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ABSTRACT

Understanding the microbial community of cheese 
is important in the dairy industry, as the microbiota 
contributes to the safety, quality, and physicochemi-
cal and sensory properties of cheese. In this study, the 
microbial compositions of different cheeses (Cheddar, 
provolone, and Swiss cheese) and cheese locations (core, 
rind, and mixed) collected from the Arbuthnot Dairy 
Center at Oregon State University were analyzed using 
16S rRNA gene amplicon sequencing with the Illumina 
MiSeq platform (Illumina, San Diego, CA). A total of 
225 operational taxonomic units were identified from 
the 4,675,187 sequencing reads generated. Streptococ-
cus was observed to be the most abundant organism in 
provolone (72 to 85%) and Swiss (60 to 67%), whereas 
Lactococcus spp. were found to dominate Cheddar 
cheese (27 to 76%). Species richness varied signifi-
cantly by cheese. According to alpha diversity analysis, 
porter-soaked Cheddar cheese exhibited the highest 
microbial richness, whereas smoked provolone cheese 
showed the lowest. Rind regions of each cheese changed 
color through smoking and soaking for the beverage 
process. In addition, the microbial diversity of the rind 
region was higher than the core region because smok-
ing and soaking processes directly contacted the rind 
region of each cheese. The microbial communities of the 
samples clustered by cheese, indicated that, within a 
given type of cheese, microbial compositions were very 
similar. Moreover, 34 operational taxonomic units were 
identified as biomarkers for different types of cheese 
through the linear discriminant analysis effect size 
method. Last, both carbohydrate and AA metabolites 
comprised more than 40% of the total functional an-
notated genes from 9 varieties of cheese samples. This 
study provides insight into the microbial composition 

of different types of cheese, as well as various locations 
within a cheese, which is applicable to its safety and 
sensory quality.
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INTRODUCTION

Cheese is a nutrient-rich food that contains vitamins, 
minerals, proteins, bioactive peptides, AA, fats, and 
fatty acids (Walther et al., 2008). The microorganisms 
present in cheese not only influence the flavor profile 
through the production of volatile compounds (Per-
cival and Percival 2017), but also potentially contrib-
ute to human health associated with anti-cancer and 
cholesterol-lowering properties (Walther et al., 2008; 
Broadbent et al., 2011; Potočki, 2016).

The microbiomes and metabolomes of cheeses vary 
and are based on the cheese type as well as environmen-
tal and processing conditions such as starter cultures, 
pasteurization methods, cooking temperatures, and 
aging conditions (Didienne et al., 2012; Montel et al., 
2014; Duru et al., 2018). Bacteria primarily originate 
from 2 sources: the inoculated starter cultures and 
the indigenous milk microbiota (Montel et al., 2014; 
De Filippis et al., 2016). Microorganisms originating 
from processing environments are also transferred from 
production surfaces to cheese surfaces where they af-
fect the microbial composition of rinds during aging 
(Bokulich and Mills, 2013). Bacteria are essential for 
the formation of cheese and are largely responsible for 
flavor development and nutritional benefits (Walther 
et al., 2008; Didienne et al., 2012; Montel et al., 2014). 
In addition, microorganisms originated from process-
ing environments dominate both surfaces of cheese and 
facilities and affect the microbial composition of cheese 
rinds during aging (Bokulich and Mills, 2013).

The rind and core regions of a given cheese exhibit 
different microbial compositions. This is due in part to 
the differences in oxygen availability throughout the 
cheese. The presence of oxygen at the cheese surface 
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allows for the growth of aerobic organisms that are un-
able to grow deeper where less oxygen can penetrate. A 
natural rind is developed through interactions between 
the surface and the environment during the aging pro-
cess. Another type of rind is the washed rind, which 
usually has a sticky texture and strong flavor. When a 
cheesemaker soaks (or washes) a cheese with a brine or 
alcohol, the bacteria from the environment or soaking 
material grow on the surface of the cheese and develop 
the rind (Donnelly, 2014). Bacteria commonly found 
on cheese rinds include gram-negative bacteria, such 
as Advenella, Psychrobacter, and Psychroflexus, which 
contain various lipases, proteases, and other enzymes 
that enhance aging (Schmitz-Esser et al., 2018). Mois-
ture content of cheese also affects the microbial diver-
sity (Pintado and Malcata, 2000). Vacuum packaging 
affects the microbial and physical properties of the 
cheese rind, as moisture content and texture do not 
change significantly while under a vacuum. Conversely, 
unpackaged cheeses exhibit a substantial loss of water 
with a concomitant increase in rigidity.

The development of next-generation sequencing 
technologies has helped researchers obtain genomic 
information quickly at a low cost and has furthered 
our understanding of the microbial properties of target 
food matrices. High-throughput sequencing has made it 
possible to explore food microbiomes and to investigate 
the genomes of individual organisms. Next-generation 
sequencing can reveal how microbes respond to envi-
ronmental conditions, allowing cheesemakers to better 
control microbial growth in their products based on 
predictions of how conditions will affect the growth of 
both beneficial and undesirable organisms (Solieri et 
al., 2013).

It is important to understand what conditions can 
cause changes in the cheese microbiome since some 
organisms impart beneficial sensory characteristics, 
whereas others may reduce quality through the produc-
tion of spoilage compounds. Knowledge of food micro-
biomes is important with foods that are fermented or 
aged, as these are primarily microbe-driven processes 
and the microbes present will drastically affect the out-
come (Mayo et al., 2014). In this study, we examined 3 
different cheeses (Cheddar, provolone, and Swiss) pro-
duced plain or treated by soaking in cider, pinot noir 
(wine), or porter (beer), or by smoking. All the cheese 
samples were produced at the Arbuthnot Dairy Center 
at Oregon State University (Corvallis, OR). Microbial 
communities were analyzed using the 16S rRNA gene 
amplicon sequencing via the Illumina MiSeq platform 
(Illumina, San Diego, CA) to determine the differences 
in microbial communities between the core and rind 
regions of each cheese. The different types of cheese 
and their various treatments were compared with one 

another to better understand which microbial popula-
tions affect the properties of cheese.

