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Abstract: Measurement uncertainty is a parameter that is 
associated with the dispersion of measurements. Assess-
ment of the measurement uncertainty is recommended 
in qualitative analyses in clinical laboratories; how-
ever, the measurement uncertainty of qualitative tests 
has been neglected despite the introduction of many 
adequate methods. We herein provide an overview of 
three reasonable statistical methods for quantifying the 
measurement uncertainties of qualitative assays, namely 
Bayes’ theorem, the normal distribution method, and 
the information theoretic approach. Unlike in quantita-
tive analysis, the measurement uncertainty of qualita-
tive analysis is expressed using a conditional probability, 
likelihood ratio, and entropy. With the necessary theo-
retical background, the practical applications for clinical 
laboratories are also provided using statistical calcula-
tions. Using statistical approaches, we hope that our 
review will contribute to the use of measurement uncer-
tainty in qualitative analyses in the clinical laboratory 
environment.

Keywords: Bayes’ theorem; information theory; meas-
urement uncertainty; normal distribution; qualitative 
analysis.

Brief summary: Using Bayes’ theorem, the normal distri-
bution method, and the information theoretic approach, 
one can provide the measurement uncertainty in qualita-
tive analyses in the clinical laboratory environment.

Introduction
Measurement uncertainty is one of the most powerful tools 
for expressing the dispersion of measurement procedures 
in clinical laboratories [1–3]. According to the “Guide to 
the expression of uncertainty in measurement”, measure-
ment uncertainty is defined as a “parameter, associated 
with the result of a measurement, that characterizes the 
dispersion of the values that could reasonably be attrib-
uted to the measurand”. Considering this definition, 
measurement uncertainty is expressed as the confidence 
interval in which the unknowable true value is believed to 
lie [4]. To estimate measurement uncertainty, all potential 
sources of uncertainty should be elucidated and the con-
tribution of each uncertainty budget should be estimated 
by proper models [5]. The estimation of measurement 
uncertainty can provide a quantitative overview of a test 
result and give opportunities for quality improvement [6]. 
Recently, a number of reports have described examples of 
estimating the measurement uncertainty in various quan-
titative analyses [7–11], and the evaluation and expression 
of the measurement uncertainty is gaining importance in 
clinical laboratories [5, 10].

Unlike quantitative analysis, qualitative analysis is 
reported by a dichotomous result, such as “positive or 
negative” or “pass or fail”. This qualitative result renders 
it difficult to express measurement uncertainty in a similar 
manner to quantitative analysis. As the typical measure-
ment uncertainty is generally probabilistic in nature, it 
is reasonable to express the measurement uncertainty in 
qualitative analysis as the probability of making a wrong 
decision. Previously, several articles have discussed the 
application of the measurement uncertainty to qualitative 
analysis, with numerous methods based on mathematical 
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approaches having been introduced and successfully 
applied [12–16]. Although approximately two decades 
have passed since this issue was reviewed, the practical 
application of the measurement uncertainty in qualita-
tive analysis in clinical laboratories remains unaddressed. 
Even in the cases of various international guidelines, no 
mention is made of the measurement uncertainty in quali-
tative analysis [2, 3].

Thus, we herein review three applicable approaches 
for quantifying the measurement uncertainty in quali-
tative assays from a clinical laboratorian point of view. 
More specifically, Bayes’ theorem, the normal distribu-
tion method, and the information theoretic approach are 
examined, which are based on probability calculations 
and can be reported as probability, likelihood ratios, or 
entropy [12–16]. In addition to the mathematical descrip-
tions, we also show applicable examples that can be 
readily employed in a real clinical laboratory.

Measurement uncertainty using 
Bayes’ theorem
Bayes’ theorem is perhaps the oldest known method for 
determining conditional probability [14, 17, 18]. Using this 
method, we can estimate the probability of an event based 
on a prior probability of conditions that would be associ-
ated with the event [12, 19]. For example, one can calculate 
the probability of the hepatitis B virus (HBV) active carrier 
status when the hepatitis B surface antigen (HBsAg) test 
is positive. From a clinical aspect, this method is one of 
the best candidates for the application of measurement 
uncertainty to qualitative assays.

