle-sensing capability of the mobile device.

A method has been presented to compute the probability distribution of the sun position from a
single outdoor image [10]. This method is based on a combination of weak scene cues such as the sky,
vertical surfaces, ground, and convex objects in the image. A supervised learning approach is employed
to segment scene elements, where a classifier is trained on features computed from a manually labelled
dataset of images. Large numbers of images with annotated information are important for improving
the illumination estimation performance. In addition, a convolutional-neural-network-based technique
has been proposed for estimation of the high dynamic range of outdoor illumination from a single
low-dynamic-range image [5]. The method uses a physically based sky model—the Hošek–Wilkie
model—in the convolutional neural network learning process. The sky model provides an accurate
representation for clear skies, but its accuracy degrades when cloud cover increases.

Yanli et al. proposed a method for the online tracking of outdoor illumination variations from
videos captured with moving cameras [11]. Assuming that the scene consists of planar patches (ground
and building surfaces), the method tracks only planar surfaces over the frames. Here, the scene was
segmented using an estimated homography, but its performance was highly affected by scene elements
such as complicated objects. In addition, to extract precise shadow regions, a more elaborate analysis
of the color-based segmentation is needed [12,13].

In Reference [14], a method using a time-lapse video to estimate the location of the sun in an
outdoor environment was proposed. In this method, the user needs to specify in advance the 3D
scene model that will cause the hard shadow boundary. It is assumed that there exists at least one
appropriate hard ground shadow during the time-lapse video. More specifically, the method continues
to track the edge features in the image with the 3D model of the object. Here, control points assigned
by the user on the model edges are employed. This manual processing affects overall performance,
and the specified shadow boundary may be occluded during a time-lapse video. Moreover, the scene
elements such as surfaces (ground and building surfaces) must be manually labeled to estimate the
illumination of outdoor videos [15].

In this paper, we estimated the ground information and human objects using a stereo camera in
an outdoor environment and computed the position of the sun using the geometric relationship of
three scene elements: the ground, human object, and human-shadow region. In detail, to segment
the foreground region (human object), a Gaussian mixture model (GMM)-based background learning
method was applied to the 2D images and disparity map obtained by the stereo camera [16]. Because the
Kinect sensor, which is widely used to capture 3D information, cannot be used in outdoor environments,
a stereo camera was employed. The v-disparity map was then used to analyze the scene element
(ground surface) automatically [17]. Using the geometric relationship of the three scene elements
and the camera setup information (the shooting date, time, and location information obtained using
a global positioning system (GPS)), we were able to estimate the azimuth and zenith angles of the
sun. (We assumed that the main light source in outdoor environments is the sun.) The computed
illumination information was used to render the virtual objects, which resulted in a visually convincing
scene. Figure 1 shows a flow chart of the proposed system.

This paper is organized as follows. In Section 2, we describe the four steps in our system:
segmenting the human object and the shadow regions, obtaining the relationship of scene elements,
estimating the illumination information, and rendering shadow images with the environmental
illumination. We then explain the experimental results in Section 3 and conclude the paper in Section 4.
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Figure 1. Flow chart of the proposed method.

2. Proposed Method

2.1. Human and Shadow Region Detection

The main illumination sources in outdoor environments are the sun and sky area [4]. If a human
object is standing in a sunlit outdoor environment, the shadow generated by the human object is
located on the ground plane.

The background region of the scene, which is the region in which there is no foreground object,
is learned in advance from an image sequence and a disparity map by the fixed stereo camera. In this
paper, the initial 250 frames were used for GMM-based background learning. More specifically,
each pixel value of the background in the reference image (left view) was represented by Gaussian
models. When a human object appears in the scene, we were able to separate the foreground object
from the background with the learned GMM information [16]. In general, pixel-wise approaches like
GMM tend to be affected by specific pixel properties. For example, if the value of a pixel of the human
object is similar to that of the learned background, the performance is degraded. In addition, a change
in the illumination distribution in the scene or a displacement of the background elements can generate
foreground segmentation noise. To reduce the segmentation noise, we extracted the contours from the
foreground region using the GMM. The region with the longest contour was determined to be the
human object. Figure 2 shows some example background images (Figure 2a–c), input images with
a human object (Figure 2d–f)), the region obtained by the GMM (Figure 2g–i), and the results of the
noise removal (Figure 2j–l).