MATERIALS AND METHODS

Cheese Sampling

A variety of cheeses were obtained from the Arbuth-
not Dairy Center at Oregon State University (Corval-
lis; Supplemental Figure S1; https: / / doi .org/ 10 .3168/ 
jds .2019 -17455). All cheese samples were produced 
using raw milk pasteurized at 65°C for 30 min, and 
subsequently cooled to 32°C. Different starter cultures 
were used depending on cheese type: Lactococcus lactis 
ssp. lactis biovar diacetylactis, Lc. lactis ssp. lactis, Lc. 
lactis ssp. cremoris, and Streptococcus thermophilus 
for Cheddar cheese; S. thermophilus and Lactobacillus 
delbrueckii ssp. bulgaricus for provolone; and Lc. lactis 
ssp. lactis, Lc. lactis ssp. cremoris, S. thermophilus, Lb. 
delbrueckii ssp. lactis, Lb. helveticus, and Lb. delbrueckii 
ssp. lactis without the addition of propionic acid bac-
teria for Swiss type cheese. Additionally, the starter 
cultures were incubated at 32°C for 1 h and rennet was 
added to coagulate the curd. After curd formation, the 
curds were cooked (Cheddar and Swiss: 32 to 40°C for 
45 min; provolone: 50°C for 30 min). Using 4.0% (wt/
wt) of curd weight, dry salt was added to Cheddar and 
provolone cheeses and transferred to a mold to produce 
hard cheeses. Swiss cheese was formed hard cheese 
through a mold and transferred to a 25% saturated salt 
brine solution for 20 h. Afterward, cheeses were sealed 
in vacuum packaging and stored at 4°C for 3 to 6 mo.

To provide flavor and modify the quality, cheese was 
soaked in beverages including pinot noir [wine, 14% 
alcohol by volume (ABV)], hard apple cider (cider, 7% 
ABV), and porter (dark beer, 5% ABV). Fresh cheese 
blocks were soaked in their respective beverages at 
room temperature for 48 h. After 48 h, the cheeses were 
removed from the beverages and allowed to air dry at 
room temperature for 3 h until aerobic microorganisms 
can be grown. Traditional smoking methods were also 
applied to change the properties of Cheddar, provo-
lone, and Swiss type cheese. Cheeses were smoked at 
30°C for 6 h using applewood. Beverage-soaked cheese 
and smoked cheese samples were sealed with vacuum 
packaging and stored at 4°C for 3 to 6 mo. Finally, 
cheeses were divided into 3 primary groups: (1) Ched-
dar, (2) provolone, and (3) Swiss. The Cheddar cheeses 
were subdivided into plain, smoked, and pinot noir-, 
cider-, and porter-soaked, whereas provolone and Swiss 
only included plain and smoked type cheese. Samples 
were obtained from the core and rind regions of each 
cheese. Equal parts of rind and core regions were mixed 
to generate mixed regions of cheeses. Beverage-soaked 
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cheese samples (pinot noir-, cider-, and porter-soaked 
Cheddar), and smoked cheese (Cheddar, provolone, and 
Swiss) were collected, taking the core, mixed, and rind 
regions separately. We collected only mixed region from 
plain cheese because no differences were observed be-
tween the core and rind regions of plain cheese, whereas 
smoking and soaking methods have a chance to alter 
the properties of the surface of the cheese. To avoid 
any technical errors, samples were obtained in tripli-
cate from all of the cheese types, making a total of 63 
samples collected. The DNA was extracted from these 
samples and a microbiome sequencing library was con-
structed to compare the differences between the core, 
rind, and mixed regions.

DNA Extraction

For DNA extraction, 1 g of core, rind, and mixed re-
gions of each cheese were separated using a sterile razor 
blade. Cheese samples were homogenized with 9 mL of 
1% tri-citric acid buffer (C6H7Na3O8) while incubating 
in a 55 to 60°C water bath with vigorous vortexing. 
Extraction of DNA was performed on the homogenized 
cheese solutions using the DNeasy PowerFood Micro-
bial Kit (Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions. The concentration of ex-
tracted DNA was measured via a Qubit 4 Fluorometer 
(Thermo Fisher Scientific, Waltham, MA), and subse-
quently diluted to achieve a final concentration of 10 
ng/µL.

16S rRNA Gene-Based Library Preparation

The sequencing library was prepared targeting the 
V4 region of the 16S rRNA gene as previously reported 
by Kozich et al. (2013). Briefly, DNA amplicons were 
generated using a high-fidelity polymerase (AccuPrime, 
Invitrogen, Carlsbad, CA), and PCR products were 
confirmed using 1% agarose gel electrophoresis. Ampli-
fied DNA samples were normalized using a SequalPrep 
Normalization kit (Life Technologies, Carlsbad, CA) 
according to the manufacturer’s recommendation. Fol-
lowing normalization, 5 µL of each normalized aliquot 
from each sample were combined to construct a pooled 
library and quantified using the KAPA Library Quan-
tification kit (Kapa Biosystems, Woburn, MA). Finally, 
the library was diluted to the appropriate concentra-
tion and sequenced by the Illumina MiSeq.

