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Abstract: Calibration of a vehicle camera is a key technology for advanced driver assistance
systems (ADAS). This paper presents a novel estimation method to measure the orientation of
a camera that is mounted on a driving vehicle. By considering the characteristics of vehicle
cameras and driving environment, we detect three orthogonal vanishing points as a basis of the
imaging geometry. The proposed method consists of three steps: i) detection of lines projected
to the Gaussian sphere and extraction of the plane normal, ii) estimation of the vanishing point
about the optical axis using linear Hough transform, and iii) voting for the rest two vanishing
points using circular histogram. The proposed method increases both accuracy and stability by
considering the practical driving situation using sequentially estimated three vanishing points. In
addition, we can rapidly estimate the orientation by converting the voting space into a 2D plane at
each stage. As a result, the proposed method can quickly and accurately estimate the orientation
of the vehicle camera in a normal driving situation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Autonomous driving systems need various types of sensors such as color, radar, and light detection
and range (LiDAR) sensors for accurate, integrated analysis of driving situation to guarantee
human safety and convenience. Especially, a complementary metal-oxide semiconductor (CMOS)
imaging sensor is widely used in video recording systems and advanced driver assistance systems
(ADAS) for around-view monitoring (AVM) because of low cost and the similar characteristics to
the human vision [1,2]. Recently, advanced technologies using a CMOS sensor are being studied
to realize autonomous vehicles [3]. A number of deep learning-based object detection algorithms
were developed for the next generation vehicles to provide visual intelligence. Three-dimensional
(3D) imaging techniques ranging from stereo matching to dense 3D reconstruction are another
important technical basis for autonomous driving systems [4]. Image sensor-based approaches
can exploit various advantages that have been developed in image processing and computer
vision fields, including a pre-processing algorithm to enhance the quality of input image [5],
image-based depth-map estimation [6], and automatic calibration using a single camera [7], to
name a few.

Camera calibration is the most important task in 3D imaging technology since it provides both
intrinsic and extrinsic camera parameters associated with the geometric relationship between 3D
world space and 2D imaging sensor. Conventional calibration methods used a special pattern such
as a checkerboard [8] or orthogonal array of dots [9]. However, in-vehicle camera calibration is a
challenging problem since a very large calibration pattern is needed and the camera is frequently
dislocated due to the nature of dynamic driving.
To estimate and correct camera orientation during operation, a number of online camera

calibration methods using vanishing points (VPs) were proposed [10–12]. In general, a VP can be
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extracted by finding an intersection of the lines projected from parallel structures in a 3D world.
More specifically, a VP extraction process is performed in either the image space or Gaussian
unit sphere. Image-based approaches use line segments in the image [13–18]. Wu et al. proposed
a voting method in the image space using a weight for robust estimation [14]. Elloumi et al. used
a random sample consensus (RANSAC) algorithm to estimate three VPs for camera orientation
estimation by separately considering both infinite and finite VPs [15]. J-linkage algorithm uses a
modified random sampling method [16]. To reduce the computational complexity of the J-linkage
algorithm, fast J-linkage algorithm was proposed by setting the initial hypothesis considering
the length of the line [18]. Although the image-based approach can be used even when intrinsic
parameters are unknown, its accuracy is low because of an inaccurate approximation of infinite
parallel lines. On the other hand, the Gaussian sphere-based approach transforms 2D data into a
spherical surface [19–23]. Since the Gaussian sphere is a finite space, both finite and infinite
VPs are treated as the same in the sphere. 3-line RANSAC algorithm estimates an orthogonal
VP triplet using the Gaussian sphere [21]. Although the RANSAC algorithm is fast and robust to
noise, classification result depends on the random selection process, and therefore it does not
guarantee the optimal solution. Another approach uses a branch-and-bound (BnB) algorithm
to estimate the optimal camera orientation. It considers the rotation estimation problem as a
convex problem that can be solved using interval analysis [22] and parametric space [23]. Lu et
al. combined 2-line RANSAC with an exhaustive search scheme to find global solutions without
significantly increasing the computational burden [24]. There was an approach to use the dual
space that does not need camera calibration. More specifically, Lezama et al. used PCLines
to transform lines to points in the dual space [25]. Furthermore, tracking-based methods that
trace lines, motions or planes and estimates the relationship between two adjacent frames were
proposed for stability of the estimated angles [15, 26–29].
In this paper, we present a novel in-vehicle camera orientation estimation method by finding