Because sunlight is occluded by the human object, the color values of the shadow region on the
ground are changed. To obtain the shadow region, the disparity maps (from stereo matching) were
used in the GMM-based background. In the results obtained by the GMM, the human object was
detected, but the shadow region was not labeled as a foreground object. Therefore, both the GMM
results in the images and the disparity maps were used to segment the foreground region. Because the
segmentation results obtained by the disparity map had unwanted noise artifacts, the depth values
of the GMM-based background elements were used. More specifically, we examined whether the
difference between the background depth information and the depth of the foreground object was
equal to or below a certain threshold. Figure 3 shows the segmentation results.
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Figure 2. Example images from sequences 1, 2, and 3: (a,e,i) background images, (b,f,j) input images, 
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(c,g,k) results obtained by Gaussian mixture model (GMM), and (d,h,l) results after noise removal.
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Figure 3. Example of shadow extraction in image sequence 1: (a) segmented object and (b) shadow region.

2.2. Three Feature Point Determination

The position information of the sun was computed using three feature points: the parietal (top) point of
the human appearing in the scene, the parietal point of the shadow cast by the human, and the intersection
point between the human and ground. When the human object is standing upright, we could accurately
obtain the feature points. More specifically, the parietal point of the human is the highest point from the
ground. The parietal point of the shadow is the farthest point from his or her feet on the ground. Therefore,
this constraint of human posture makes the feature point determination procedure more precise.

The v-disparity map was computed by accumulating the pixels of the density disparity map in
the horizontal direction [17]. A pixel (denoted P) on the v-disparity image has the coordinates (∆p, vp).
The intensity of P equals the number of pixels on the line vp of the disparity map and has a disparity
of ∆p. By accumulating the pixels of the disparity map, the v-disparity image is extremely robust with
regard to the noise. The v-disparity image is generally used to extract the road plane and vertical obstacles.
The v-disparity map of the background in sequence 1 (Figure 4a) shows that the disparity values of the
ground and the background were accumulated. To precisely estimate a line segment representing the
ground, principal component analysis (PCA) was employed on the v-disparity map. The average values
of the depth information about the background were computed over the 250 frames that were used in
the background learning process. Here, random sample consensus (RANSAC) was applied to remove
outliers. An equation for the straight line representing the ground was computed using the PCA vectors,
as well as the average disparity values of the v-disparity map, as shown in Figure 4b. The depth data
corresponding to the ground plane were saved to a look-up table. This enabled us to access 3D depth data
for each pixel in the ground region of the input image in real time.Symmetry 2019, 11, x FOR PEER REVIEW 6 of 14 
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As the human was assumed to be standing upright while facing the camera, we found the
intersection point between the human and ground by vertically projecting the parietal point of the
human to the ground. The disparity values of the human corresponded to the 3D depth of the human
in the scene. In addition, the disparities varied over a range corresponding to the depth of his or her
torso. There was a distinct disparity profile in the v-disparity map, and its column position represented
the y-axis coordinate of the human location. More specifically, we computed the intersection point of
the vertical straight line corresponding to the human with the straight line of the ground (Figure 4c).
Its y-axis coordinate was the location at which the person’s feet touched the ground. The x-axis
coordinate of the human position was the highest point of the foreground contour obtained in the
human detection process.

The feature point in the shadow region that corresponded to the parietal point of the human
was the point that is farthest from the human’s feet. In other words, it was the farthest point from
the intersection between the human and ground. The three feature points are illustrated in Figure 5.
The red circle indicates the location at which the human and the ground intersect. Green and yellow
circles indicate the parietal points of the shadow and human, respectively. Using these three points,
we describe how we computed the human height, as well as the altitude and azimuth angles of the sun
with respect to the camera, in the next section.
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2.3. Estimation of the Altitude and Azimuth Angles of the Sun

Using the relationship between the 3D depth value of the human object and the intrinsic parameters
of the camera, such as the focal length and sensor size, we computed the height of the human object
as follows.

human height (mm) =
distance (mm) × object height (pixels) × sensor height (mm)

f ocal length (mm) × height (pixels)
, (1)

where distance is the 3D depth of the human object with respect to the camera, height is the number of
vertical pixels in the input image (resolution), and object height is the vertical length of the human
region (the number of pixels). In addition, sensor height and focal length are the vertical length of the
imaging sensor and the focal length of the camera, respectively.