Microbiome Sequencing Via Illumina MiSeq

A 20 nM pool of the 16S rRNA library and 20 nM 
PhiX control V3 (Illumina) were mixed with 0.2 N of 
fresh NaOH and HT1 buffer (Illumina) to produce the 

final concentration of 6 pM. The resulting library was 
mixed with the PhiX control v3 (5%, vol/vol, Illumina) 
and 600 µL loaded on a MiSeq v2 (500 cycle, 2 × 250 
bp) reagent cartridge for sequencing. The 16S rRNA 
amplicon sequences are available at the Sequence Read 
Archive of the National Center for Biotechnology In-
formation (https: / / dataview .ncbi .nlm .nih .gov/ object/ 
PRJNA591223 ?reviewer = ktedeigveld5k4n89ljtkr3f0l) 
under SUB6594737.

Data Analyses

Both demultiplexed R1 and R2 raw sequences were 
acquired directly from the Illumina BaseSpace website, 
and sequences were analyzed using the Quantitative 
Insights Into Microbial Ecology 2 (QIIME 2, version 
2018.11) open source pipeline (Bolyen et al., 2019). 
Demultiplexed sequences were joined and denoised 
for quality control using the DADA2 scripts available 
in QIIME 2 (v. 2018.11) to cluster operational taxo-
nomic units (OTU) at 100% sequence similarity with 
default parameters and generate a feature table for 
further analysis. The processed sequencing data were 
assigned a taxonomy and aligned to the Greengenes 
reference database (v. 13.8; http: / / greengenes .lbl .gov) 
at 99% sequence similarity (McDonald et al., 2012). 
For further statistical analysis and visual exploration, 
an OTU table with taxa in plain format and metadata 
file were uploaded to the MicrobiomeAnalyst tool avail-
able at http: / / www .microbiomeanalyst .ca (Dhariwal et 
al., 2017). Linear discriminant analysis (LDA) of effect 
size (LEfSe) was applied to determine the most dis-
criminant taxa among different cheese samples based 
on the relative abundance. The LDA score, which uses 
statistical significance and biological relevance to find 
biomarker genes, was set to a default value of 2.0 (Se-
gata et al., 2011).

Predicted Functional Properties  
of Cheese Microbiome

The functional potential of microbiome data from dif-
ferent types of cheese samples was predicted based on 
the 16S rRNA data using Piphillin (with 97% identity 
cut-off; Iwai et al., 2016) and phylogenetic investigation 
of communities by reconstruction of unobserved states 
2 (PICRUSt2) based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database (Langille et al., 
2013). The predicted functional properties (PFP) tools 
based on 16S rRNA marker genes were used to predict 
the full genome sequence through comparing the fully 
identified and sequenced bacteria with unidentified 
bacteria using the phylogenetic tree (PICRUSt2) or di-
rectly compared with each other (Piphillin). Sequences 
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then were compared with the assigned predicted full ge-
nome sequencing data within the KEGG or BioCyc ref-
erence database to assign functional properties. While 
PICRUSt2 requires the Greengenes database and pre-
processed data from QIIME 2 pipeline, the Piphillin 
tool does not require any pre-processed data and sup-
port the KEGG and BioCyc reference databases (Iwai 
et al., 2016; Douglas et al., 2018). Statistical analysis 
of metagenomic profiles (STAMP) was used to identify 
microbial relevant functions between the 9 different 
types of cheese, and it also can be used to generate 
principal component analysis (PCA) analysis based 
on the KEGG orthology from Piphillin and PICRUSt2 
analyses (Parks et al., 2014).

RESULTS

Taxonomic Analysis

A total of 4,675,187 sequencing reads were generated 
from the 63 cheese samples collected in this study, which 
included 9 different types of cheese (plain, smoked, ci-

der-, porter-, and pinot noir-soaked Cheddar, plain and 
smoked provolone, and plain and smoked Swiss). The 
mean value for the frequency of sequences per sample 
was 71,081 reads/sample after analysis with QIIME 
2. A total of 225 OTU were identified and included 
86 OTU at the genus level. The processed sequencing 
data were compared with the Greengenes reference 
database (13.8; http: / / greengenes .lbl .gov; McDonald 
et al., 2012). In the taxonomic analysis, all data were 
analyzed at genus level. Streptococcus spp., Lactococcus 
spp., unidentified Lactobacillaceae, and Lactobacillus 
spp. were the most abundant taxa identified among all 
the cheese samples (Figure 1) and the rest of the OTU 
were categorized as others (Figure 1 and Supplemental 
Table S1; https: / / doi .org/ 10 .3168/ jds .2019 -17455).

The composition of the cheese microbiome was 
largely dependent on the starter culture used. Lactococ-
cus lactis ssp. lactis biovar diaceylactis, Lc. lactis ssp. 
lactis, Lc. lactis ssp. cremoris, and S. thermophilus spp. 
were used as starter cultures in Cheddar cheese produc-
tion, while provolone starter cultures were composed of 
S. thermophilus and Lb. delbrueckii ssp. bulgaricus, and 
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Swiss cheese used Lc. lactis ssp. lactis, Lc. lactis ssp. 
cremoris, S. thermophilus, Lb. delbrueckii ssp. lactis, Lb. 
helveticus, and Lb. delbrueckii ssp. lactis at once with 
no additional propionic acid bacteria during manufac-
turing.

Streptococcus spp. were present in the highest per-
centages in most of cheese samples, ranging from 15 
to 85% of the relative abundance (Figure 1). The only 
sample with a low relative abundance was the pinot 
noir-soaked Cheddar, where it ranged from 2 to 13% for 
both the core and mixed regions of the cheese. The av-
erage value for the rind region of the pinot noir-soaked 
Cheddar cheese was 2%. The second lowest concentra-
tion was in the smoked Cheddar samples, where Strep-
tococcus spp. comprised 19 to 24% of the organisms 
present. The provolone samples (plain and smoked) 
exhibited the highest abundance for Streptococcus spp., 
with values ranging from 78 to 83%. All other samples 
showed between 23 to 67% of relative abundance, with 
most falling in the upper end of the range. In addition, 
the relative abundance of Streptococcus spp. in the core 
or mixed regions were higher than in the rind region.