Bayes’ theorem can be expressed as outlined in the 
following equation:
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where P(A) is the probability of an event A (presence of the 
measurand, for example, HBsAg for an HBV active carrier), 
and P(Pos) is the probability of a positive test result (in 
this case, HBsAg-positive result). In addition, P(A | Pos) 
is the conditional probability of event A given that the 
test result is true (the probability of an actual HBV active 
carrier whose HBsAg test result is positive). In the above 
equation, a prefix “not” (e.g. not A) denotes “absence of 
event”, and therefore, P(Pos | A) and P(Pos | not A) are the 
conditional probabilities of a positive result given that 

event A has or has not occurred already (the conditional 
probabilities of HBsAg-positive results in an HBV active 
carrier or in an HBV-free person).

In common clinical practice, the probability P(A) can 
be replaced by the probability of a particular medical 
condition (disease prevalence), and P(A) + P(not A) = 1, 
because P(A) and P(not A) are mutually exclusive (i.e. the 
patient is an HBV active carrier or not). P(Pos | A) is equal 
to the proportion of true-positive test results in patients 
with event A, and this represents the sensitivity of the 
assay. Similarly, P(Pos | not A) is the proportion of false-
positive test results in patients free from event A, which 
represents 1 − specificity. Bayes’ theorem can therefore be 
revised as follows:
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Based on the aforementioned points, the measure-
ment uncertainty of qualitative assay can be easily quan-
tified because it is equal to the positive predictive value 
using the analytical performance of the assay and the 
disease prevalence [15]. These data can be collected with 
previously published reports for technical specifications 
of assays. Conversely, it should be noted that a negative 
predictable value (P(not A | Neg)) is the measurement 
uncertainty of the opposite case (i.e. the absence of event 
A in a given negative test result).

The application of Bayes’ theorem can be illus-
trated by the following example. Assume a rapid test for 
the presence of HBsAg using test TA. This test showed a 
92% sensitivity and a 98% specificity in the performance 
evaluation report. To calculate the conditional probabil-
ity, which is the likelihood of the patient being an actual 
HBV active carrier (P(A)) given that TA is a positive result 
(P(Pos)), the country prevalence of the HBV active carrier 
is assumed to be 0.001. From equation 2, the measure-
ment uncertainty is P(A | Pos) = (0.92 × 0.001) ÷ [(0.92 ×  
0.001) + (1 − 0.98) × (1 − 0.001)] = 4.4%. However, this small  
posterior probability is the result of screening the entire 
population of a country. As such, we can adjust the 
prevalence to a hospital-specific prevalence for a more 
rigorous uncertainty evaluation, and this is significantly 
larger than that of a country’s population, as the HBsAg 
test is employed only when symptoms are suspected. If 
the prevalence of patients referred to the test is known 
to be 0.01, the adjusted measurement uncertainty is 
P(Aadjusted | Pos) = 31.7%. This posterior probability repre-
sents the likelihood of the patient being an actual HBV 
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active carrier who visited hospital (P(Aadjusted)) given the pos-
itive test result. When the test result is negative in the HBV-
free person, the negative predictive value is (P(not Aadjusted |  
Neg) = [0.98 ×(1 − 0.01)] ÷ {[0.98 × (1 − 0.01)] +(1 − 0.92) ×  
0.01} ≈ 100%. It is important to note that the posterior 
probability varies depending on the sensitivity, specific-
ity, and prevalence and the change of posterior probabil-
ity is visualized in Figure 1.

The measurement uncertainty of qualitative assays 
can also be expressed using a likelihood ratio, which is 
the ratio between two conditional probabilities [12, 14]. 
The two likelihood ratios can be expressed as follows:
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Thus, a positive likelihood ratio represents the prob-
ability that a given positive test result would be expected 
in a person with the disease compared to the probability 
that a positive result would be expected in a disease-free 
person. It should be noted that the likelihood ratio has 
been employed in forensic science to evaluate identifi-
cation certainty [12, 17, 20]. Due to nature of forensics, in 
which an assay result can be used as evidence in a court, 
it is recommendable to express the expert evaluation of 
likelihood as a form of word. According to the magni-
tude of the likelihood ratio, the degree of support can be 
expressed with verbal equivalents (Table 1) [17].

