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Abstract
Background To assess the effect of pan-retinal photocoagulation (PRP) on choroidal vascular parameters in eyes with advanced
diabetic retinopathy (DR).
Methods Forty patients (65 eyes) with severe nonproliferative DR or proliferative DR who underwent PRP were
included. Changes in choroidal vascular parameters were assessed at 3, 6, and 12 months after PRP by using swept-
source optical coherence tomography (OCT) and OCT angiography and were compared with baseline values.
Results Choroidal vascularity index (CVI) significantly decreased from 66.27% ± 1.55% at baseline to 65.85% ± 1.61%,
65.77% ± 1.29%, and 65.74% ± 1.60% at 3, 6, and 12 months after PRP, respectively. The ratio of luminal area to stromal area
(L/S ratio) also significantly decreased from 1.98 ± 0.15 at baseline to 1.94 ± 0.14, 1.95 ± 0.13, and 1.93 ± 0.14 at 3, 6, and
12 months after PRP, respectively. The subfoveal choroidal thickness (SFCT) similarly showed a significant decrease from
319.50 ± 56.64 μm at baseline to 299. 07 ± 51.14 μm, 294.70 ± 58.96 μm, and 280.93 ± 53.57 μm at 3, 6, and 12 months after
PRP, respectively. However, the choriocapillaris vessel density in both the fovea and parafovea showed no significant differences
following PRP.
Conclusion Eyes with advanced DR showed a significant reduction in CVI, L/S ratio, and SFCT over 12 months after PRP
treatment.

Keywords Choroidal vascular index . Diabetic retinopathy . Pan-retinal photocoagulation

Introduction

Diabetic retinopathy (DR) is one of the leading causes of
preventable blindness in the working aged population
worldwide [1]. The changes in the choroid in eyes with
DR were previously investigated by histophathological
assessments, indocyanine green angiography, and optical
coherence tomography (OCT) [2–5]. The choroid con-
sists of the choriocapillaris, the inner Sattler’s layer of
medium sized-blood vessels, and the outer Haller’s layer
of large sized-vessels; these vascular layers are

surrounded by stromal tissues, such as the connective
tissue and extracellular fluid [6]. Since the visualization
of the choroid by using enhanced-depth imaging OCT
has become widespread, the choroidal layer in patients
with DR has been intensively investigated. Several stud-
ies have shown that the choroid is affected by pan-retinal
photocoagulation (PRP) treatment, primarily in terms of
changes in its thickness [7–9]. Changes in the ratio of
the choroidal luminal area to the total choroidal area,
which is termed the choroidal vascularity index (CVI),
have been recently observed in several chorioretinal dis-
eases [10–12]. Moreover, with the advent of swept-
source OCT and OCT angiography (OCTA), deeper and
better visualization of the choroid and quantification of
choriocapillaris have become possible [13, 14]. However,
changes in CVI or choriocapillaris following PRP have
not been longitudinally investigated to date. Thus, the
purpose of this study was to analyze the changes in cho-
roidal vascular parameters following PRP.
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Subjects and methods

Subjects

This retrospective observational study was approved by the
institutional review board committee of Chung-Ang
University Hospital, Seoul, South Korea, and it adhered to
the tenets of the Declaration of Helsinki. Informed consent
was obtained from all patients before PRP treatment.
Patients who underwent PRP for advanced DR (severe
nonproliferative DR or proliferative DR) between September
1, 2015 and August 31, 2016 and were followed up for at least
12 months were included. The medical records of these pa-
tients were retrospectively reviewed.

The exclusion criteria were as follows: prior PRP treatment
or retinal surgery; a history of ocular trauma; any history of
other retinal or choroidal disease, such as choroidal neovascu-
larization or pigment epithelial detachment; refractive error
more than ±3.0 diopters; and any systemic disease other
than diabetes. Eyes with media opacities such as dense cata-
ract or vitreous hemorrhage and eyes with low image quality
index (< 90) were also excluded.

Baseline examination

All subjects underwent a comprehensive ophthalmologic
evaluation, including measurement of best-corrected vi-
sual acuity, intraocular pressure, and refractive error, as
well as slit-lamp examination, fundus examination, and
swept-source OCT (DRI Triton OCT, Topcon, Tokyo,
Japan) and OCTA. Fluorescein angiography was per-
formed to determine the severity of DR using an ultra-
wide-field confocal scanning laser ophthalmoscope
(Panoramic 200MA™; Optos PLC, Dunfermline, UK).
The severity of DR was graded, and the PRP treatment
was performed according to the Early Treatment
Diabetic Retinopathy Study protocol [15–17].