The second most prevalent genus was Lactococcus 
spp., which was present in all samples with values 
ranging from 1 to 73% (Figure 1). Provolone included 
the fewest Lactococcus spp., with less than 1% in all 
samples. A likely explanation for this is the absence of 
Lactococcus spp. in the provolone starter culture, which 
contained S. thermophilus and Lb. delbrueckii ssp. bul-
garicus. While the highest values reported for Lactococ-
cus spp. were from the smoked Cheddar (71 to 76%), 
all other Cheddar varieties contained only 27 to 67%, 
and all Swiss cheese samples ranged from 9 to 13%. 
Additionally, the abundance of Lactococcus spp. in the 
core and mixed regions was higher than the rind regions 
across all cheese samples. The prevalence of Lactobacil-
laceae family was dominant on the rind region of the 
porter- and pinot noir-soaked Cheddar cheeses (46 and 
63%, respectively) than core regions. This family was 
also identified on the rind of the smoked Swiss (24%) 
as well as less abundant in the core region (Figure 1).

Lactobacillus spp. were less abundant than Strepto-
coccus spp. and Lactococcus spp. across all samples, 
with values ranging from 0 to 22%. Lactobacillus spp. 
were present in low abundance in plain Cheddar cheese 
samples (less than 0.1%), and more prevalent in pinot 
noir-soaked (0 to 5%), porter-soaked (0 to 2%), and 
smoked (2 to 3%) Cheddar cheeses. In addition, the 
relative abundance of Lactobacillus spp. in the rind 
region of pinot noir-soaked (5%) and porter-soaked 
(2%) Cheddar cheese was higher than in the core re-
gion (0%). Compared with the Cheddar cheese, Swiss 
(2 to 24%), and provolone (17 to 22%) cheeses pos-

sessed more Lactobacillus spp. The relative abundance 
of Lactobacillus spp. in smoked provolone was higher in 
the rind region (22%) than the core region (17%) of the 
same cheese, whereas in smoked Swiss it was higher in 
the core region (24%) than the rind region (3%).

Alpha Diversity

Alpha diversity of the microbial communities was 
assessed using the Chao1 and Shannon indexes (Fig-
ure 2). The Chao1 (Figure 2A and 2B) indicates the 
microbial richness among the different types of cheese. 
No significant differences (P < 0.05) were observed 
between plain and smoked provolone or between plain 
and smoked Swiss cheese; however, the different types 
of cheese (Cheddar, provolone, and Swiss) had signifi-
cant differences (P < 0.05). The richness (Chao1 index) 
of Swiss and smoked Swiss cheese (5 to 10) was higher 
than that of provolone and smoked provolone (4 to 7). 
The richness of plain, cider-soaked, and smoked Ched-
dar cheeses were low (5 to 10), whereas pinot noir- and 
porter-soaked Cheddar cheeses were high (8 to 10). 
Finally, the richness of all cheese samples showed high 
values in the rind region when compared with the core 
region, except for porter-soaked Cheddar cheese.

The Shannon index (Figure 2C and 2D) accounts 
for both richness and evenness of OTU. High values 
for diversity indicate more diverse communities. The 
Shannon index indicates that the rind is more diverse 
than the core across all cheeses. The Shannon index of 
provolone and smoked provolone (0.40 to 0.56) were 
significantly lower (P < 0.05) than Swiss and smoked 
Swiss cheese (0.74 to 1.06). Smoked versus nonsmoked 
samples were not significantly different for any of the 
cheeses. The Shannon index of Cheddar cheese differed 
significantly (P < 0.05) depending on the treatment. 
The Shannon index of plain Cheddar (0.69 to 0.71), 
cider-soaked Cheddar (0.69 to 0.92), and smoked Ched-
dar (0.67 to 0.82) cheese were significantly lower than 
pinot noir- (0.95 to 1.66) and porter-soaked (0.84 to 
1.76) Cheddar cheeses.

Beta Diversity

When beta diversity parameters were used to assess 
the microbiome structure of the cheese samples, sig-
nificant differences were found between the core and 
rind regions. Bray-Curtis models (Figure 3A) derived 
from the data input into MicrobiomeAnalyst (https: / 
/ www .microbiomeanalyst .ca) showed obvious grouping 
between samples. According to the dendrogram (Figure 
3B), clusters were identified by the types of cheese (pro-
volone, Swiss, and Cheddar cheese).
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Identification of Biomarkers

Biomarker bacteria from the different types of cheese 
were assessed using LEfSe. When LEfSe was applied to 
the microbiota data of 9 different types of cheese, 34 
different taxonomic clades with an LDA score higher 
than 2.0 were found (Figure 4) and a total of 10 bio-
markers were identified at the genus level. For instance, 
19 OTU in plain Swiss cheese, 1 OTU in smoked Swiss 
cheese, 6 OTU in smoked provolone, 1 OTU in smoked 
Cheddar cheese, 1 OTU in provolone, 3 OTU in porter-
soaked Cheddar, 1 OTU in pinot noir-soaked Cheddar, 
and 2 OTU in plain Cheddar cheese were identified as 
the representative bacteria among the cheese samples 
(Table 1).