From equation 3, returning to the previous example 
(TA), the positive likelihood ratio is 46, which would be 
considered a “moderate support” for the diagnosis of 
an HBV active carrier. In the same way (equation 4), the 

negative likelihood ratio is about 12, which is considered 
“moderate support” for the absence of HBsAg.

The key advantage of Bayes’ theorem is the easiness 
to quantify the uncertainty when prior probabilities (i.e. 
sensitivity, specificity, and prevalence) are available [12]. 
In addition, the uncertainty in a specific medical environ-
ment can be estimated with adjusting prevalence. When 
an epidemic occurs in a specific area, we can re-estimate 
the positive predictive value using the epidemic data or 
hospital-specific prevalence. However, Bayes’ theorem 
also has several drawbacks [14]. Firstly, the nomenclature 
employed is complex and not familiar to a clinical labora-
tory. In addition, a priori probabilities must be available to 
quantify the conditional probability, and the measurement 
uncertainty cannot be calculated when the assay specific-
ity is 100%. To avoid such issues and obtain adequate esti-
mates, a high number of tests should be carried out.

Most importantly, the key weakness of Bayes’ theorem 
is that this method fails to take into account the para-
meters associated with the result of each measurement, 
and the measurement uncertainty of each sample is 
always the same whether the amount of the measurand 
in each sample is small or large [14]. This means that the 
uncertainty calculated using this method is the measure-
ment uncertainty for the measurement system, and not for 
the individual measurement. This would be particularly 
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Figure 1: Change of posterior probability according to the sensitivity and specificity.
The disease prevalence is set to 0.001 in (A) and 0.01 in (B).

Table 1: Interpretation of the likelihood ratio in forensics.

Value of the likelihood ratio Verbal equivalent

>1–10 Weak support for proposition
10–100 Moderate support
100–1000 Moderately strong support
1000–10,000 Strong support
10,000–1,000,000 Very strong support
>1,000,000 Extremely strong support
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problematic when the measurand concentration is close 
to the limit of detection, because the probability of deter-
mining the correct result would be reduced in the sample 
of this concentration interval.

Measurement uncertainty using the 
normal distribution approach

A number of automated assays use quantitative signals 
to conclude qualitative results. These quantitative 
signals, such as the sample to cut-off ratio (S/Co) and 
the cut-off index (COI), are compared to cut-off values 
set by the assay manufacturers or by international con-
sensus guidelines [21], and the test results are reported 
as either “positive” or “negative”. Although these assays 
are categorized as qualitative analysis, the instrumen-
tal response is a continuous value and has quantitative 
properties [22, 23]. We can therefore assume that the 
instrumental signal follows the normal distribution and 
the measurement uncertainty of the instrumental signal 
can be estimated in a quantitative analysis manner. Pre-
viously, a number of instrumental responses, such as the 
S/Co of HBsAg and the COI of the HIV test, were hard 
to calculate the measurement uncertainty because of the 
absence of a reference method or reference materials. 
However, recent methods for evaluation of the measure-
ment uncertainty using external quality assessment and 
proficiency test (EQA/PT) data have been introduced [9, 
10, 24], and it is now possible to calculate the measure-
ment uncertainty for almost all signals obtained in a clin-
ical laboratory. With this information, the true-positive 
rate (or true-negative rate) and the false-negative rate (or 
false-positive rate) can be calculated using a normal dis-
tribution curve (Figure 2). The normal distribution curve 
of patient result is
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where μ is the patient result (instrumental response), 
and σ is the measurement uncertainty of instrumental 
response. From equation 5, the true-positive and false-
negative rates are
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where rcut-off is the cut-off value of qualitative assay using 
continuous instrumental response. Then, the likelihood 
ratio equal to the measurement uncertainty of qualitative 
analysis can be quantified as follows [20]:

	
= -       

 -  
true positive ratePositive likelihood ratio
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As indicated in Figure 2, there are three cases between 
the measured result (rresult) and the cut-off value (rcut-off), i.e. 
(A) rresult < rcut-off, (B) rresult = rcut-off, and (C) rresult > rcut-off. When 
the measured result is larger than the cut-off, the quali-
tative result is “positive”, and we can calculate the true-
positive and false-negative rates using the measurement 
uncertainty of the instrumental signal. The positive likeli-
hood ratio can then be expressed by simply dividing the 
true-positive rate by the false-negative rate. Conversely, 
the negative likelihood ratio for rresult < rcut-off can be quanti-
fied by dividing the true-negative rate by the false-positive 
rate. In the case of rresult = rcut-off, the true-positive and false-
negative rates are equal to 0.5 (likelihood ratio = 1), and 
therefore, we cannot conclude the binary test result.