three orthogonal VPs under assumption that the vehicle drives straight ahead in the Manhattan
world [30,31]. To ensure the orthogonality of the detected VP, lines in the image are converted to
the corresponding plane normal vector on a spherical space and the voting algorithm is used. In
order to efficiently estimate the vanishing point in the vehicle environment, the proposed method
first estimates the VP along the driving direction which is the Z-axis of the vehicle coordinate
system. The VP along the driving direction is extracted using linear Hough transform. In this
step, unit plane normal vectors are scaled to make the problem into the 2D line fitting problem.
Next, the rest VPs are selected from the circular histogram, and they are orthogonal to the VP
along the driving direction. Finally, we estimate the camera orientation using three orthogonal
VPs.

The proposed method is designed to speed up the camera orientation estimation process in the
context of the a real vehicle driving environment. Specifically, the proposed step-by-step VP
estimation process using Hough transform and circular histogram decreases the computational
time to estimate the orientation angles. The circular histogram also provides a clear standard to
vote other VPs since each bin of angle has the number of normal vectors of lines orthogonal to
the driving direction. For that reason, the proposed method ensures the orthogonality of the VPs.
The proposed method can be applied to automatic camera calibration for ADAS because it can
accurately estimate the camera orientation while the vehicle drives straightforward.

This paper is organized as follows. After introducing theoretical background in section 2, the
proposed camera orientation estimation method is presented in section 3. The performance of
the proposed method is verified by experimental results in section 4, and section 5 concludes the
paper.
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2. Theoretical background

2.1. Properties of vehicle camera geometry

A digital image acquired by an imaging sensor is defined as a set of 2D points projected from a
3D world space. Given a point in the 3D homogeneous coordinate XW = [Xw Yw Zw 1]T ∈ P3

and a projected point in the 2D planar space xi = [u v 1]T ∈ P2, the camera projection model is
defined as

xi = PXW , (1)

where P represents the camera projection matrix, Xw , Yw , and Zw respectively x, y, and z value
of 3D world coordinate, u and v respectively x and y value of 2D planar coordinate. The camera
projection matrix is defined as

P = K[R | T] =


fx s cx

0 fy cy

0 0 1




r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz


, (2)

where K represents the camera matrix containing specifications of lens and sensor, R the rotation
matrix, T = [tx ty tz]

T the translation vector, fx and fy respectively the focal lengths in x and y

directions, (cx, cy) the principal points or the center of projection, and s the skew value of the
camera. K consists of intrinsic parameters while [R | T] contains extrinsic parameters including
orientation and position of the camera.

Fig. 1. Camera geometry in vehicle: (a) six extrinsic parameters including roll, pitch, yaw,
and three-dimensional coordinates and (b) the origin and axis of the vehicle's 3D coordinate
system. The Y -axis indicates the upward direction from the origin.

Figure 1 shows a camera geometry model in the vehicle coordinate system, where the camera
calibration is performed on the vehicle's 3D coordinate system. For that reason, there are no
changes in camera parameters in terms of the vehicle coordinate system when a vehicle moves
straight ahead on a flat, well-paved road.

2.2. Orientation estimation using Gaussian sphere

A Gaussian sphere is defined as a unit sphere, and the principal point of a camera is mapped to
the center of the Gaussian sphere. In transforming a 2D image plane to the 3D Gaussian sphere,
the coordinate is shifted to the principal point and normalized by the focal length. Given a point
xi in the image space, the point xg projected onto the Gaussian sphere can be obtained using the
intrinsic matrix [27] as
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xg = K−1xi . (3)

Also, xg can be represented using the corresponding point XW in the world space as

xg = K−1PXW = [R | T]XW . (4)

Since the intrinsic parameters are removed from the transformation process, it is convenient to
consider the orthogonality property of VPs. In addition, rotation can be directly estimated using
the orthogonal VP triplet.