In Equation (1), distance was determined to the median value of the 3D depth data in the human
region, and object height the difference in the y-axis coordinates of the yellow and red circles in
Figure 5. In addition, sensor height and aspect ratio (width to height) were obtained from the camera
specifications (55.329 mm and 16:9, respectively, for the ZED camera from Stereolabs Inc. San Francisco,
CA, USA, used in this paper).

In the proposed method, the human height is used to estimate the altitude and azimuth angle of
the sun. To compute the position of the sun with respect to the camera, previous methods employed
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the sun in the input image and its position in the world coordinate system [18]. However, because the
sun may not fall within the camera’s field of view, we used the three feature points and the height of
the human object.

As shown in Figure 6, the shadow of the human object is determined by the relationship between
the human and sun. By extending the straight line connecting the parietal point of the shadow and
with that of the human, we computed the position of the sun on the celestial sphere at an infinite
distance. In this process, two triangles were generated from these scene elements: the straight line
connecting the parietal points of the human and shadow, the vertical line connecting the sun and
ground, and the vertical line of the parietal point of the human and the ground. The altitude of the sun
was then computed using triangle similarity.
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We used the coordinate values of the parietal point of the human and that of the shadow to
compute the altitude θS and azimuth φS angles of the sun with respect to the camera. First, the camera
coordinate system was transferred to the human coordinate system. Its origin was set to the interaction
between the human and ground. The coordinate value of the human’s parietal point was obtained
by adding the height of the human in the y-axis direction at the origin. The coordinate value of
the shadow’s parietal point VB is (dX, 0, dZ, 1), as shown in Figure 6. Here, dX and dZ were easily
computed by the distance from the origin, since vertex VB and the origin were on the ground. In some
cases, however, the 3D depth information of each feature point cannot be computed because of noise
and occlusion on the ground. In this case, dX can be computed using the following proportional
expression, which is similar to the computation of the human’s height.

dX (mm) =
distance (mm) × distance o f two points (pixels) × sensor width (mm)

f ocal length (mm) × width (pixels)
(2)

In addition, dZ was obtained through the look-up table in Section 2.2, since it is relative depth
information based on the camera coordinate system. Angle θC, which is the azimuth angle of the
shadow vector (the yellow line segment in Figure 6), was computed using the arctangents of dX and
dZ, as follows.

θC =


arctan

(
dX
|dZ|

)
(dX > 0, dZ < 0)

arctan
(

dX
|dZ|

)
+ π

2 (dX > 0, dZ > 0)

arctan
(

dX
|dZ|

)
+ π (dX < 0, dZ > 0)

−arctan
(

dX
|dZ|

)
+ 2π (dX < 0, dZ < 0)

(3)
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More specifically, Equation (3) is divided into quadrants according to the location of the shadow,
since the range of an arctangent is [−π/2, π/2]. The azimuth angle θS of the sun was computed by
adding 180◦ to θC.

The altitude of the sun was computed by trigonometric functions on the triangle defined by the
three feature points (Figure 6). The altitude was computed using the human height and the length of
the shadow vector as follows.

φC ≈ φS = arctan
(

human height
√

dX2 + dZ2

)
(4)

In this process, the altitude and azimuth angles of the sun with respect to the camera coordinates
were computed. Hence, the sun information is dependent on the camera position. Therefore, using the
difference of the altitude and azimuth angles of the sun in world coordinates and those of the sun in
camera coordinates, we determined the altitude and azimuth angles of the camera [19]. Because the
camera was fixed so that it was horizontal with the ground, no further procedure was needed to
compute the altitude angle in this case.

2.4. Rendering Using Environmental Illumination

For rendering a virtual object, we constructed the projection matrix of the CG camera using the
following parameters: the focal length and principal point of the camera, the width and height of the
screen, and the parameters of the far and near planes. In AR image rendering, the parameters of the
CG camera were consistent with those of the stereo camera and 3D configuration in the scene.