Pan-retinal photocoagulation

PRP was performed under topical anesthesia with a
532-nm solid-state green diode laser (OcuLight GLx la-
ser; Iridex Corp. Mountain View, CA, USA) and a
TransEquator contact lens (VolkOptical Inc., Mentor,
OH, USA) by a single retinal specialist (JTK). PRP
was peformed from the vascular arcades to the periph-
eral retina in all eyes in two sessions, one or two weeks
apart. The laser power was titrated from 200 mW until
a gray-white opacity was achieved. The pulse duration
was 200 ms, and the spot size was 300 μm; a 1.5-width
spot spacing was used.

Optical coherence tomography

Swept-source OCTwas performed using the DRI Triton OCT
device (Topcon, Tokyo, Japan), with a wavelength of 1050 nm
and a scan speed of 100,000 A-scans per second, which
yielded an axial resolution of 7 μm and horizontal resolution
of 20 μm. OCT B-scan imaging was performed with a 6 × 6-
mm cube-scan and a 9-mm five-line cross-scan. “Follow-up
five-Line cross-scan” and “SMARTrack 3D cube-scan” were
used to ensure that OCT B-scan imaging was performed at the
same location throughout the follow-up period. The central
retinal thickness (CRT) was obtained from an automatic thick-
ness map that was created on the basis of the conventional
Early Treatment Diabetic Retinopathy Study grid in the 6 ×
6-mm cube-scan mode after confirmation of the grid position.
The subfoveal choroidal thickness (SFCT) was defined as the
distance between the Bruch’s membrane and the choroid-
sclera interface at the fovea and measured from the 9-mm
five-line cross-scan using a built-in caliper tool.

Optical coherence tomography angiography

OCTA imaging was performed at the 3 × 3-mm center of the
fovea with a resolution of 320 × 320 pixels from four repeated
B-scans using the DRI Triton OCT device.

OCTA images of the choriocapillaris were obtained
from the Bruch’s membrane to 10.4 μm outside the
Bruch’s membrane using the automated segmentation
algorithm in the DRI Triton OCT software (IMAGEnet
6, software version 1.21; Topcon Corp., Tokyo, Japan).
The software provided a color-coded perfusion density
map of the OCTA image. The macular area of the
choriocapillaris image was divided into five zones by
the built-in 2.5-mm ETDRS grid software, and the per-
fused vessel density of each subfield was measured au-
tomatically using the built-in grid software. Foveal ves-
sel density was defined as central subfield perfused ves-
sel density, and parafoveal vessel density was defined as
the averaged vessel densities of four parafoveal
subfields.

Choroidal vascularity index

Horizontal and vertical OCT images at the fovea center from
the five-line cross-scans were selected. Binarization and seg-
mentation of OCT images were performed using the protocol
described by Agrawal et al. [11] Binarization of the OCT
image was performed using ImageJ software (http://imagej.
nih.gov/ij, version 1.80) A representative image for
binarization processing to obtain CVI is shown in Fig. 1.
The total choroidal area with a width of 1500 μm centered
on the fovea was selected using the polygon tool and added to
the ROI manager. The image was converted to an 8-bit image
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and adjusted by the Niblack autolocal threshold method. The
dark pixels were selected using the color threshold tool, and
this area was also added to the ROI manager as a luminal area.
The area of the white pixels was defined as the stromal area
(SA). CVI was defined as the luminal area/total choroidal
area. The ratio of luminal area to stromal area was defined
as the luminal/stromal (L/S) ratio.

Laboratory examination

For systemic workup over the follow-up period, the fol-
lowing laboratory assessments were performed before
and 12 months after PRP: measurement of hemoglobin
A1c and fasting blood sugar levels, postprandial 2-h
(PP2) blood glucose and creatinine levels, estimated
glomerular filtration rate (eGFR), urine microalbumin
level, and microalbumin/creatinine (M/C) ratio in urine.
Only laboratory workups performed within 4 weeks
from the visit to the retina clinic were investigated.

Statistical analysis

Two independent masked observers (NP, JTK) measured the
SFCT, CVI, and L/S ratio, and the averaged values were used
for the statistical analysis. The mean values of CRT, SFCT, CVI,
and vessel density of the choriocapillaris were analyzed during
the 12-month follow-up period. The data are presented as the
mean ± standard deviation. Statistical analyses were performed
using SPSS version 23.0 software (IBM Corp., Armonk, NY,
USA). The changes in CRT, SFCT, CVI, L/S ratio, and vessel

density of the choriocapillaris in the fovea and parafovea
throughout the follow-up period were analyzed using linear
mixed-effects model. The correlations between the changes in
vascular parameters 12months after PRP and the baseline values
were analyzed using univariate linear regression. The changes of
laboratory profiles were analyzed using paired-t test. A P value
<0.05 was considered statistically significant.

