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Abstract

Even in the steady-state, the number of biomolecules in living cells fluctuates dynamically,

and the frequency spectrum of this chemical fluctuation carries valuable information about

the dynamics of the reactions creating these biomolecules. Recent advances in single-cell

techniques enable direct monitoring of the time-traces of the protein number in each cell;

however, it is not yet clear how the stochastic dynamics of these time-traces is related to the

reaction mechanism and dynamics. Here, we derive a rigorous relation between the fre-

quency-spectrum of the product number fluctuation and the reaction mechanism and

dynamics, starting from a generalized master equation. This relation enables us to analyze

the time-traces of the protein number and extract information about dynamics of mRNA

number and transcriptional regulation, which cannot be directly observed by current experi-

mental techniques. We demonstrate our frequency spectrum analysis of protein number

fluctuation, using the gene network model of luciferase expression under the control of the

Bmal 1a promoter in mouse fibroblast cells. We also discuss how the dynamic heterogeneity

of transcription and translation rates affects the frequency-spectra of the mRNA and protein

number.

Author summary

Recent advances in single-cell experimental techniques enable direct visualization of

dynamic fluctuations of the biomolecular concentration in each cell; however, a robust,

quantitative understanding of the stochastic dynamics of the chemical noise in living cells

has yet to be achieved. To understand how the frequency spectrum of product number

fluctuation is related to the topology of the reaction network and the dynamics of elemen-

tary processes composing the network, we derived an exact analytic result for the fre-

quency spectrum of the product number fluctuation starting from a generalized master

equation, enabling the extraction of the frequency spectrum of the reaction rate fluctua-

tion (FSRR) from the frequency spectrum of the product number fluctuation (FSPN). The

FSRR serves as a sensitive probe of the mechanism and dynamics of the product creation

process; the FSRR vanishes when product creation is a Poisson process. We demonstrated

our approach to frequency spectrum analysis of chemical fluctuation for generalized
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enzyme kinetic models, the gene network model of luciferase expression under the Bmal
1a promoter in mouse fibroblast cells, and a more general vibrant gene network model.

Introduction

Fluctuation in the number of chemical species is ubiquitous and particularly pronounced in

small reactors such as living cells. This chemical fluctuation persists even in the steady-state,

and its stochastic dynamics carries valuable information about the mechanism and the dynam-

ics of the reaction processes that produce the fluctuation. Modern single molecule fluorescence

imaging techniques enable direct monitoring of the protein number time-traces in each indi-

vidual cell [1–6]. A great deal of research has focused on themagnitude of protein or mRNA

number variation among genetically identical cells [7–9]. However, investigation into the

dynamics of the protein or mRNA number fluctuation has not been as common [10, 11].

There have been a few pioneering works on the dynamics of chemical fluctuation in living

cells. For example, using the chemical master equation (CME), Bratsun, Volfson, Tsimring,

and Hasty investigated the protein number frequency spectrum when the decay rate, or the

gene expression rate, at a given time is dependent on the protein density at an earlier time due

to feedback regulation [12]. McKane, Nagy, Newman and Stefanini investigated the mecha-

nism for pronounced biochemical oscillations based on CME [13]. The CME provides an

accurate description of the stochastic chemical dynamics of conventional kinetic network

models characterized by constant rate coefficients.

The other approach to understanding the dynamics of chemical fluctuation in living cells is

the Gillespie’s chemical Langevin equation (CLE) approach [14]. Using this approach, Ozbu-

dak et al. investigated the frequency spectrum of protein number fluctuation for a simple gene

expression network model [15]. Simpson, Cox, and Saylor extended this approach to investi-

gate the effects of feedback regulation on the protein number frequency spectrum for the first-

order reaction system. [16–18]. Tănase-Nicola, Warren, and Wolde presented a relationship

between the frequency spectra of the input and output signals for various biochemical net-

works [19], starting from the CLE of biochemical networks. Thomas et al. obtained the nonlin-

ear correction to the frequency spectrum under the linear-noise approximation for the

chemical fluctuation in the vicinity of the Hopf bifurcation point, and explained the oscillatory

protein luminescence data obtained for fibroblast cells [20].

The stochasticity of the chemical kinetics based on the CME has been investigated since

1950s. The CME for a first-order reaction was suggested by Bartholomay [21], and CMEs for

several types of reaction were reviewed by McQuarrie [22]. However, CME itself is not easy to

be solved so that in early days, Kramers [23] and Moyal [24] developed a Taylor expansion of

the CME, and takes only the first- and second-order derivative terms, resulting in the chemical

Fokker-Planck equation. On the basis of the Poisson representation method, Gardiner and

Chaturvedi derived the higher-order generalization of Fokker-Planck equation and the corre-

sponding stochastic differential equation [25]. Separately, van Kampen developed the system-

atic perturbative expansion of CME, known as system-size expansion [26, 27]. Taking only the

leading-order term of the expansion yields the linear-noise approximation, in which the CME

can be approximated by a Fokker-Planck equation with linear coefficients [28]. This approach

has been widely used in both chemical [13, 29–33] and non-chemical systems [34–42], which

is exact up to the second-order moments of chemical fluctuations for any reaction system

composed of zeroth- and first-order reactions.

Frequency spectrum of chemical fluctuation
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The accuracy of the chemical Fokker-Planck equation or the CLE against the CME is inves-

tigated by Grima, Thomas, and Straube [43]. They showed that the chemical Fokker-Planck

equation and the corresponding CLE provide a more accurate description than the linear-

noise approximation of the CME. Although, in general, the CLE associated with the CME

involves the non-Gaussian white noise [44], the widely-used CLE with the Gaussian white

noise or various approximations of CME provides a more convenient stochastic description of

conventional kinetic network models [15, 45].

Despite these theoretical developments and their prevalence in quantitative biology, it is

not feasible for conventional kinetic network models to represent reaction networks in living

cells accurately. This is because, for an intracellular reaction process, the rate coefficient may

not be a constant but a stochastic variable whose value differs from cell to cell and fluctuates

over time due to its coupling to cell environments. Rate coefficient fluctuation also emerges

for intracellular reactions that are not simple Poisson processes, for example, multi-step and

multi-channel processes involving multiple intermediate species and multiple reaction paths.

Consequently, using conventional kinetic network models, it is extremely difficult to achieve a

quantitative explanation of stochastic dynamics or its frequency spectrum of biomolecular

concentration in living cells [46].