Predictive Metagenomics Profiling

The microbiome functioning potential of cheeses was 
predicted based on predictive metagenomics profiling 
to compare the different bacterial functions among the 
9 cheese samples. Several predictive pathways were sig-

nificantly enriched in the microbiome data, giving 11 
different functions from the Piphillin and PICRUSt2 
pipelines. The functions were carbohydrate metabolism, 
AA metabolism, nucleotide metabolism, metabolism of 
cofactors and vitamins, energy metabolism, lipid metab-
olism, metabolism of other AA, glycan biosynthesis and 
metabolism, metabolism of terpenoids and polyketides, 
xenobiotics biodegradation metabolism, and biosynthe-
sis of other secondary metabolites (Figure 5, Tables 
2 and 3). Additionally, functional property differences 
between 9 varieties of cheese samples were analyzed and 
compared through a PCA plot (Figure 6). As can be 
seen in the PCA plot, functional properties were influ-
enced by cheese type. For example, provolone clustered 
with smoked provolone whereas Swiss clustered with 
smoked Swiss, demonstrating similar functional proper-
ties. Additionally, porter-soaked and pinot noir-soaked 
cheeses clustered together, whereas cider-soaked and 
smoked Cheddar cheese each clustered separately. The 
primary carbohydrate metabolized by these organisms 
is lactose, which is fermented to produce lactic acid 
(Figure 7). Among carbohydrate metabolism, galactose 
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Figure 2. Alpha diversity of different types of cheese. The Chao1 index (Figures 2A and 2B) and Shannon index (Figures 2C and 2D) of 9 
cheese types (Pl = plain cheese; Ci = cider-soaked cheese; Pi = pinot noir-soaked cheese; Po = porter-soaked cheese; and Sm = smoked cheese). 
Samples are separated by the type of cheese (Figures 2A and 2C) or type of cheese with mix (M), core (C), and rind (R) regions (Figures 2B 
and 2D). Boxes in the plots represent the interquartile range (IQR) between first and third quartiles, respectively. The horizontal line and dot 
in the box indicate the median and mean value, respectively. The whiskers indicate the lowest and highest value within 1.5 times the IQR from 
the first and third quartiles, respectively. a–d: Letters within each figure indicate difference at the 95% significance level (P < 0.05).
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metabolism (10.06%) and glycolysis/gluconeogenesis 
(21.82%) were related to lactic-acid-producing mecha-
nisms (Table 4).

DISCUSSION

The cheese microbiome plays a key role in determin-
ing the organoleptic and physicochemical properties of 
cheese, affecting both its quality and safety (Yeluri Jon-
nala et al., 2018). The development of next-generation 
sequencing technologies has allowed the characterization 
of microbial communities in cheeses collected around 
the world to become an active area of research (Dugat-
Bony et al., 2016). Wolfe et al. (2014) sequenced 137 
different cheese rind communities from 10 countries to 
identify the dominant bacterial community members. 
De Filippis et al. (2014) delineated the microbial com-
munity properties of 3 popular Italian cheeses, mozza-

rella, Grana Padano, and Parmigiano Reggiano. In the 
present study, we analyzed the microbial populations 
of 9 different cheeses within 3 varieties, which were 
acquired from the Arbuthnot Dairy Center at Oregon 
State University (Corvallis). The high-throughput se-
quencing approach was used to generate a list of 225 
OTU, which were processed using the Greengenes data-
base. Of these 225 OTU, only 9 were found to represent 
1% or more of the overall microbial community. The 
dominant OTU present in cheeses were identified as 
Streptococcus spp., Lactococcus spp., an unspecified 
group of the family Lactobacillaceae, and Lactobacillus 
spp. The 2 most abundant OTU identified were Strep-
tococcus spp. and Lactococcus spp., both of which are 
commonly used as cheese starter cultures.

Cheeses made with combined single strains of Lc. lac-
tis and Lc. cremoris as starters develop desirable flavors 
of fermented dairy products. In this study, Lactococcus 
was used as a starter lactic acid bacteria for all the 
cheese samples (Schleifer et al., 1985). The species S. 
thermophilus is widely used for the preparation of sev-
eral dairy products, such as fermented milks, yogurts, 
and cheeses (Mora et al., 2002; Dugat-Bony et al., 
2016). Lactic acid bacteria (LAB) are a heterogeneous 
group of microorganisms that convert carbohydrates 
into lactic acid. They contain both pathogenic and 
beneficial organisms, including S. thermophilus and Lc. 
lactis, which are used in milk fermentation (Bolotin et 
al., 2001). There are 2 subspecies of Lc. lactis: Lc. lactis 
ssp. lactis and Lc. lactis ssp. cremoris, which were origi-
nally classified as S. lactis and S. cremoris (Schleifer et 
al., 1985).

Of the OTU present at over 1% of the total microbial 
composition, some were specific to certain cheeses in a 
genus level. For example, Lactobacillus spp. were found 
in all samples of Swiss cheese. According to Takano 
(2002), Lb. helveticus, which is used as starter bacteria 
for producing Swiss cheese, is responsible for the pro-
teolytic generation of antihypertensive peptides during 
the fermentation of milk. Lactobacillus spp. were found 
throughout all Swiss and provolone cheese samples, 
ranging from a low of 1 to 3% on the rind region of 
smoked Swiss cheese to a high of 24% in the core region 
of the smoked Swiss cheese.

To make the Cheddar cheeses for this study, Lacto-
coccus spp. and Streptococcus spp. were used as starter 
cultures. Lactobacillaceae were present in high abun-
dance (46 and 65%) on the rind regions of the por-
ter- and pinot noir-soaked Cheddar cheeses; however, 
they were found at low abundance in plain (0.3%) and 
cider-soaked (5%) Cheddar cheeses. Lactobacillaceae 
are common nonstarter lactic acid bacteria (NSLAB). 
The origin of NSLAB is debated, but every cheese 
sample has NSLAB. Although raw milk is a significant 
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Figure 3. (A) Bray-Curtis distance principal coordinate analy-
sis (PCoA) plot shows groupings of similar cheese varieties (Ch = 
Cheddar; Pl = plain; Ci = cider-soaked; Pi = pinot noir-soaked; Po = 
porter-soaked; Sm = smoked; Pr = provolone; and Sw = Swiss). All 
replicates fell within a range of one another, with the Cheddar cheese 
varieties having the largest amount of variance and (B) dendrogram of 
represented taxonomic relationships.
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source of NSLAB, other sources include environmen-
tal contamination or contamination during the cheese 
making process or storage (Gobbetti et al., 2015). Lac-
tobacillaceae grow well in carbohydrate-containing sub-
strates, such as dairy products, grain products, beer, 
and wine (Felis and Pot, 2014). Because the cheeses 

produced for this study were made using pasteurized 
milk, the native microbiota of raw milk could not be a 
major source of NSLAB. Though some organisms may 
survive during pasteurization, the production environ-
ment is likely the primary source of Lactobacillaceae in 
the untreated Cheddar cheese. It may be present only 