The background (and ground) were learned before the 3D depth of the stereo camera was used.
Three principal component vectors and the center point of the 3D data in the scene were computed by
PCA. The method proposed herein assumes that the ground in the scene is a planar surface. Therefore,
we constructed the world coordinate system of the scene by obtaining three basis vectors for the ground
with respect to the camera. The three basis vectors represent the X, Y, and Z axes of the ground.

To construct the view matrix of the virtual camera, we determined four reference points on the
ground using the relationships between two basis vectors. As the ground corresponds to the XZ plane
(values in Y axis are zeros), we considered only two basis vectors in the X and Z axes. More specifically,
based on the center point of the 3D data of the ground, we added the basis vector of the X axis and that
of the Z axis with a scale factor (±0.5 m). Through this procedure, four reference points—((0.5, 0, 0.5),
(−0.5, 0, 0.5), (−0.5, 0, −0.5), and (0.5, 0, −0.5)), making up a square on the ground—were determined.
Subsequently, we constructed a camera matrix with the intrinsic parameters (focal length and principal
point). We established the correspondence of the 3D coordinate values of the four reference points
in the world coordinate system with the 2D image points obtained through the projection. Using
this correspondence, the N-points algorithm computed the translation and rotation parameters of the
camera so that the camera view matrix could be constructed [20].

The virtual shadow cast by the CG object was generated using the depth texture with a frame
buffer object in OpenGL [21]. In general, because the light generated by the sun was implemented as
directional light [11], an illumination projection matrix was constructed with an orthogonal matrix.
Using the view matrix of the directional light with the direction vector, we computed the relative
depth information for the ground and the CG object. The occlusion regions of the two scene elements
were considered in the rendering process. The unshadowed ground plane that was used in the
background learning was examined to determine the illumination source intensity. If the ground plane
was shadowed by the human object, there was a reduction in brightness. The change in brightness
caused by a shadow in the same region was used to set the illumination source intensity in the scene,
and Phong shading was employed.

To augment a scene with CG objects, any occlusion caused by another scene element such as a
human object needs to be considered. Occlusion by the human object was generated by comparing the
depth value of the human with the depth value of the rendered fragment.
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3. Experimental Results

The experimental equipment comprised a PC with a 3.4 GHz CPU. The first three image sequences
(sequences 1, 2, and 3) used herein were taken between 3:00 PM and 5:00 PM with the ZED stereo
camera of Stereo-Labs. The second two image sequences (sequences 4 and 5) were taken between
11:00 AM and 1:30 PM. The GPS location of the experimental location was 126◦57’ E and 37◦30’ N.
In general, the accuracy of the 3D depth information of the scene was affected by the stereo matching
algorithm. In these experiments, we employed an open SDK library provided by the ZED stereo
camera, which has real-time performance.

In our system, the stereo camera was employed to obtain depth information of the human object,
ground, and the background. The Kinect sensor, which is widely used to capture 3D information,
cannot be used in outdoor environments due to its IR sensing usage. The distance between the person
and the stereo camera needs to be considerable enough to cover the human region from the head to the
toe and the shadow generated by the human object. The human object also needs to be in the stereo
camera’s depth range (for example, 20 m in the case of the ZED camera).

The disparity map of the human object and the background is generally affected by the illumination
change and noise. To cope with the unwanted effects, the computed human height values were averaged
for 100 frames. That means that the human object had to stand still for approximately three seconds.
The mean error of the computed human height in the three image sequences was 1.35 cm. Here,
the error was the average of the absolute difference between the ground truth and measured data.
The experimental results confirmed that the precision in height estimation was affected by the
segmentation results for the human region. Thus, more accurate segmentation of the human region
will be investigated in future.

The altitude and azimuth angles computed by the proposed method were compared with the
ground truth values. In our experiments, we computed the ground truth values (altitude and azimuth) of
the sun using the method in Reference [19]. The source code can be downloaded from the Solar Position
Algorithm (SPA) homepage (https://rredc.nrel.gov/solar/codesandalgorithms/spa/). An Android
compass application was employed to evaluate the performance of accuracy. More specifically,
the azimuth angle of the camera was measured using the Android compass application published
by Melon Soft Co., Ltd. Using the orientation information of the camera, we transferred the altitude
and the azimuth values computed by the proposed method to those in an absolute world coordinate
system. Thus, we could compare the altitude and the azimuth values by the proposed method with
the ground truth values listed in Table 1. In addition, Table 1 compares the ground truth for human
height with the results obtained by the proposed method.