To overcome this problem, a few research groups introduced a static distribution of rate

coefficients within the framework of the CME, for example, normal distribution [47, 48], nega-

tive binomial distribution [49], and lognormal distribution [50] (see also ref [45] for a recent

review). However, the rate coefficient of an intracellular reaction is intrinsically a dynamic sto-

chastic variable that not only differs from cell to cell but also fluctuates over time. Thus, using

those approaches, it is difficult to capture the effect of dynamically heterogeneous cell environ-

ment on stochastic kinetics in living cells. On the other hand, Sung and Silbey presented the

CME for a non-Poisson reaction process occurring under a dynamically heterogeneous envi-

ronment and an exact master equation for a reactive continuous time random walker under-

going a chemical reaction at a boundary with an arbitrary reaction time distribution [51].

Pedraza and Paulsson investigated how the effect of non-exponential reaction time distribu-

tions can be incorporated into the framework of the CME [52] but their approach requires

infinite complications for arbitrary reaction time distribution as noted by the authors. Zechner

and Koeppl provided the so-called uncoupled network representation in which the effect of

fluctuating environment is accounted for by hierarchically coupled moments for the environ-

mental process conditioned on the entire history of the reaction network in interest [53].

For a general representation of reaction processes occurring in living cells, a new type of

kinetic network model, called a vibrant kinetic network model, was recently introduced [54].

A key feature of vibrant kinetic network models is a stochastic rate coefficient, whose proper-

ties depend on the reaction dynamics and its coupling to cell environments. By using a vibrant

gene expression network, Park et al. obtained the Chemical Fluctuation Theorem governing

gene expression [55], which provides a unified, quantitative explanation of the mean and vari-

ance of the gene expression level among a clonal population of cells for various experimental

systems. In the current work, we investigate the dynamics of chemical fluctuation for elemen-

tary models of vibrant reaction processes, presenting an exact relationship between the fre-

quency spectrum of product number fluctuation and the mechanism and dynamics of the

reaction process in question.

We find that the frequency-spectrum of the reaction rate (FSRR) can be easily calculated

from the product number time traces and serves as a sensitive probe of the reaction mecha-

nism and dynamics; for example, the FSRR is a monotonically decaying function of frequency

for a multi-channel process and a non-monotonic function with one or more peaks for a

multi-step reaction process, whereas the FSRR vanishes for a single channel Poisson reaction

Frequency spectrum of chemical fluctuation
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process. By applying our theory to the translation process, during which proteins are synthe-

sized by ribosomes according to genetic information delivered bymessenger RNA (mRNA),

we extract the frequency spectrum or the time-correlation function of the mRNA number

from the time traces of the protein number. This is significant because current experimental

techniques enable us to monitor the protein number time traces in each cell but not the

mRNA number time traces, or frequency spectra of the mRNA number fluctuation. From the

frequency spectrum of the mRNA number fluctuation, we can further extract information

about the gene-regulating promoter dynamics. We first demonstrate our frequency spectrum

analysis of protein number time traces for the classical gene expression network model utilized

by Naef and co-workers [56] to investigate the time traces of luciferase expressed under the

control of Bmal 1a in mouse fibroblast cells. Then, we investigate the frequency spectra of the

mRNA and protein number for a more general gene expression network model, in which pro-

motor regulation and transcription are non-Poisson processes, or vibrant reaction processes,

that cannot be accurately represented by a classical kinetic network model. Throughout our

investigation, we confirm the correctness of our theory against accurate, stochastic simulation.

Results/discussion

General theory

The frequency-spectrum of product number (FSPN), Sz(ω), is defined as

SzðoÞ � lim
T!1

T � 1hj
R T=2

� T=2
dte� iotdzðtÞj2i; ð1Þ

where h� � �i and δz(t) denote the average over a large number of trajectories of the product

number and the deviation of the product number from the mean at time t, respectively.

According to the Wiener-Khinchin theorem [57, 58], the frequency-spectrum defined in Eq 1

is equal to the Fourier transform of the steady-state TCF of the product number fluctuation,

i.e.,

SzðoÞ ¼
R1
� 1
dte� iothdzðtÞdzð0Þiss: ð2Þ

The functional form of the FSPN, or the TCF of the product creation rate, is dependent on

the mechanism and dynamics of the product creation process. Starting from a generalized

master equation accurately describing a vibrant reaction process with an arbitrary stochastic

rate, one can derive the following analytic result for the FSPN,

SzðoÞ ¼
2hRi
o2 þ g2

þ
SRðoÞ
o2 þ g2

; ð3Þ

where hRi, γ, and SR(ω) respectively denote the mean product creation rate, the inverse lifetime

of the product molecule, and the frequency-spectrum of the reaction rate (FSRR), that is,

SRðoÞ ¼
R1
� 1
dte� iothdRðtÞdRð0Þiss. See Supporting Information, S1 Text for the derivation of

Eq 3. This equation holds exactly for vibrant reaction networks free of feedback regulation as

long as the decay of the product molecule obeys the first order kinetics. The first term on the

right-hand side (R.H.S.) of Eq 3 has the same functional form, regardless of the detailed mech-

anism and dynamics of the product creation process; this term is determined by only two

parameters: the mean product creation rate and the inverse lifetime of the product molecule.

In contrast, the second term involving the frequency spectrum, SR(ω), of the reaction rate fluc-

tuation, or the Fourier transform of the TCF of the reaction rate fluctuation, is dependent on

the topology of the product creation network and the dynamics of the individual reaction pro-

cesses that compose the network.

Frequency spectrum of chemical fluctuation
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Although the CLE is only approximately valid, we can also obtain Eq 3 by using the CLE

under the following ad-hoc assumptions of the reaction rate fluctuation: 1) the fluctuating rate

can be represented by the sum of intrinsic and extrinsic noise, which are independent of each

other; 2) intrinsic noise is white noise whose variance is the same as the mean total reaction

rate or the sum of the mean intrinsic and extrinsic rate; 3) only extrinsic noise is dependent on

the details of the reaction mechanism and dynamics and their coupling to environment while

intrinsic noise is not. However, starting from our generalized master equation, Eq 3 can be

derived without these ad-hoc assumptions or approximations, as shown in S1 Text in Support-

ing Information.