Fig. 2. Relationship between the image plane of a camera and the corresponding Gaussian
sphere. XG , YG , and ZG represent axes of the Gaussian space, and XI and YI represent
axes of the image plane.

Figure 2 shows the relationship between the image plane of a camera and the corresponding
Gaussian sphere. The image plane contains a 2D edge or line and the principal point of the
camera lies on the edge plane. The intersection of the edge plane and Gaussian sphere generates
a great circle that represents the line in the Gaussian sphere. The normal vector of the edge plane
defines the plane normal of the line [32].
When parallel lines in the world coordinate are projected onto the Gaussian sphere, they

generate VPs at antipodal points in the Gaussian sphere as shown in Fig. 3(a). The line passing
the principal point and VPs is called a vanishing direction (VD). Since plane normals of the
parallel lines generate a distribution shaped like a great circle, the normal of the great circle
coincides with the VD of the parallel lines as shown in Fig. 3(b).

Given a VD V = [vx vy vz o]T ∈ P3, the transformed coordinate by the extrinsic parameters is
obtained as

Fig. 3. Vanishing direction (VD) representations using the Gaussian sphere model: (a) VD
representation using plane normals and (b) VD representation using the intersection of great
circles.
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V′ = [R | T]V = R[vx vy vz]
T, (5)

which states that the transformation of VD is influenced by only rotation, and it is invariant to
translation. As a result, orientation can be estimated according to VD. Especially when the
orthogonal VD triplet Vc = [V1 V2 V3] is known, rotation matrix R about the world coordinate
can be simply obtained from the following equation [10]

Vc = RI, (6)

where I is the 3x3 identity matrix about the world coordinate.

3. Proposed method

In a vehicle camera system, the camera orientation can be estimated using a rotation vector.
Therefore, it is necessary for online calibration to quickly analyze input images while driving and
calculate the optimum angle of rotation. In this section, we present a novel camera orientation
estimation method for online calibration in vehicle camera systems.

3.1. Overview

Fig. 4. Relationship between Manhattan world and Gaussian sphere: (a) a street image that
satisfies Manhattan world assumption and detected line segments and (b) the corresponding
plane normal vectors distributed in the Gaussian sphere.

The proposed method estimates the orientation of the camera in a vehicle that moves straight
ahead in the Manhattan world [30]. The world coordinate system is aligned with the direction
of the Manhattan world. Specifically, the moving direction of the vehicle becomes the Z-axis,
the vertical direction becomes the Y -axis, and the horizontal direction becomes the X-axis. As
shown in Fig. 4(a), we could detect a sufficient number of the horizontal and vertical groups of
lines. In particular, the straightforward movement of the vehicle makes many blue lines in the z
direction, and the rectangular structure of the Manhattan world makes green and yellow lines
in the x and y directions, respectively. Figure 4(b) shows that normal vectors corresponding
to the three groups of lines are distributed on three great circles in the Gaussian sphere. The
three great circles are mutually orthogonal in the spherical space under the Manhattan world
assumption. We assume that: i) the vehicle moves straight ahead to avoid the angle variation
due to non-straight motions, and ii) the intrinsic matrix used in the projection onto the Gaussian
sphere is a known constant because an in-vehicle camera commonly uses a fixed-focus camera
and because intrinsic parameters are a priori determined.
Figure 5 shows the block diagram of the proposed camera orientation estimation algorithm.

We first detect line segments L from the input image f (x, y) using the line segment detection
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Fig. 5. Block diagram of the proposed camera orientation estimation algorithm.

(LSD) algorithm and the corresponding plane normal vectors N are computed in the Gaussian
sphere. After projecting normal vectors into a plane of a cube, the proposed method performs the
linear Hough transform to obtain the Z-axis representing vehicle's moving direction. To estimate
two other axes, we compute a circular histogram using the orthogonal property to the Z-axis.
Since each estimated axis are represented as the vanishing point, the proposed method finally
obtains three camera orientation angles such as pitch, yaw, and roll.

3.2. Line segment detection and normal vector generation

Fig. 6. Line segment detection result: (a) input image and (a) the result of LSD.