A second example illustrates the expression of meas-
urement uncertainty involving a quantitative property. 

A

B

C

Instrumental signal value

LR(+) < 1

LR(+) = 1

LR(+) > 1

LR(–) > 1

LR(–) = 1

LR(–) < 1

True-positive rate
False-negative rate

Cut-off value

Figure 2: Relationship between the instrumental signal value and 
the cut-off value.
The true positive rate and the false negative rate ​are computed 
through the normal distribution curve. LR(+), positive likelihood 
ratio; LR(−), negative likelihood ratio. (A) rresult < rcut-off , (B) rresult = rcut-off, 
and (C) rresult > rcut-off.
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The instrument TB is assumed to be an automated HBsAg 
assay to screen for the HBV infection (Table 2). The result 
of TB is reported as an S/Co value, and is assigned as 
“positive” when the S/Co value is >1. Using the calibrator 
information, EQA data, and internal quality control data, 
the expanded measurement uncertainty of the S/Co value 
is quantified as ±0.08 S/Co. When the measured result of 
instrument TB is 1.15 S/Co in the HBV-suspected patient, 
the reported S/Co value can be expressed as 1.15 ± 0.08 
S/Co (k = 2, approximately 95% coverage probability). In 
this case, the true-positive rate is about 99.99%, and the 

false-negative rate is about 0.01%. The calculated like-
lihood ratio of a positive result is 11,309, and the meas-
urement uncertainty can be reported in terms of a “very 
strong support” for the presence of HBsAg. Figure 3 illus-
trates the true-positive rate and the positive likelihood 
ratio according to the instrumental signal.

In contrast to the Bayes’ theorem approach that 
estimates the uncertainty based on the overall behav-
ior of previous measurements, the normal distribution 
approach considers individual measurements for calcula-
tion of the uncertainty [14]. However, this method also has 

Table 2: Measurement uncertainty of HBsAg assay in example 2.

HBsAg TB assay

Analyte   HBsAg
Measurand   Reactivity of HBsAg in serum or plasma
Measurement unit   S/Co (instrumental response)
Measurement method   Chemiluminescence immunoassay
Reported results   Binary result (positive or negative)
Calibrator information   Traceable to WHO Second International Standard (2003) for HBsAg (00/588)
Calibrator uncertainty (ucal)   0.012 S/Co (estimated by the manufacturer)
Bias estimation   0.008 S/Co (assessed by the EQA peer group using commutable material)

Acceptable bias, results not adjusted.
IQC period   January 2018–April 2018
Number of IQC measurements   97
Mean of IQC measurements   1.54 S/Co
Repeatability calculated from IQC (urep)   0.038 S/Co
Combined standard uncertainty (u(HBsAg))  2 2 2 2( ) ((0.012) 0.038 ) 0.04 S/Cocal repu u+ = + =

Expanded measurement uncertainty 
applicable to patient’s result (U(HBsAg))

  y ± 0.08 S/Co (k = 2, about 95% coverage probability)

Patient’s result in example 2   Positive for HBsAg (1.15 ± 0.08 S/Co)
Comment: positive likelihood ratio is 11,309, and the positive result can be 
reported in terms of a “very strong support”

HBsAg, hepatitis B surface antigen; S/Co, sample to cut-off ratio; EQA, external quality assurance; IQC, internal quality control.
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Figure 3: The positive likelihood ratio increases rapidly with increasing value of the instrumental response. 
Variation in the true positive rate (A) and positive likelihood ratio (B) based on the instrumental response in example 2.
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several disadvantages. For example, a dichotomous result 
cannot be concluded when the measured signal is equal to 
the cut-off value, as the possibility of a true-positive result 
is equal to that of a false-negative result. At this point, 
the normal distribution approach does not provide any 
further information about the test result.