The frequency-spectrum of the reaction rate, SR(ω), can be easily extracted from the FSPN,

Sz(ω). From Eq 3, one obtains

SRðoÞ ¼ ðo
2 þ g2Þ½SzðoÞ � S

0

zðoÞ� ¼ 2hRi½SzðoÞ=S
0

zðoÞ � 1�; ð4Þ

where S0
zðoÞ denotes 2hRi/(ω2+γ2), the first term on the R.H.S. of Eq 3. Given that the inverse

lifetime, γ, of product molecules can be estimated independently, we can easily calculate the

mean product creation rate, hRi, from the mean product number, hzi, by hRi = γhzi. With hRi
and γ at hand, we can calculate S0

zðoÞ and convert the FSPN, Sz(ω), to the FSRR, SR(ω), by

using Eq 4.

The FSRR, SR(ω), can be easily obtained for various reaction network models. For example,

in Fig 1, we show SR(ω) and the corresponding TCF of the product creation rate for three dif-

ferent reaction processes: the simple one-step process, the multi-channel process, and the

multi-step process. In the simplest case, where the product creation reaction is a simple Pois-

son process, the product creation rate is constant in time, so that hδR(t)δR(0)i = SR(ω) = 0.

When the product creation process is a multi-channel reaction process, shown in Fig 1B, the

TCF of the product creation rate is given by a multi-exponential function of time, and the cor-

responding FSRR is a monotonically decaying function of frequency, ω (see Eqs S2-5 and S2-6

in Supporting Information). In contrast, for a multi-step reaction process, shown in Fig 1C,

the TCF of the product creation rate becomes an oscillatory function of time as the step num-

ber increases, so that the FSRR is a non-monotonic function with one or more peaks (see Eq

S2-12). The oscillatory feature in the TCF of the product creation rate can be understood from

the degradation-free mean product number, hn(t)i�, under the synchronized initial condition

that the reaction event counting begins at the time when a reaction event is completed [55, 59].

The TCF of the product creation rate is related to hn(t)i� as hδR(t)δR(0)i = hRi@thn(t)i
�

− hRi2

[55], enabling to calculate the rate correlation with hn(t)i
�

directly obtained from simulations

as shown in Fig 1F. As the number, l, of steps involved in the creation process increases, reac-

tion times are more narrowly distributed around the mean reaction time, hti(= hRi−1); in the

large-l limit, the reaction time distribution approaches a Dirac delta function given by δ(t−hti).
When reaction events occur with more precise timing, hn(t)i

�

increases with time in a more

step-like manner. Then, the first-order time derivative of hn(t)i
�

shows a more distinct oscil-

latory feature over time so that the TCF of the product creation rate also does. The derivation

of the exact analytic expressions of the FSRR, SR(ω), are presented for both the multi-channel

reaction process and the multi-step reaction process in Supporting Information, S2 Text.

We confirm the correctness of our analytic results against stochastic simulation results, as

shown in Fig 1D–1G. In this way, we can double check both analytical results and simulation

results at once, making them more convincing against each other. For each model in Fig 1A–

1C, the FSPN can be computed directly from simulated product number time traces using the

fast Fourier transform algorithm by Eq 1 (Supporting Information, S3 Text). This FSPN,

SðsimÞz ðoÞ, is in perfect agreement with Sz(ω) calculated using Eq 3 and the analytic results of

Frequency spectrum of chemical fluctuation
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FSRR, SR(ω), given in Supporting Information, S2 Text for all three reaction models (Fig 1E).

Accordingly, for each reaction model, the FSRR SR(ω) calculated from the analytic result is in

perfect agreement with the FSRR data, SðdataÞR ðoÞ, obtained from the numerical data of SðsimÞz ðoÞ

through Eq 4, as shown in Fig 1G. We also confirm that FSRR calculated from the TCF of the

product number using Eq 2, yields the same result as FSRR directly calculated from the prod-

uct number trajectories using Eq 1.

Both the theoretical prediction and the simulation results indicate that the frequency spec-

trum of the reaction rate is a more sensitive probe of the dynamics of the product creation pro-

cess than the frequency spectrum of the product number, as shown in Fig 1. This is because

S0
zðoÞ, which is independent of the microscopic details of the product creation process, always

contributes to the FSPN, Sz(ω), whereas the FSRR, SR(ω), is not contributed from S0
zðoÞ.

Fig 1. Time autocorrelation functions and frequency spectra of the product number and the product creation rate

for three elementary reaction networks. (A-C) Reaction schemes for the three different types of product creation

processes: the simple Poisson process, the multi-channel process, and the multi-step process. The product decay

process is a simple Poisson process. (D-E) Time autocorrelation function of the product number fluctuation and the

frequency spectrum of the product number (FSPN) for the reaction schemes (A-C). (F-G) Time autocorrelation

function of the product creation rate fluctuation and the frequency spectrum of the product creation rate (FSRR). The

FSRR is related to the FSPN by Eq 4. The FSRR is far more sensitive to changes in the reaction scheme than the FSPN.

The FSRR is zero at all frequencies for Scheme A, a monotonically decaying function for Scheme B, and a non-

monotonic function for Scheme C. In the model calculation, the mean time elapsed during product creation is set to

0.5 γ−1 for all cases. The solid lines represent the predictions of Eq 3 for Scheme A, Scheme B with l = 2, and Scheme C

with l = 20. Simulation results are represented by squares, triangles, and circles. For more detailed information about

the models and simulation method, see Supporting Information, S3 Text.

https://doi.org/10.1371/journal.pcbi.1007356.g001
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Application to non-classical enzyme kinetic models

The generalized enzyme kinetic model shown in Fig 2A is remarkable because it quantitatively

explains experimental results for the substrate concentration-dependent variance of β-galacto-

sidase’s turnover time distribution [60, 61], which cannot be explained by the classical Michae-

lis-Menten enzyme kinetics or its extension considering a static distribution of the catalytic

rate [8]. The key feature of this generalized enzyme kinetic model is that the catalytic reaction

and dissociation reaction of the enzyme-substrate (ES) complex are non-Poisson processes so

that the lifetime distribution, φES(t), of the ES complex is a non-exponential function. For this

generalized enzyme reaction model, the enzymatic reaction time distribution, ψ(t), or the dis-

tribution of time elapsed to complete a single enzymatic turnover, is given by

~cðoÞ ¼
p2

~φ1ðoÞ~φESðoÞ
1 � p� 1

~φ1ðoÞ~φESðoÞ
ð5Þ

with ~φ1ðoÞ ¼ k1½S�=ðk1½S� þ ioÞ, where ~f ðoÞ designates
R1

0
dte� iot f ðtÞ. Eq 5 can be obtained

from the generalized enzyme kinetics in refs [60, 62] and also starting from Sung and Silbey’s

generalized master equation [63]. However, it is not so easy to obtain Eq 5 using the conven-

tional CME, which requires infinite complications when the enzyme-substrate complex has an

arbitrary lifetime distribution as noted by the authors of ref [52]. The ES formation has been

often assumed to be the pseudo-first order reaction [64], which may not always be the case in

living cells. The extension of our enzyme reaction model to encompass the second-order kinet-

ics of the ES formation is also possible [65, 66], which we leave for a future research.