Given an input image f (x, y), the proposed method starts from line detection for the computation
of three main axes of the camera coordinate system. The input image has structures satisfying
the geometric orthogonality by projection from the Manhattan world. For camera orientation
estimation, it is necessary to detect solid lines from structures, rather than gradient information.
For that reason, the proposed method detects lines using the line segment detection (LSD)
algorithm [33]. After preprocessing for noise reduction using a simple Gaussian filter, line
candidates of local regions are detected by calculating angles θ as

θ = arctan
(
5 fx(x, y)
− 5 fy(x, y)

)
, (7)

where

5 fx(x, y) =

−1 1

−1 1

 ∗ f (x, y),

5 fy(x, y) =

−1 −1

1 1

 ∗ f (x, y),

(8)
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and 5 fx(x, y) and 5 fy(x, y) respectively represent the horizontal and vertical gradients. Finally,
a line is extracted by searching line candidates with similar θ. As a result, we obtain major
structures by lines as shown in Fig. 6.

Next, detected lines are projected into the Gaussian sphere to estimate the vanishing direction.
From lines in 2D image L = {l1, l2, ..., ln}, the correspondingly projected 3D lines are given as

liG = K−1li, (9)

where li
G
denotes the line projected version of li into the surface of the Gaussian sphere. A line in

the 3D sphere represents a great circle whose center is the origin of the sphere. Likewise, two and
more lines satisfying the parallelism pass through two antipodal intersections. However, incorrect
intersections are actually created by various potential problems such as camera jittering and
image noise. In addition, many false candidates for the vanishing direction (VD) are generated
since every two lines have an intersection even if they are not parallel.
For efficient computation of VDs, the proposed method uses the unit plane normal of

the great circle. Given projected lines LG = {l1G, l
2
G, ..., l

n
G
}, a unit vector of plane normal

N = {n1, n2, ... , nn} is computed as

ni =
ni
y
′

|ni
y
′
|
ni ′, (10)

where ni ′ represents normal vector of the li
G
with the coordinate (ni

x
′
, ni

y
′
, ni

z
′
) and computed as

ni ′ =
pi
s × pi

e

|pi
s × pi

e |
, (11)

and pi
s and pi

e respectively represent the start and end point of li
G
. In Eq. (10), all plane normal

vectors are projected into a hemisphere satisfying y > 0 to prevent the direction ambiguity.
Because a plane normal vector is projected onto antipodal points in the Gaussian sphere.

3.3. Vanishing direction estimation using linear Hough transform

Detected line segments in the 2D image are mapped to unit plane normals in the Gaussian sphere
as shown in Fig. 7. The set of plane normals form a great circle whose normal vector represents
the vanishing direction. Unfortunately, it is difficult to determine the great circle since the set of
unit plane normal, N = {n1, n2, ..., nn}, contains outliers that do not satisfy the orthogonality
property in the Manhattan world. To solve this problem, the proposed method uses the unit cube
whose centroid is the same to the center of the Gaussian sphere [34]. A plane normal distribution
generated by a certain VD is projected onto the adjacent plane to form a line as shown in Fig. 7.

Fig. 7. Relationship between the Gaussian sphere and unit cube.
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Fig. 8. Vanishing direction estimation using the linear Hough transform: (a) distribution of
unit plane normals in the Gaussian sphere, (b) projection of plane normals into a 2D plane
of the unit cube, (c) the strongest line estimation by linear Hough Transform, and (d) result
of VD estimation.

In addition, lines in the Z-direction are mostly detected by the LSD algorithm while the vehicle
is driving straightforward. A step-by-step vanishing direction process is illustrated in Fig. 8.
Given unit plane normals that are transformed from the detected line segments are shown in

Fig. 8(a), the proposed method estimates the VD by extracting a strongest line using the linear
Hough transform. We then project plane normals on the 3D spherical surface into the 2D plane
satisfying y = 1 to define the Z-axis as vehicle's driving direction. A projected point of ni is
defined as

ui = {ni/ni
y | |ni

x | ≤ 1, |ni
z | ≤ 1}. (12)

Next, the line for ni is estimated using the linear Hough transform. To generate the accumulated
space, we use some parameters such as angle θ in the range of (−π/2, π/2), offset µ in the range
of (−1, 1), and interval between adjacent bins of 0.01. Therefore, the proposed method obtains
the Z-axis VD VZ by computing maximum values of two parameters, θmax and µmax , as

VZ = v1 × v2. (13)

where v1 and v2 represent end points of the extracted line by the linear Hough transform as

v1 =
[
1 1 θmax + µmax

]
,

v2 =
[
−1 1 −θmax + µmax

]
.