Choi et al.: MICROBIAL COMMUNITIES OF A VARIETY OF CHEESES

Figure 4. Taxonomic differences of cheese microbiota between 9 different types of cheese. (A) The taxa exhibit linear discriminant analysis 
(LDA) significant differences (P < 0.01) among cheese samples (Ch = Cheddar; Pl = plain; Ci = cider-soaked; Pi = pinot noir-soaked; Po = 
porter-soaked; Sm = smoked; Pr = provolone; and Sw = Swiss), up to genus level, and (B) taxonomic cladogram obtained from linear discrimi-
nant analysis effect size analysis of 16S rRNA gene sequencing.
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in low levels in the cheeses as there are low levels in the 
production environment or competition from starter 
cultures. Higher levels of Lactobacillaceae in the porter- 
and pinot noir-soaked Cheddar cheeses were expected, 
as it has been noted that these organisms can grow in 
beer and wine. The soaking treatments likely inoculate 
the cheese surface with these organisms. Following this 
logic, one would expect to see higher levels of Lacto-
bacillaceae in the rind of the cider-soaked samples as 
well; however, this was not the case. This may be due 
to the addition of a large quantity of salt to the cider to 
combat pH problems.

Differences were found in the microbial communities 
present in the rind versus the core regions, with the 
rinds showing a higher level of diversity than the core 
regions. The rind microbiome further varied based on 
the type of rind, degree of aging, and environmental 
conditions (Yeluri Jonnala et al., 2018). While the 
cheese samples from Wolfe et al. (2014) made a distinc-
tive rind microbiota through exposing cheese surface in 
the air during aging, beverage-soaked cheese samples 
in this study did not exhibit noticeable rind formation. 

Beverage-soaked cheese samples have exposed to the air 
for 3 h and ripened with a vacuum-sealed packaging for 
3 to 6 mo at 4°C. This might inhibit the development of 
proliferative rind microbiota compared with the previ-
ous Wolfe et al. (2014) study. However, we found that 
beverage-soaked treatment on cheese surface can lead 
more profound microbial variations between the core 
and rind regions, which matched with the result from 
the previous study (Wolfe et al., 2014). For example, 
significant differences in microbial richness between the 
core and rind were seen in smoked cheeses. According 
to De Filippis et al. (2016) and Wolfe et al. (2014), the 
lower water activity and higher oxygen concentration 
can alter the microbial communities between the core 
and rind regions.

Soaking into the different beverages (cider, porter, 
and pinot noir) can change the microbial composition 
and diversity of cheese. The relative abundance of un-
identified Lactobacillaceae was increased after soaking 
in the beverage, and all results indicated the relative 
abundance of Lactobacillaceae from rind regions was 
higher than the mixed and core regions. In the pre-

Choi et al.: MICROBIAL COMMUNITIES OF A VARIETY OF CHEESES

Table 1. Relative abundance and potential pathogen of biomarkers identified through linear discriminant analysis effect size

Cheese  Treatment  Strain  Taxonomic level Relative abundance (%)  Potential pathogen

Cheddar  Plain  Rhodobacterales  Order 0.003 ± 0.002e −
   Rhodobacteraceae  Family 0.003 ± 0.002e −
 Pinot noir  Lactobacillaceae  Family 29.717 ± 16.825d −
 Porter  Firmicutes  Phylum 99.973 ± 0.019a +
   Bacilli  Class 99.973 ± 0.029a +
   Lactobacillales  Order 99.973 ± 0.029a −
 Smoked  Lactococcus  Genus 76.124 ± 3.209c −

Provolone  Plain  Lactobacillus  Genus 20.552 ± 2.797d −
 Smoked  Streptococcus  Genus 83.158 ± 3.431b −
   Caulobacterales  Order 0.007 ± 0.007e +
   Caulobacteraceae  Family 0.007 ± 0.007e +
   Pseudomonadales  Order 0.006 ± 0.014e +
   Moraxellaceae  Family 0.006 ± 0.014e +
   Acinetobacter  Genus 0.006 ± 0.014e +

Swiss  Plain  Bacteroidia  Class 2.078 ± 3.500e +
   Bacteroidales  Order 2.078 ± 3.500e +
   Clostridia  Class 0.833 ± 1.367e +
   Actinobacteria  Phylum 0.382 ± 0.072e −
   Actinobacteria  Class 0.382 ± 0.072e −
   Actinomycetales  Order 0.382 ± 0.072e −
   Propionibacteriaceae  Family 0.380 ± 0.076e +
   Bacteroidaceae  Family 0.330 ± 0.538e +
   Bacteroides  Genus 0.328 ± 0.540e +
   Ruminococcaceae  Family 0.251 ± 0.424e −
   Oscillospira  Genus 0.176 ± 0.293e −
   Cyanobacteria  Phylum 0.045 ± 0.025e −
   Chloroplast  Class 0.045 ± 0.025e −
   Streptophyta  Order 0.045 ± 0.025e −
   Rickettsiales  Order 0.006 ± 0.005e +
   Mitochondria  Family 0.006 ± 0.005e −
   Turicibacter  Genus 0.006 ± 0.006e −
   Turicibacterales  Order 0.006 ± 0.006e −
   Turicibacteraceae  Family 0.006 ± 0.006e −
 Smoked  Bacillales  Order 0.938 ± 0.461e +

a–eSuperscript letters within a row indicate differences at the 95% significance level (P < 0.05).