The enzyme reaction process represented by Fig 2A is an example of a renewal process [60,

61], in which the dynamics of one reaction event is not affected by the reaction history. For a

renewal reaction process, the FSRR is related to the reaction time distribution, ψ(t), by

SRðoÞ ¼ 2hRiRe
~cðoÞ

1 � ~cðoÞ

" #

� 2phRi2dðoÞ; ð6Þ

where hRi denotes the average reaction rate given by hRi ¼ limo!0ðioÞ~cðoÞ=½1 � ~cðoÞ�. A

simple derivation of Eq 6 is given in Supporting Information, S4 Text. Substituting Eq 5 into

Eq 6, we obtain the frequency spectrum of the reaction rate fluctuation for the generalized

enzyme reaction model in Fig 2A. Substituting Eq 6 into Eq 3, we can further obtain the fre-

quency spectrum of the product number fluctuation. As shown in Fig 2B and 2C, the fre-

quency spectrum of the rate fluctuation is far more sensitive to the reaction dynamics, or the

lifetime distribution of the enzyme-substrate complex, than the frequency spectrum of the

product number fluctuation.

It is worth mentioning that the reaction process of multiple enzymes is not a renewal pro-

cess, even when the reaction process of individual enzyme is [59, 67]. Nevertheless, given that

the correlation between different enzymes is negligible, the FSRR, SðnÞR ðoÞ, of n enzymes is sim-

ply given by nSð1ÞR ðoÞ, where Sð1ÞR ðoÞ denotes the FSRR of a single enzyme reaction, given by

Eq 6.

We emphasize that the application range of Eqs 3 and 4 is not limited to only renewal reac-

tion processes. A simple example of a non-renewal process is a catalytic reaction of enzymes

whose reaction rate varies depending on the enzyme’s conformation. In Fig 2D, we present a

simple model of a non-renewal enzymatic process with a single rate-determining step with

activation energy, Ea, weakly coupled to an enzyme conformation coordinate, r. Applying the

Arrhenius equation to this model, one can easily obtain the following formula for the reaction

rate: R = Aexp(−βEa(r))ffik0 exp(−αΓ) with k0 = Aexp[−βEa(req)], a ¼ b@EaðrÞ=@r�r¼req , and

Frequency spectrum of chemical fluctuation
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Γ = r−req, where req denotes the value of r at the equilibrium conformation of the enzyme.

When Γ(t) is a stationary Gaussian process, this model is exactly solvable, and the time correla-

tion function of the reaction rate is simply given by

hRðtÞRð0Þi ¼ k2

0
exp½a2hG2i�exp½a2hGðtÞGð0Þi�: ð7Þ

The reaction represented by this model is a non-renewal process because individual reaction

events occur with different reaction rates and the individual reaction times are correlated with

each other. It is easy to extend the Gillespie algorithm to simulate this simple vibrant reaction

model (See Methods). In Fig 2E, we present the FSPN, SðsimÞz ðoÞ, calculated by applying Eq 1 to

the product number trajectories obtained by stochastic simulation of this reaction model.

Using Eq 4, we can convert the FSPN, SðsimÞz ðoÞ, into the FSRR, SðsimÞR ðoÞ. As shown in Fig 2F,

this FSRR obtained from the simulation result is in excellent agreement with our theoretical

results, SRðoÞ ¼
R1
� 1
dteiothRðtÞRð0Þi with the TCF given in Eq 7. Substituting this result of

FSRR, SR(ω), into Eq 3, we obtain the theoretical result of the FSPN. As shown in Fig 2E, this

exact theoretical result of the FSPN is also in agreement with SðsimÞz ðoÞ obtained from the simu-

lation results, demonstrating the correctness of our theory and our stochastic simulation

Fig 2. Frequency spectra of the product number and the product creation rate for two enzymatic reaction models.

(A) A multi-enzyme reaction scheme for product creation. Individual reaction processes ofN identical enzymes are

independent of each other. A bimolecular enzyme-substrate association occurs at a rate of k1[S] with [S] denoting the

substrate concentration. φES(t) represents the lifetime distribution of an enzyme-substrate complex (ES), which is

modeled as a gamma distribution, i.e. φES(t) = ta−1e−t/b/Γ(a)ba. p2,−1 are the probabilities associated to catalytic reaction

and enzyme-substrate dissociation. (inset) φES(t) for various values of a. htESi is the mean lifetime of an ES complex

defined by htESi ¼
R1

0
dt tφESðtÞ. (B-C) Theoretical predictions (solid lines) and simulation results (circles) for the FSPN

and FSRR for Scheme a with k1htESi[S] = 1 and p2 = p−1 = 1/2. The number of single enzymes is 10. Different colors

indicate different values of a. (D) A vibrant catalytic reaction scheme for product creation by a single enzyme. The

catalytic reaction is set to be the rate determining step in Scheme A, so that the entire enzymatic reaction rate can be

represented by the catalytic reaction rate, R(Γ). The fluctuation of R(Γ) due to coupling with a hidden variable, Γ, is

modeled as an exponential model, R(Γ) = k0e−αΓ. (inset) The time correlation function of Γ, which is here modelled as an

Ornstein-Uhlenbeck process. The fluctuation rate of Γ is given by λ. (E-F) Theoretical predictions (solid lines) and

simulation results (circles) for the FSPN and FSRR for Scheme D for various values of λ. The value of k0/κ0 is chosen to be

0.64. The product decay process is a simple Poisson process. The value of γ is given by γhtESi = 5 in (B) and γ = 5k0 in (C).

For more detailed information about the models and simulation method, see Methods.

https://doi.org/10.1371/journal.pcbi.1007356.g002
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algorithm. Again, both theory and simulation make it clear that the FSRR is far more sensitive

to the enzyme conformation dynamics than the FSPN.