(14)

Figures 8(c) and 8(d) show the Z-axis VD estimation result by extracting the strongest line
using the linear Hough transform. As a result, the estimated line as shown in Fig. 8(c) is
re-projected onto a great circle with the Z-axis VD into 3D sphere as shown in Fig. 8(d).

3.4. Voting for the vanishing direction using circular histogram

Although the linear Hough transform can determine a main axis by searching the strongest line
distribution, it is not easy to determine two other axes if plane normals are not sufficiently detected
as shown in Fig. 9(a). For that reason, the proposed method casts a vote for two VDs using the
geometric orthogonality with the Z-axis. If we have the reliable Z-axis VD, corresponding two
great circles are orthogonal to VZ and meet the great circle of VZ on a pair of antipodal points as
shown in Fig. 9(b). Given a set of two VD candidates C with the great circle for the Z-axis, an
element c(ω) in the continuous range ω of [0, 2π) lies on C. Therefore, c(ω) is located on the
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Fig. 9. Estimation of X and Y -axes: (a) distribution of plane normal on the spherical surface
and the estimated Z-axis and (b) VD candidate c(ω).

Fig. 10. Estimation of X- and Y -axes: (a) rotated vectors onto the XY -plane, (b) the
corresponding circular histogram and (c) the finally estimated VD.

intersection between C and a great circle satisfying the orthogonality with C in ω, denoted as
Nω , as shown in Fig. 9(b).
To vote for two main axes, we generate a circular histogram for VZ . Given a plane normal ni ,

the proposed method computes a normal vector mi by computing the cross-product with VZ as

mi =
VZ × ni

|VZ × ni |
. (15)

As a result of Eq. (15), all unit plane normals lie on C.
Since C represents a plane with the normal vector VZ , it can be considered as the rotated circle

as shown in Fig. 10(a). To simplify the accumulation of c(ω), all mi in C are rotated in the plane
with z = 0 as

m′i = RCmi, (16)

where m′i represents the normal vector in the plane with z = 0, and RC the rotation matrix to
transform mi in C as
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RC = RCxRCz =


1 0 0

0 cosα − sinα

0 sinα cosα



cos β − sin β 0

sin β cos β 0

0 0 1


, (17)

where RCz is the Z-axis rotation to transform the vector to the plane for x = 0, RCx is the X-axis
rotation to transform the vector to the plane for y = 0, and α and β respectively denote the angles
of RCx and RCz that can be computed using Vz = (vzx, vzy, vzz)T as

α = arccos(vzz), β = arctan(vzx/vzy). (18)

Next, c(ω) is accumulated in the range of ω ∈ [0, 2π) from 3600 bins with the interval of
π/1800. Figure 10(b) shows the circular histogram represented by the rose diagram as shown in
Fig. 10(b). From the histogram, we vote the maximum index ωmax as

ωmax = max
ω

h(ω), (19)

where h(ω′) represents the histogram for ω′ with the range of [0, π/2) which is accumulated
from four bins of c(ω) with the interval of 90◦ as

h(ω′) =
3∑
i=0

c(ω + 90i). (20)

Since ωmax contains two orthogonal points by voting from the circular histogram, it has the
information of two VDs satisfying the geometrical orthogonality with V. For that reason, the
proposed method finally estimates two VDs by transformation of the inverse of Rc as

Vx = RCVrot, (21)

where Vrot represents the vector with ωmax in a plane for z = 0. Vy is also computed by the
cross-product between Vx and Vz as

Vy = Vx × Vz . (22)

Consequentially, the camera orientation ρ3D is finally obtained by computing the rotation
matrix and Euler's formula from three VDs representing as the XY Z axis of the camera [10].