To assign the measurement uncertainty of the 
instrumental signal, the interlaboratory bias should be 
calculated using information from EQA/PTs [9, 10, 24]. 
However, due to the nature of the qualitative assay, the 
majority of PT/EQA programs collect only binary results 
rather than instrumental responses such as S/Co and COI. 
This method could not be applicable to qualitative assays 
using continuous measurement values when sufficient 
information is unavailable.

Measurement uncertainty using the 
information theoretic approach
The information theory has also been introduced to clini-
cal laboratories for measuring the uncertainty of binary 
outcome [16]. The entropy, one of the key concepts of 
information theory, quantifies uncertainty of binary result 
using the probability of possible outcomes [25, 26]. If p is 
the probability of a binary outcome for a specific assay, 
the entropy, S, is

	
= − × − − × −2 2log (1 ) log( ) (1 )S p p p p

�
(10)

The logarithm is taken with base 2 for binary test 
result, yielding the entropy in units of “bits”. The point 
of minimum entropy occurs as the probability approaches 
0 or 1. As the probability approaches 0.5, the entropy 
approaches 1.

For the previous example 2 in the normal distribu-
tion approach, the true-positive and -negative rates cor-
respond to the probability to calculate the entropy. From 
the equations 6, 7, and 10, we can calculate the entropy 
using the instrumental signal and cut-off value. When the 
relationship between the instrumental response and the 
entropy is plotted, the shape of the curve for the entropy 
shows an inverted U shape; decreased entropy for low and 
high instrumental signals, and increased entropy near 
cut-off values (Figure 4).

Because the information theoretic approach uses 
the continuous instrumental response to calculate the 
entropy, this approach shares the same advantages and 
disadvantages as the normal distribution approach. 
However, the complex terminology with unfamiliar 
units (bits) would be one of the most potential hurdle to 

implement the information theory in the community of 
laboratory medicine [25].

Conclusions
The qualitative tests differ from the quantitative tests 
principally because there are no numerical results but 
dichotomous results. For many years, most of clinical lab-
oratorians have only emphasized the final binary result, 
and focused on the concepts of sensitivity, specificity, and 
receiver operating characteristic curve [16, 27]. Although 
various mathematical methods have been applied to the 
measurement uncertainty of qualitative analysis [14–16, 
22], the concept of measurement uncertainty is not com-
monly used in qualitative measurement that laboratory 
tests provide.

The measurement uncertainty can be described as 
a quantifiable parameter associated with the dispersion 
of measurements. As such, three parameters, known as 
the conditional probability, the likelihood ratio, and the 
entropy, permit us to express the measurement uncer-
tainties of qualitative assays using statistical models. 
Although the mathematical expression of the measure-
ment uncertainty differs slightly between qualitative and 
quantitative analyses, the significance of the measure-
ment uncertainty does not change. It is a “non-negative 
parameter characterizing the dispersion of the quantity 
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values (or qualitative result) being attributed to a measur-
and, based on the information used” [3]. As in the case of 
quantitative methods, we can assign the probability that 
a reported qualitative result is actually true based on a 
priori information or on the measurement uncertainty of 
instrumental responses.

However, these methods exhibit a number of major 
limitations [14, 20, 25]. For example, in the case of the 
Bayes’ theorem method, following the calculation of the 
measurement uncertainty, the uncertainty is fixed and 
cannot consider any individual measurements. In addi-
tion, the normal distribution method and information 
theoretic approach cannot be applied when the measure-
ment system does not use the quantitative signal for deter-
mination of the binary result. However, these approaches 
still exist as statistical methods for quantifying the meas-
urement uncertainty of qualitative analysis in the current 
state of the art, with a number of adequate examples 
being previously reported [15, 16, 28, 29].

Regardless of method, all measurement procedures 
are affected by many potential sources of variation, and 
the results cannot be exactly determined [8]. The concept 
of measurement uncertainty reflects incomplete knowl-
edge of the test result, and provides the statistical dis-
persion of the values attributed to the final result. With 
the measurement uncertainty, we can provide the proba-
bilistic information about the binary results in the quali-
tative assays. In this paper, we have reviewed various 
approaches of how the measurement uncertainty can be 
applied to the qualitative test, and believe that it will con-
tribute to help us understand the more information that 
the qualitative tests provide.
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