An important example of a non-renewal process is the gene expression process; rates of the

chemical processes constituting gene expression can be a stochastic variable depending on var-

ious cell-state variables, such as the promoter-regulation state, the population of gene machin-

ery proteins and transcription factors, the phase in the cell cycle, and the nutrition state,

forcing the stochastic property of gene expression to deviate from a simple renewal process

[54, 68].

Application to a conventional gene expression network model

We demonstrate an application of Eqs 3 and 4 to a quantitative analysis of the time traces of

the protein copy number for the gene expression network model shown in Fig 3A and 3B.

This model was used by Naef and coworkers to investigate the time traces of the number of

luciferase expressed under the Bmal 1a promoter in mouse fibroblast cells [56]. According to

this model, the transcription process under the Bmal 1a promoter involves a sub-Poisson gene

activation process composed of 7 intermediate reaction steps and a simple one-step gene deac-

tivation process, a Poisson process [56, 69], as schematically represented in Fig 3B. For this

gene expression network model, we conduct a stochastic simulation to obtain the time traces

of the protein copy number, and then use these time traces to calculate the protein number fre-

quency spectrum with Eq 1. We compare this frequency spectrum with the theoretical predic-

tion of Eq 3 and FSRR of the same gene expression network model (see Supporting

Information, S5 Text). As shown in Fig 3C, the prediction of Eq 3 is in perfect agreement with

the simulation results. An explicit, analytic result of the protein number frequency spectrum

obtained from Eq 3 is presented in Supporting Information, S5 Text.

We can obtain the mRNA number frequency spectrum, Sm(ω), from the protein number

frequency spectrum, Sp(ω), by applying Eq 4 to the translation process. This is noteworthy

because the mRNA number frequency spectrum, or the mRNA number time trace, is difficult

to obtain using currently available experimental tools. In the gene expression network model

shown in Fig 3A, the protein creation rate, or the translation rate, is given by RTL = kTLm,

where kTL andm are the translation rate coefficient and the mRNA copy number, respectively.

In general, kTL represents the translation rate per mRNA and is a stochastic variable dependent

on various cell state variables, which include ribosome concentration, concentrations of amino

acids, and mRNA conformation to name a few. However, let us first consider the simplest case

where, compared to the mRNA number variation, the fluctuation of kTL negligibly influences

the protein number fluctuation, which is found to be true in bacterial gene expression [1]. By

applying Eq 4 to the translation process, we obtain

k2

TLSmðoÞ ¼ ðo
2 þ g2

pÞ½SpðoÞ � S
0

pðoÞ� ¼ 2hRTLi½SpðoÞ=S
0

pðoÞ � 1�; ð8Þ

where S0
pðoÞ ¼ 2hRTLi=ðo2 þ g2

pÞ. As mentioned above, hRTLi(= kTLhmi) can be estimated from

the mean protein level and the inverse lifetime of protein, that is, hRTLi = hpiγp or kTL = hpiγp/
hmi. Given that the inverse lifetime, γm, of mRNA can be estimated separately, the value of kTL
can also be estimated from the following asymptotic relation, SpðoÞ=S

0
pðoÞ � 1 ffi kTLgmo� 2,

valid in the high frequency regime (see Supporting Information, S5 Text). Even in the presence

of the strong cell-to-cell variation in the translation rate coefficient, the relation between the

mRNA number frequency spectrum and protein number frequency spectrum is similar to Eq 8,

as shown later in this work.

For the gene expression network model in Fig 3A, we can obtain the mRNA number fre-

quency spectrum, Sm(ω), by three different methods: first, using Eq 8 with protein number
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power spectrum obtained by applying Eq 1 or 2 to the stochastic simulation results of the pro-

tein number time traces, as described in the previous paragraph, second, using Eq 3 with the

exact analytic expression of the TCF of the transcription rate, available to this model (see Eq

S5-9 in Supporting Information), and third, using numerical simulation of the mRNA number

trajectories to calculate the frequency spectrum of the mRNA number fluctuation by Eq 1 or 2.

As shown in Fig 3E, all three results are in excellent agreement.

The frequency spectrum of mRNA number fluctuation can be converted to the frequency

spectrum of the transcription rate fluctuation, which is difficult to observe experimentally.

Applying Eq 4 to the transcription process, we convert the mRNA number frequency spectrum

Fig 3. Spectral analysis of protein number fluctuation. (A) Reaction network model of luciferase expression

controlled by the Bmal 1a promoter in mouse fibroblast cells [56]. ψon(t) and ψoff(t) represent the lifetime distribution

of the active and inactive gene states, respectively. (B) Model of the gene deactivation and activation cycle of the Bmal
1a promoter. Gene deactivation is a simple Poisson process, but gene activation is a non-Poisson process composed of

N consecutive Poisson processes. (C) Frequency spectrum of protein number at three different ratios of the mRNA

lifetime to the protein lifetime. (circle) simulation results; (lines) theoretical results. (D) Modified frequency spectrum

of protein number or mean-scaled frequency spectrum of translation rate, SpðoÞ=S0
pðoÞ � 1½¼ SRTL ðoÞ=2hRTLi�. S0

pðoÞ

is defined as S0
pðoÞ ¼ 2hRi=ðo2 þ g2

pÞ. In the high frequency regime, the asymptotic behavior of the modified

frequency spectrum is given by kTLγmω−2, i.e., limo!1o
2½SpðoÞ=S0

pðoÞ � 1� ¼ kTLgm. (E) Frequency spectrum of the

mRNA number. (triangles) data extracted from the frequency spectrum data, Sp(ω), of the protein number with use of

Eq 8. (circles) simulation results, (lines) the theoretical results of Eqs 3 and 10. (F) Modified mRNA number frequency

spectrum or mean-scaled frequency spectrum of transcription rate. (triangles) data extracted from Sp(ω) with use of

Eqs 8 and 9. (line) the theoretical result of Eq 10.

https://doi.org/10.1371/journal.pcbi.1007356.g003
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to the frequency spectrum of the transcription rate, i.e.,

SRTXðoÞ ¼ ðo
2 þ g2

mÞ½SmðoÞ � S
0

mðoÞ� ¼ 2hRTXi½SmðoÞ=S
0

mðoÞ � 1�; ð9Þ

where S0
mðoÞ is defined as S0

mðoÞ ¼ 2hRTXi=ðo2 þ g2
mÞ with hRTXi = hmiγm. As shown in Fig

3F, the frequency spectrum of the transcription rate fluctuation, extracted from the mRNA

number frequency spectrum, is independent of mRNA lifetime, consistent with the model in

Fig 3A where transcription and mRNA decay are not correlated, while the mRNA number fre-

quency spectrum is dependent on mRNA lifetime. Note that the frequency spectrum of the

transcription rate, obtained by Eq 9, and the mRNA number frequency spectrum, calculated

by simulation trajectories of the mRNA number, are in good agreement with the prediction of

our analytic result for the gene expression network model, which is given in the next

paragraph.