4035

Journal of Dairy Science Vol. 103 No. 5, 2020

vious study, Cousin et al. (2017) analyzed the micro-
bial property of hard apple cider that main bacterial 
community was identified to the Lactobacillaceae and 
Acetobacteraceae family. It is related to our result that 
the increase of relative abundance of Lactobacillaceae in 
the rind region of cider-soaked Cheddar cheese. Porter 
beer is a red-brown acidic beer that commonly uses 
yeast and LAB as starter cultures. Pediococcus damno-
sus and Lactobacillus belong to Lactobacillaceae family 
were identified to the most common bacterial group 
found in the maturation phase of porter beer (Bokulich 

and Bamforth, 2017). The high relative abundance of 
Lactobacillaceae in the rind region of porter-soaked 
Cheddar cheese corresponded to the previous study. 
Malolactic fermentation converts malic acids to lactic 
acids, led by Oenococcus oeni and other LAB. These are 
important bacterial strains to produce red wine flavor, 
and LAB occupied a high portion of microbial popula-
tions in red wine (Bokulich et al., 2016). The increase 
of Lactobacillaceae in pinot noir-soaked Cheddar cheese 
in this study originated from pinot noir wine. Based on 
the previous studies, the changes of microbial popula-

Choi et al.: MICROBIAL COMMUNITIES OF A VARIETY OF CHEESES

Figure 5. Box plot for predicted relative abundance of carbohydrate and AA metabolism annotated genes showing differences in cheese 
microbiota among 9 different types of cheese (Pl = plain; Ci = cider-soaked; Pi = pinot noir-soaked; Po = porter-soaked; and Sm = smoked) 
from (A) Piphillin (Iwai et al., 2016) and (B) phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2). 
Boxes in the plots represent the interquartile range (IQR) between first and third quartiles, respectively. The horizontal line in the box indicates 
the median. The whiskers indicate the lowest and highest value within 1.5 times the IQR from the first and third quartiles, respectively. a–e: 
Letters within each figure exhibit difference at the 95% significance level (P < 0.05).
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tions in the rind and core regions of cheese might be 
directly influenced by soaking materials.

According to the previous studies, the microbial 
populations of cheese were significantly determined by 
cheese making and ripening processes (Porcellato and 
Skeie, 2016; De Filippis et al., 2016). Porcellato and 
Skeie (2016) found that scalding temperature (37 and 
39°C) during ripening up to 3 mo is the most impor-
tant factor for the establishment of Dutch-type cheese 
microbiome. A high number of Lactobacillus spp. was 
detected during ripening at high scalding temperature 
(39°C). In this study, because all cheeses were aged 
under same conditions up to 3 to 6 mo, the aging condi-
tion was not considered the factor that might affect the 
microbiome of different types of cheese.

Based on the Shannon index, no significant differ-
ences (P > 0.05) were observed between smoked and 
nonsmoked Cheddar, provolone, and Swiss cheeses. 
This indicates that smoking did not alter the microbial 
diversity of cheese because they were not exposed to 
other environmental microbes. However, the Shannon 
index of pinot noir- (1.39), and porter-soaked (1.37) 
Cheddar cheeses were significantly increased (P < 0.05) 
compared with the plain Cheddar cheese (0.70), indi-
cating that soaking in pinot noir or porter increased the 
microbial diversity. Additionally, the Shannon index 
of the rind regions was higher than the core regions 
across all samples. The richness increased in the rind 
region may be partly due to the availability of oxygen, 
which allows the growth of aerobic bacteria that cannot 
survive in the core (Donnelly, 2014). Interaction with 
environmental sources is another factor that may in-
crease microbial diversity in the rind region. The rind is 
contact with the surface of cheese throughout produc-
tion and aging, and can readily be contaminated with 
microbes from the environment. On the other hand, 
the core region can be preserved and is composed of 
organisms present at the time of shaping.

Analysis of the beta diversity indicated that the 
various groups of cheese were strongly related to one 
another in microbial composition. The same group of 
cheese samples was clustered on Bray-Curtis principal 
coordinate analysis plots (Figure 3). Both pinot noir- 
and porter-soaked Cheddar cheeses showed a noticeable 
difference between the core and rind regions compared 
with other groups of cheese. The porter- and pinot noir-
soaking treatments changed the beta diversity in the 
Cheddar cheeses. Moreover, the dendrogram indicated 
that each group of cheese exhibited high similarity in 
microbial composition. Provolone and Swiss cheeses 
were especially similar, whereas the Cheddar cheese 
samples did not cluster with the other 2 varieties of 
cheese. According to previous studies (Wolfe et al., 
2014; Dugat-Bony et al., 2016), the microbial diversity 
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of cheese was significantly influenced by processing, 
type of cheese, and moisture content.