4. Experiment results

In this section, we demonstrate the feasibility of the proposed method by comparing the
performance with existing methods. The experiments were performed using a personal computer
with a i7-7700 4.20 GHz processor and 16 GB RAM. For performance comparison, we used
3-line RANSAC [21], J-linkage [16], and the dual space-based [25] methods. 3-line RANSAC
algorithm obtains three orthogonal VDs in a Gaussian sphere and to determine the direction of the
axis by making a minimal set using three randomly selected lines with repetitive random sampling.
J-linkage algorithm estimates multiple VPs in the image space by creating a relationship with the
edges by randomly creating a hypotheses of VPs. Dual space-based method also computes VPs
using PCLines transformation to classify lines. For quantitative evaluation of three methods, we
measured the mean and standard deviation of the angle in each frame.

To test the performance under the actual driving environment, we acquired three videos from
a CMOS camera employed in the front side of a vehicle. More specifically, a fish-eye lens
camera of 1280 × 720 resolution and 60 frames per second is equipped in the vehicle system to
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Fig. 11. A test video acquired from the real world: (a) input frame of three videos under the
straightforward driving environment (see Visualization 1, Visualization 2, and Visualization
3) and (b) line extraction results from (a).

generate a top-view image for AVM. We assume that all intrinsic parameters including some
distortion factors are known. We used a fixed focal length within a moderate range which is
commonly used in a vehicle camera. In addition, the controller area network (CAN) data about
steering information was used to perform the orientation estimation while the vehicle is driving
straightforward. Figure 11 shows three sets of frames used in the first experiment and the line
detection results, respectively. We acquired the first set of 600 frames, Video 1, on a two-lane
road environment (see Visualization 1). In the first set, all the extracted lines do not correspond to
the Manhattan world, especially in regions including trees and bushes. We acquired another 600
frames, Video 2, on a six-lane road (see Visualization 2). Many lines satisfying the Manhattan
world show from not only road but also background with a lot of buildings. The third set of 1200
frames, Video 3, has a large number of markers on the street, and many lines of street lamps,
banners and buildings are found altogether (see Visualization 3).

Table 1. Evaluated standard deviation of camera orientation estimation using four different
methods.

3-line RANSAC [21] J-linkage [16] PCLines [25] Proposed Method

No. Result Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw Roll

1

Angle -28.5 -0.69 0.96 -25.3 1.49 -7.64 -25.9 -2.68 2.28 -28.2 -0.47 1.52

Error 0.29 0.89 0.38 3.44 3.07 8.22 2.90 1.10 1.70 0.57 1.11 0.94

Max 22.5 49.1 41.9 33.4 25.8 44.4 90.8 63.2 44.4 7.97 26.2 11.2

Std. 1.04 4.09 11.3 3.65 6.02 17.1 12.9 22.1 11.6 0.84 2.46 4.62

2

Angle -28.6 0.73 1.70 -26.9 0.60 1.27 -27.5 -2.93 2.20 -28.4 -0.68 0.69

Error 0.43 2.31 1.12 1.88 2.18 0.69 1.32 1.35 1.62 0.36 0.90 0.11

Max 21.4 57.0 15.2 10.0 18.3 40.5 90.7 56.1 44.4 2.68 5.14 2.11

Std. 1.09 5.27 2.62 1.21 3.05 4.44 8.20 11.3 4.85 0.49 0.88 0.76

3

Angle -28.4 -0.86 1.06 -26.2 0.01 -3.63 -28.8 -2.75 1.72 -28.9 -1.55 0.09

Error 0.41 0.72 0.48 2.61 1.59 4.21 0.02 1.17 1.14 0.14 0.03 0.49

Max 24.8 46.8 36.1 18.3 23.4 18.8 88.0 51.8 31.4 1.31 3.57 10.8

Std. 0.48 2.15 5.12 3.12 5.46 9.36 2.81 6.84 1.69 0.24 0.52 2.99
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Table 1 shows the results of the first experiment in the actual driving environment. Even in an
urban environment, the accuracy of estimating VD and camera orientation becomes lower as
the number of non-orthogonal lines increases. Video 1 has many lines that do not match the
Manhattan world assumption because of bushes and trees. In this case, the performances of the
algorithm tend to be lower than in other test cases. Although the 3-line RANSAC algorithm
provides the most accurate results among four algorithms, the proposed method provides a similar
accuracy with the lowest standard deviation. In case of Video 2 and Video 3, the proposed
method showed stable and accurate results with the lowest error and standard deviation among
comparison methods. Overall, the proposed method has more stable results than other methods
in real vehicle environment because it ensures the orthogonality of VDs and at the same time
considers all the angles.