The frequency spectrum of the transcription rate fluctuation carries valuable information

about the dynamics of the transcription regulation process. For the transcription network

model shown in Fig 3A, the transcription rate can be represented by RTX = ξkTX. Here, ξ
denotes the stochastic variable representing the promoter regulating gene state, whose value is

1 for the gene in the active state but 0 for the gene in the inactive state, and kTX denotes the

active gene transcription rate. For the model shown in Fig 3A, the frequency spectrum of the

transcription rate is related to the lifetime distribution, ψon(off)(t), of the active (inactive) gene

state by [70]

SRTXðoÞ ¼ k
2

TXSxðoÞ ¼
2k2

TX

ton þ toff
Re
½1 � ĉonðsÞ�½1 � ĉoff ðsÞ�

s2½1 � ĉonðsÞĉoff ðsÞ�
js¼io: ð10Þ

Here, ĉonðoff ÞðsÞ and ĉonðoff ÞðsÞ denote the frequency spectrum of the gene state variable, ξ, and

the Laplace transform of the lifetime distribution of the active (inactive) gene state, respec-

tively. τon(off) designates the mean lifetime of the active (inactive) gene state, that is,

tonðoff Þ ¼
R1

0
dt tconðoff ÞðtÞ.

The non-monotonic frequency spectrum of the transcription rate, shown in Fig 3F, emerges

when the gene activation process is a multi-step consecutive reaction process. For the gene acti-

vation-deactivation model shown in Fig 3B, the deactivation of the active gene is a Poisson pro-

cess, and ψon(t) is a simple exponential function; in contrast, the gene activation process is a

multi-step process with ψoff(t) being a non-monotonic, unimodal distribution (see Supporting

Information, S6 Text). For this model, ĉonðsÞ and ĉoff ðsÞ are given by ka/(s+ka) and
QN

i¼1
ki=

ðsþ kiÞ½� f̂ ðk; sÞ�, respectively. According to reference [56], the activation process of Bmal 1a
in the embryonic stem cells of mice is best represented by 7 consecutive Poisson reaction pro-

cesses, and the corresponding lifetime distribution, ψoff(t), of the inactive gene state involves 7

different rate parameters, the optimized values of which are given by k1 = k2 = � � � = k6 =

9.93×10−2min−1 and k7 = 0.23min−1. Substituting these expressions of ĉonðsÞ and ĉoff ðsÞ into Eq

10, we obtain the explicit analytic result of SRTXðoÞ for the classical gene expression network

model in Fig 3A. We find that f(k,t), the inverse Laplace transform of f̂ ðk; sÞ, with these opti-

mized parameter values can be approximated by a gamma distribution, ta−1e−t/b/baΓ(a) (Sup-

porting Information, S7 Text).

Application to a vibrant gene expression network model

Although active gene transcription and translation of each mRNA are often assumed to be

simple Poisson processes in gene expression models in the literature, these processes can be
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complicated, non-Poisson processes, because they are composed of multi-step or multi-chan-

nel elementary processes and because their reaction rates may be coupled to heterogeneous

cell environments [54]. With this in mind, from this point forward, we consider the mRNA

and protein number frequency spectra of the more general transcription network model

shown in Fig 4A, where gene activation is a non-Poisson renewal process and transcription of

active genes is a vibrant reaction process with the rate being a dynamic stochastic variable,

which differs from cell to cell and fluctuates over time.

The mRNA number frequency spectrum of the transcription network shown in Fig 4A is

dependent on both the dynamics of gene regulation and active gene transcription dynamics.

For this model, the transcription rate can be represented by RTX = ξkTX(Γ). Here, ξ and kTX(Γ)

denote the gene state variable defined above Eq 10 and the active gene transcription rate that is

dependent on cell state variables, Γ. The frequency spectrum, SRTXðoÞ, of the transcription rate

for the model shown in Fig 4A is obtained as

~SRTXðoÞ ¼ ~SxðoÞ þ ~SkTXðoÞ þ ~SxðoÞ � ~SkTXðoÞ; ð11Þ

where ~SqðoÞ denotes Sq(ω)/hqi2 (see Supporting Information, S8 Text for the derivation of Eq

11). In Eq 11, ~SxðoÞ is determined by the microscopic dynamics of the gene regulation pro-

cesses related to the lifetime distributions of the on and off states by ~SxðoÞ ¼ ðton þ toff Þ
2

SxðoÞ=t2
on ¼ 2ðton þ toff Þ=t

2
onRe½1 � ĉonðsÞ�½1 � ĉoff ðsÞ�=s2½1 � ĉonðsÞĉoff ðsÞ�js¼io. On the

other hand, ~SkTXðoÞ in Eq 11 is dependent on the transcription dynamics of the gene in the

active state. We consider a vibrant, active gene-transcription model with a stochastically fluc-

tuating rate whose time correlation function is an exponential function. Simple examples of

such vibrant reaction models include Zwanzig’s enzyme reaction model [71], whose rate-

determining step is a product escape process from the enzyme’s active site through a fluctuat-

ing channel, and a two-state enzyme reaction model with a state-dependent dichotomous reac-

tion rate. For this model, ~SkTXðoÞ is a monotonically decaying function of frequency (see Fig

1G for an example), given by ~SkTXðoÞ ¼ lðo
2 þ l

2
Þ
� 1
Z2
kTX

with λ and Z2
kTL

denoting the relaxa-

tion rate, defined by hdkTXðtÞdkTXð0Þi ¼ hdk2
TXie

� lt, and the relative variance of the active gene

transcription rate fluctuation, respectively. As shown in Fig 4B, for all cases investigated, the

mRNA number frequency spectrum, calculated by Eq 3 and Eq 11, is in excellent agreement

with the spectrum obtained by simulated mRNA number trajectories.