Further analysis of the cheese microbiome with LEfSe 
(Figure 4) found significant differences in bacterial 
abundance among different types of cheese. Biomarker 
or biological markers imply a measurable indicator of 

a certain biological state or condition. The LEfSe is a 
tool used to find biomarkers between 2 or more groups 
using relative abundance. To identify biomarkers in 
cheese samples, LEfSe was used to compare the rela-
tive abundance of bacteria from each cheese samples 
and find bacterial strains that were specific and in high 

Choi et al.: MICROBIAL COMMUNITIES OF A VARIETY OF CHEESES

Figure 6. Principal component (PC) analysis plot for functional annotated gene differences of cheese microbiota between 9 different types 
of cheese (Ch = Cheddar; Pl = plain cheese; Ci = cider-soaked cheese; Pi = pinot noir-soaked cheese; Po = porter-soaked cheese; Sm = smoked 
cheese; Pr = provolone; and Sw = Swiss) from (A) Piphillin (Iwai et al., 2016) and (B) phylogenetic investigation of communities by reconstruc-
tion of unobserved states 2 (PICRUSt2).
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abundance in each cheese. The biomarker is widely 
used in the clinical field as an indicator to diagnose a 
target sample (Segata et al., 2011). Biomarkers pres-
ent at more than 1% in the cheese samples included 
Streptococcus spp., Lactococcus spp., Lactobacillaceae, 
and Lactobacillus spp., which were identified as bio-
markers in the smoked provolone, smoked Cheddar, 
pinot noir-soaked Cheddar, and provolone cheeses, 
respectively. Although Streptococcus spp. were used as 
starter cultures for all the 3 types of cheese (Cheddar, 
provolone, and Swiss), the relative abundance of Strep-
tococcus spp. was the highest in provolone. In provolone 
cheese, the smoking treatment decreased the relative 
abundance of Lactobacillus spp., whereas Streptococcus 
spp. increased. Similarly, Lactococcus spp. and Strep-
tococcus spp., the predominant organisms in Cheddar 
cheeses, were affected by smoking. Smoking decreased 
the relative abundance of Streptococcus spp. and in-
creased the relative abundance of Lactococcus spp. In 
the previous study (Majcher et al., 2011), the number 
of lactobacilli, lactococci, streptococci, and enterococci 
were decreased during the smoking process. Warm 
smoking (25 to 35°C) leads to an increase in phenolic 
compounds formed during the smoking process that 
are known to have bactericidal properties. Thus, this 
treatment may have affected the microbial diversity. 
However, the decreasing ratio of each bacteria was dif-

ferent depending on the strain, which led to changes in 
the relative abundance of bacterial composition. Proce-
dures such as soaking or smoking played an important 
role in shifting the microbial composition as well as 
changing biomarkers.

Amplicon-based microbiome sequencing using the 
16S rRNA gene is a powerful tool to assess and com-
pare microbial community structure and diversity in 
a certain ecosystem. Although the 16S rRNA gene 
amplicon sequencing is widely used to characterize the 
microbial taxonomic composition and phylogenetic di-
versity (Aßhauer et al., 2015), it is difficult to provide 
direct evidence of functional capabilities of microbiota 
(Iwai et al., 2016). The rapid growth in the number 
of sequenced genomes makes it possible to infer which 
functions are associated with a marker gene based on 
its sequence similarity when comparing it to a reference 
genome.

In the PFP of the cheese microbiome, the highest 
number of sequencing reads was assigned to carbohy-
drate metabolism and AA metabolism from both the 
PICRUSt2 and Piphillin analyses. It is not surprising 
that carbohydrate metabolism was the most abundant 
annotated functional property of the microbes present 
in cheese samples, as fermentation of carbohydrates is 
the key functional activity of cheese starter cultures. 
The primary carbohydrate metabolized by these or-

Choi et al.: MICROBIAL COMMUNITIES OF A VARIETY OF CHEESES

Figure 7. Lactic acid production pathway from cheese samples through lactic acid bacteria.
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ganisms is lactose, which is fermented into lactic acid 
and other metabolites (Porcellato and Skeie, 2016; 
Mataragas et al., 2018; Bautista-Gallego et al., 2019). 
Lactic acid fermentation in dairy products is a meta-
bolic process that uses lactose to produce lactate in 
a lactic acid solution. It is an anaerobic fermentation 
reaction that occurs in a fermented food such as cheese 
and yogurt. Lactose [β-d-galactopyranosyl-(1→4)-d-
glucose] is the primary sugar composed of glucose and 
galactose naturally found in milk and dairy products. 
Lactic acid bacteria metabolize lactose, glucose, and 
galactose to produce lactic acids through galactose 
and glycolysis/gluconeogenesis metabolisms (Figure 7). 
Among carbohydrate metabolites, functional genes re-
lated to lactic acid production accounted for more than 
30% of the metabolomes. Another important role of the 
cheese microbiota is proteolysis and AA metabolism, 
which are important for texture and flavor development 
during cheese ripening (Ardö, 2006). In Figure 6, the 
differences in functional properties between different 
types of cheese were displayed in a PCA plot. Although 
the PCA plots from Piphillin and PICRUSt2 did not 
match exactly, both samples were clustered by the type 
of cheese. In a previous study, Wolfe et al. (2014) ana-
lyzed taxonomic diversity and functional properties of 
137 different cheese rinds using a shotgun sequencing 
method. According to their metagenomic results, both 
taxonomic diversity and functional properties were re-
lated to each other and were strongly affected by the 
type of cheese. Functional potentials clustered by rind 
type, moisture content, and cheese making procedures 
(Wolfe et al., 2014; Dugat-Bony et al., 2016). Our find-
ings correspond with previous reports that microbial 
diversity and functional property were significantly af-
fected by the type of cheese.

CONCLUSIONS

The present study improves the understanding of 
composition, diversity, and functional properties of 
microbiota from different types of cheese through 16S 
rRNA gene-based microbiome sequencing using the 
Illumina MiSeq platform. We compared the micro-
bial community differences among 9 different types 
of cheese acquired from the Arbuthnot Dairy Center 
at Oregon State University (Corvallis, OR). In this 
study, we found that different types of cheese exhibited 
significant changes in microbial community structure, 
biomarkers, microbial diversity, and PFP, depending on 
the moisture content, rind formation, and color of rinds. 
This study provides better insight into the microbial 
properties of different cheese types, as well as locations 
within the cheese, to help manage the quality of cheese. 
In addition, future study is needed to investigate the 
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potential influence of chemical compositional variations 
between the rind and the core regions of cheese on the 
microbiome.
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