Table 2. Orthogonality between vanishing directions estimated by three different methods.

3-line
RANSAC [21] J-linkage [16] PCLines [25] Proposed

Average 0 0.03 0.08 0

Max 0 1 0.59 0

Table 3. Running time of each part of the proposed algorithm (sec/frame).

Line
detection

Plane
normal

generation

Hough
transform

Circular
histogram

Orientation
estimation

Total

Time 0.1051 0.0366 0.0209 0.0034 0.0002 0.1663

Table 4. Comparison of running time (sec/frame).

3-line
RANSAC [21] J-linkage [16] PCLines [25] Proposed

Time 0.25 3.6 3.98 0.17

The second experiment tests the orthogonality of the estimated VDs. The orthogonality error
is defined as inner products of each pair of VDs as

e = Vx · Vy + Vy · Vz + Vx · Vz . (23)

Table 2 shows the results of orthogonality error of estimated VDs using images of Fig. 11.
The J-linkage algorithm has nonzero orthogonality errors since the VPs are estimated in the
image space without considering the orthogonality. The PCLines algorithm extracts the VD
triplet among estimated multiple VDs considering the orthogonality. However, it does not
fully guarantee the orthogonality. On the other hand, the 3-line RANSAC algorithm produces
orthogonal VDs since it estimates the VDs in the Gaussian sphere using minimal solution sets
ensuring orthogonality. The proposed method also satisfies the orthogonality since it sequentially
estimates the orthogonal VDs using the linear Hough transform and circular histogram.

Table 3 shows the processing time of each part of the proposed algorithm. Also, Table 4 shows
the processing time of the three estimation methods. Although the proposed method is based on
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the voting algorithm using all of the detected edges to consider all directions, it is faster than any
other methods by converting accumulation space into the 2D plane using only cross products and
projections.
For qualitative evaluation of the camera orientation estimation, we classified some detected

lines using thresholding of the geodesic distance d(V, l) = | arcsin(V · n)| less than 0.07. Figure
12 shows the result of classifying lines from a real video acquired by a driving vehicle. The
odd rows are the input images and the even rows are the results of line detection. The blue
lines represent the classified lines of the Z-axis for the direction of straightforward driving, the
yellow lines the Y -axis for the horizontal direction, and the green lines the X-axis for the vertical
direction. Experimental results show that most suitable lines in the Manhattan World are shown
in the right direction, which demonstrates that the proposed algorithm can accurately estimates
the actual camera orientation.

Fig. 12. Classification results using the camera orientation angles estimated from a real
video: (a) the input 160th, 230th frames of first video, and 400th frame of second video, (b)
the corresponding classification results, (c) the input of 530th frame of second video, 120th,
and 500th frames of third video, and (d) the corresponding classification results.
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5. Conclusions

In this paper, the camera orientation based on voting method is proposed for online camera
calibration when vehicle drives straightforward. From some lines detected by LSD algorithm,
the proposed method has the fast performance by estimating the Z-axis VD using linear Hough
transform and unit cube projection. In addition, the voting method based on circular histogram
provides the accurate camera angles since it sufficiently considers all detected lines into the
accumulation space. Especially, the proposed method ensures the geometrical orthogonality of
estimated camera angles by performing step-by-step process. Experimental results verify that
the proposed method provides the stable performance in the actual driving situation as well as
the ideal Manhattan world within a short period of time. Therefore, the proposed method can
play a role in online calibration of the vehicle cameras in ADAS. It can be also applied in 3D
object detection by measuring distance using the estimated angles for each frame. Furthermore,
the proposed method can be used for view transformation of the camera to monitor surrounding
circumstances in a smart parking assistance system if the camera system stores the orientation
angles and computes optimal parameters.
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