The frequency spectrum of the transcription rate fluctuation is more sensitive to dynamics

of gene regulation than the frequency spectrum of the mRNA number fluctuation. The fre-

quency spectrum of the transcription rate fluctuation is a monotonically decaying function of

frequency when the gene-activation process is a Poisson or super-Poisson process [72]; how-

ever, this spectrum shows a non-monotonic frequency dependence when gene activation is a

strongly sub-Poisson process, as shown in Fig 4B.

The frequency spectrum of the transcription rate fluctuation is also sensitive to the magni-

tude and speed of the active gene transcription rate fluctuation. As can be seen in Fig 4C, when

Z2
kTL
¼ 0:1, the frequency spectrum, ~SRTXðoÞ, of the transcription rate is a non-monotonic

function of frequency, nearly identical to Fig 3F, and shows no strong dependence on the

relaxation speed, λ, of the active gene transcription rate fluctuation. This is because, when

Z2
kTL
<< 1, ~SxðoÞ, originating from gene regulation of the promoter, is the major contributor

to ~SRTXðoÞ, while ~SkTXðoÞ, originating from active gene transcription, is only a minor contribu-

tor (see Fig 4C). However, as Z2
kTX

increases, so too does the contribution from the active gene

transcription dynamics to SRTXðoÞ, causing SRTXðoÞ to significantly deviate from Sξ(ω); SRTXðoÞ
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Fig 4. mRNA number frequency spectrum of gene expression network model with super-Poisson active gene transcription dynamics. (A) Gene

expression network model with the vibrant active gene transcription process. The active gene transcription rate, kTX, is a dynamic, stochastic variable. The

mean value, hkTXi, of the active gene transcription rate is the same as the value of kTX in Fig 3. The normalized time correlation function (TCF) of kTX is

given by an exponentially decaying function of time, i.e., �kTX ðtÞ ¼ expð� ltÞ. An example of a reaction scheme with the exponential TCF of the rate

fluctuation is a two-channel reaction model (see Fig 1B and 1F). Gene regulation by the promoter is modeled the same as Model II in Fig 3B. (B)

Dependence of the mRNA number frequency spectrum (middle) and the mean-scaled frequency spectrum of the transcription rate (right) on the lifetime

distributions of inactive gene state with the same mean but different shape parameters (left). The values of the relaxation rate, λ, and the relative variance,

Z2
kTX

, of the fluctuation of kTX are set to be 0.01 min-1and 0.1, respectively. (lines) The theoretical results for the mRNA number frequency spectrum

calculated by Eqs 3 and 11. (circles) Stochastic simulation results (see Supporting Information, S8 Text). (C) Dependence of the mRNA number frequency

spectrum on λ for three different values of Z2
kTX

. (surface) The theoretical result. (spheres) Stochastic simulation results. The mRNA number frequency

spectrum has a peak around the promoter fluctuation frequency ωpeak = 2π/(τon+τoff)ffi0.1 rad�min−1, originating from the sub-Poisson gene regulation

dynamics of the promoter. The peak diminishes when Z2
kTX

is large and kTX fluctuates quickly. (D) Three components of the frequency spectrum of the

transcription rate. (black line) the value of SRTX ðoÞ=ð2hRTXiÞ½¼ hRTXi
~S~RTX ðoÞ=2� or SmðoÞ=S0

mðoÞ � 1 with S0
mðoÞ ¼ 2ðhmigmÞ=ðo2 þ g2

mÞ. The value of λ
is set to be 0.01 min−1. (colored lines) three components of the frequency spectrum: Sξ(ω) originating from the gene regulating dynamics of the promoter

(blue), SkTX ðoÞ originating from the active gene transcription dynamics (red), and their convolution SxðoÞ�SkTX ðoÞ (green). See Eq 11. The relative

contribution of SkTX ðoÞ and SxðoÞ�SkTX ðoÞ increases with Z2
kTX

, while Sξ(ω) does not. When the value of Z2
kTX

is 10, the relative contribution of Sξ(ω) is

marginal, but the non-monotonic peak of the frequency spectrum persists due to the contribution of the convolution term, SxðoÞ�SkTX ðoÞ, given that λ is

smaller than ωpeak (see S3 Fig for the case where λ is as large as ωpeak).

https://doi.org/10.1371/journal.pcbi.1007356.g004
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is a monotonically decaying function of frequency in the low frequency regime due to the con-

tribution from SkTXðoÞ, as demonstrated in Fig 4B and 4C. When Z2
kTX

is far greater than unity,

~SRTXðoÞ is dominantly contributed from ~SkTXðoÞ and ~SxðoÞ�~SkTXðoÞ, the last two terms on the

R.H.S. of Eq 11, and it is due to the latter contribution that ~SRTXðoÞ has a non-monotonic fre-

quency dependency in contrast to ~SkTXðoÞ.

Generalizations

Although we have so far assumed the translation rate coefficient, kTL, is constant, it can also be

a random variable, the value of which differs from cell to cell. We find that, for this case as

well, Eq 3 holds and the protein number frequency spectrum is related to the mRNA number

frequency spectrum by

SpðoÞ=S
0

pðoÞ � 1 ¼ hkTLið1þ Z
2

kTL
ÞSmðoÞ=2hmi; ð12Þ

as long as the cell-to-cell heterogeneity of kTL is much greater than the dynamic fluctuation of

kTL in each cell (see Supporting Information, S10 Text).

Gene copy number variation is another factor that potentially affects the frequency spec-

trum of mRNA number or protein number fluctuation. Naef and co-workers investigated the

gene regulation dynamics of the Bmal 1a promoter in mouse fibroblast cells that do not differ-

entiate. For this system, the gene copy number is always unity and does not vary. However, in

general, gene copy number varies with time in a time scale much longer than the individual

transcription event. In the simplest case, where the correlation between the number of proteins

created by one gene and the number of proteins created by another is negligible, the frequency

spectrum of the protein number is given by the frequency spectrum of the protein number of a

single gene system multiplied by the average gene copy number. However, the expression lev-

els of two non-interacting genes are correlated because of shared environment effects. We

leave it to future research to investigate how the cell-environment induced correlation between

the expression levels of different genes affects the frequency spectrum of mRNA and protein.

Both mRNA decay and protein decay are enzyme reaction processes that may differ greatly

from simple Poisson processes. Additionally, in the presence of feedback gene regulation, the

gene expression rate is dependent on the protein number. For such cases, Eq 3 and the equa-

tions that are derived from Eq 3 in this work are only approximately valid. A generalization of

this work to encompass these cases is possible and will appear elsewhere.