Table 1. Results of human height as well as azimuth and altitude angles of the sun for image sequences 1, 2, and 3.

Sequence 1 Sequence 2 Sequence 3 Total Error

Ground Truth

Human Height (cm) 173.0 165.0 173.0 -

Altitude of the Sun (◦) 47.7 40.8 40.5 -

Azimuth Angle of the Sun (◦) 261.1 267.2 267.4 -

Azimuth Angle of the Camera (◦) 169.0 175.0 175.0 -

Computed Results

Human Height (cm) 170.1 164.2 172.7 1.3

Altitude of the Sun (◦) 47.1 40.0 39.6 0.8

Azimuth Angle of the Sun (◦) 261.1 267.5 267.4 0.1

Azimuth Angle of the Camera (◦) 169.4 173.9 176.2 1.0

Figure 7 shows the AR images rendered using the environmental illumination information that
includes the relative intensity and the altitude and azimuth angles of the sun in the scene. The left
column in Figure 7 shows the rendered images when the distance between the camera and the human
object was larger than that between the camera and the CG object. In these images, the CG object

https://rredc.nrel.gov/solar/codesandalgorithms/spa/
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occludes the human objects. The right column in Figure 7 shows the rendered images when the human
object occluded the CG object in the scene. The experimental results show that the disparity map of
the human object can be used as a matte for compositing in real time.
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The second two image sequences (sequences 4 and 5) were captured in the same place but at
different times (between 11:00 AM and 1:30 PM). The shadows made by the human object were much
changed from morning to afternoon. Among the three feature points used to estimate the position
information of the sun, only the parietal point of the shadow was dependent on the size and shape of
the shadow. To precisely estimate the position information of the sun, the condition that the parietal
point of the shadow is the farthest point from his or her feet on the ground must be satisfied. In general,
a person’s shadow becomes relatively short near noon. That means that specifying the parietal point
of the shadow on the ground is difficult. However, these two image sequences show that shadows
with enough size and shape were generated on the ground. Figure 8 shows the background and input
images and the experimental results from sequence 4 and 5. Table 2 shows the results of human height
as well as the azimuth and altitude angles of the sun for image sequences 4 and 5. For a special case
such as summer solstice, a user input to determine the parietal point of the shadow would be needed.
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Table 2. Results of human height as well as azimuth and altitude angles of the sun for image sequences
4 and 5.

Sequence 4 Sequence 5

Ground Truth Computed Results Ground Truth Computed Results

Human Height (cm) 173.0 173.4 173.0 173.1

Altitude of the Sun (◦) 49.1 47.6 47.9 48.1

Azimuth Angle of the Sun (◦) 161.2 161.4 204.3 205.5

Azimuth Angle of the Camera (◦) 90.0 89.8 90.0 89.0

The method proposed in this paper has some limitations. In this paper, we assumed that the
target scene had a flat surface on which a sufficient shadow could be generated by the human object.
Therefore, when the shape of the ground plane is uneven or its reflectance property is too high,
the proposed method would find it difficult to obtain accurate results. Because the background learning
and foreground segmentation were performed by the GMM method, the performance was affected in
two cases: when the illumination distribution rapidly changed, and when the background and the
target object had the same color distribution. Finally, the human object segmentation performances
were dependent on the stereo matching algorithms.

4. Conclusions

The method proposed in this paper estimates the illumination information in an outdoor
environment using a human object in the scene. Using the GMM method to process the input images
and disparity map, we extracted the human object and his or her shadow. The geometric relationships
of three scene elements, the ground, human object, and shadow region cast by the human, were used
to estimate the altitude and azimuth angles of the sun in the scene. The illumination information was
then used to generate a virtual shadow for a CG object in real time. In the near future, more robust
segmentation and stereo matching algorithms will be considered to more precisely estimate the human
region, human height, and shadow regions.
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