We finish this section by emphasizing that, in application of our theory to the analysis of

experimental FSPN data, accuracy of the FSRR extracted from the FSPN data using Eq 4 relies

on the accuracy of the FSPN data. That is to say, to obtain correct information about the reac-

tion mechanism and dynamics from the FSRR, one first has to obtain accurate FSPN data

from which the FSRR is extracted. This can be experimentally challenging, especially when the

mean reaction rate, hRi, is far greater than the FSRR, SR(ω), or when the first term on the R.H.

S. of Eq 3 is far greater than the second term.

Conclusion

We investigated how the frequency spectrum of product number fluctuation is related to the

topology of the reaction network and the dynamics of elementary processes composing the

network. For this purpose, we derived an exact analytic result for the frequency spectrum of

the product number fluctuation starting from a generalized master equation. This result

enables one to obtain the frequency spectrum of the reaction rate fluctuation (FSRR) from the

frequency spectrum of the product number fluctuation (FSPN). The FSRR is more sensitive to
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the mechanism and dynamics of the product creation process than the FSPN. The FSRR van-

ishes when product creation is a Poisson process. However, the FSRR is a monotonically

decaying function of frequency, when the product creation process is a super-Poisson process,

such as a multi-channel process, but is a non-monotonic function of frequency with one or

more peaks when the reaction is a sub-Poisson process, such as a multi-step process.

Our theory is applicable not only to the conventional kinetic network model but also to

vibrant reaction network model consisting of multistep and/or multichannel elementary pro-

cesses with arbitrary reaction orders, reaction time distributions, and rate coefficient fluctua-

tions. Vibrant gene expression network models enables quantitative understanding of the

mRNA and protein number fluctuations for various gene expression systems [54, 55], which

could not be quantitatively explained by the conventional gene network models and the CME.

An advantage of our approach is that we don’t have to construct a priori explicit model for the

environment coupled to the system network; we explicitly model only the control variable

dependent part of the entire network and the effects of the remaining part of the network and

environment are collectively accounted for by the time correlation function (TCF) of the rate

fluctuation. This vibrant reaction network model based approach is useful in quantitative anal-

ysis of chemical fluctuations generated from intracellular reaction networks consisting of ele-

mentary reaction processes with arbitrary reaction time distribution and environment coupled

rate fluctuations, for which it is a difficult to construct the correct and explicit model in terms

of the conventional kinetic network model consisting of a few discrete chemical states and

Poisson transition process between them.

We demonstrated our approach to frequency spectrum analysis of chemical fluctuation for

a generalized enzyme kinetic models showing that the frequency spectrum of reaction rate

serves as a sensitive probe of the reaction dynamics of the enzyme-substrate complex. Then, by

applying our approach to a gene expression network, we can extract the mRNA number fre-

quency spectrum from the protein number frequency spectrum. From the mRNA number fre-

quency spectrum, we can further extract quantitative information about the gene regulation

dynamics of the promoter and the active gene transcription dynamics. This was demonstrated

for the gene network model of luciferase expression under the Bmal 1a promoter in mouse

fibroblast cells and for a more general vibrant gene network model.

Methods

In this section, we present the detailed algorithm used to generate the simulation results in Fig

2. For the enzymatic reaction model [61, 68] in Fig 2A, which is more general than the conven-

tional Michaelis-Menten model, every stochastic trajectory begins with the enzyme-substrate

association step (E+S!ES). The time elapsed for each enzyme-substrate association event (E
+S!ES) is sampled from φ

1
ðtÞ ¼ k1½S�e� tk1 ½S�. The lifetime of an ES complex is then sampled

from a non-exponential distribution, here, the gamma distribution, φES(t) = ta−1e−t/b/Γ(a)ba.
The fate of a given ES complex, that is, either dissociation (E+S ES) or catalytic reaction

(ES!E+P), is chosen using the probability, p2, of catalytic reaction. A uniform random num-

ber is then generated between 0 and 1, and if it is smaller than p2 at that time, a catalytic reac-

tion occurs, resulting in a product molecule. Otherwise, the ES complex is dissociated into a

free enzyme and a substrate. Either case is followed by another round of enzyme-substrate

association reactions. The lifetime of each product molecule is sampled from gze� tgz .
To obtain the FSPN of the N-enzyme reaction system considered in Fig 2A, N single-

enzyme trajectories, independent of each other, are simultaneously generated and superposed

to yield a single trajectory of the product number fluctuation. Because we need stationary

pooled trajectories to calculate the FSPN, the initial time of pooled trajectories is arbitrarily
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chosen at a time long enough that the distribution of the product number reaches its stationary

state.

For vibrant reaction models, the reaction rate, R(Γ), stochastically fluctuates over time

because of its coupling to state variable Γ, which can be a multidimensional vector. When a

stochastic realization of Γ is generated with a time step, Δt, the reaction probability, R(Γ(t))Δt,
is calculated at every time step and compared with a uniform random number between 0 and

1. When R(Γ(t))Δt is less than this random number, a reaction occurs, resulting in a product

molecule at that time.

Our method generalizes the algorithm in reference [73] to a state-dependent, non-Poisson

reaction process. Lim et al.’s algorithm [73] is valid when the fluctuation time scale of Γ is

much longer than the time scale of the individual reaction event. However, the current method

is free of such limitation. In comparison with the Extrande method developed by Voliotis,

Thomas, Grima, and Bowsher [74], our method shows a faster convergence rate under the

same condition (see S5 Fig). In Fig 2B, the conformation coordinate, Γ, of an enzyme is mod-

elled as a simple Ornstein-Uhlenbeck process characterized by zero mean, unit variance, and

relaxation rate, λ, of the exponentially decaying time correlation function, hΓ(t)Γ(0)i/hΓ2i =

e−tλ. We use the following update equation to generate this process: Gðt þ DtÞ ¼ GðtÞe� lDt þ
ð1 � e� 2lDtÞ

1=2N ½0; 1� with N ½0; 1� denoting a Gaussian random number with zero mean

and unit variance [75]. For Γ to be a stationary process from the beginning of the simulation,

every trajectory of Γ must begin with Gðt ¼ 0Þ ¼ N ½0; 1�. The reaction rate, R(Γ), is modelled

as R(Γ) = k0e−αΓ, with k0 and α being constant in time, and the value of Δt is chosen to be

k0Δt = 10−3 here.
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