Results

Baseline characteristics

Sixty-five eyes (severe nonproliferative DR, n = 24;
nonproliferative DR, n = 41) of 40 patients were included in
this study. The mean age of the patients was 57.12 ±
11.33 years (range, 40–88 years), the mean duration of diabe-
tes was 12.5 ± 6.2 years (range, 7–22 years), and the mean
value of glycated hemoglobin level was 7.94% ± 2.43%
(range, 5.9%–12.5%). The mean best-corrected visual acuity
was 0.26 ± 0.29 logMAR (range, 0–1.0 logMAR), the mean
intraocular pressure was 14.46 ± 3.43 mmHg (range, 7–
20 mmHg), and the mean spherical equivalent was −0.52 ±
1.76 diopters (range, −4.75 to4.25). Demographic data of the
patients are presented in Table 1.

The mean power in PRP was 322.3 ± 155.6 mW (range,
200–500 mw), and the total number of photocoagulation
burns was 1611.6 ± 167.8. The inter-observer reproducibilities
of the SFCT, CVI, L/S ratio ranged from 0.986 to 0.990, 0.988
to 0.992, and 0.984 to 0.990, respectively.

Fig. 1 Representative case with
severe nonproliferative diabetic
retinopathy that showed a
decrease in choroidal vascular
parameters following pan-retinal
photocoagulation. The upper,
middle, and lower rows show a
swept-source optical coherence
tomography (OCT) B-scan
image, a binary image using
ImageJ software, and OCT
angiography images of the
choriocapillaris slab. The
subfoveal choroidal thickness
decreased from 422 μm at
baseline to 359 μm at 12 months
after PRP. The choroidal
vascularity index decreased from
65.51% at baseline to 63.42% at
12 months. The luminal/stromal
ratio was 1.89 at baseline and
decreased to 1.83 at 12 months
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Changes in central retinal thickness and subfoveal
choroidal thickness following PRP

The CRT was 283.53 ± 106.77 μm at baseline, 307.42 ±
97.07 μm at 3 months, 286.12 ± 84.91 μm at 6 months,
and 268.08 ± 54.86 μm at 12 months after PRP (Table 2,
Fig. 2 A). The changes were not significant in
comparision with the baseline values. The SFCT was
319.50 ± 56.64 μm at baseline and decreased to 299.
07 ± 51.14 μm at 3 months, 294.70 ± 58.96 μm at
6 months, and 280.93 ± 53.57 μm at 12 months after
PRP (P < 0.001) (Table 2, Fig. 2 B).

Changes in choroidal vascularity index and the ratio
of luminal area to stromal area following PRP

The CVI was 66.27% ± 1.55% at baseline and decreased to
65.85% ± 1.61% at 3 months, 65.77% ± 1.29% at 6 months,
and 65.74% ± 1.60% at 12 months (P < 0.001) after PRP
(Table 2, Fig. 2 C). The L/S ratio was 1.98 ± 0.15 at baseline
and decreased to 1.94 ± 0.14 at 3 months, 1.95 ± 0.13 at

6 months, and 1.93 ± 0.14 at 12 months (P < 0.001) after
PRP (Table 2, Fig. 2 D).

Changes in the choriocapillaris vessel density
in the fovea and parafovea following PRP

Vessel densities of the choriocapillaris in the fovea and
parafovea were 48.58% ± 4.93% and 52.29% ± 1.88% at
baseline, respectively. The vessel densities in both the fovea
and parafovea did not show statistically significant changes
after PRP (Table 2, Fig. 2E, F).

Laboratory examinations

Fasting blood sugar levels before and 12 months after PRP
were significantly different. HbA1c level, PP2 blood glucose
level, and eGFR decreased 12 months after PRP in compari-
son with the respective baseline values. Creatinine level, urine
microalbumin level, and the microalbumin/creatinine (M/C)
ratio in urine also increased 12 months after PRP. However,

Table 2 Changes in the central retinal thickness and choroidal vascular parameters after panretinal photocoagulation

Baseline 3 months 6 months 12 months P value* F

Central retinal thickness (μm) 283.53 ± 106.77 307.42 ± 97.07 286.12 ± 84.91 268.08 ± 54.86 0.321 1.262

Δ Central retinal thickness (μm) 19.13 ± 86.16 −5.92 ± 44.70 −15.83 ± 96.10

Subfoveal choroidal thickness (μm) 319.50 ± 56.64 299.07 ± 51.14 294.70 ± 58.96 280.93 ± 53.57 <0.001* 38.490

Δ Subfoveal choroidal thickness 20.43 ± 19.30 24.80 ± 21.76 38.57 ± 19.92

Choroidal vascularity index (%) 66.27 ± 1.55 65.85 ± 1.61 65.77 ± 1.29 65.74 ± 1.60 <0.001* 8.088

Δ Choroidal vascularity index (%) −0.42 ± 0.95 −0.50 ± 0.99 - 0.53 ± 1.05

Luminal/stromal ratio 1.98 ± 0.15 1.94 ± 0.14 1.95 ± 0.13 1.93 ± 0.14 <0.001* 7.442

Δ Luminal/stromal ratio 0.033 ± 0.101 0.025 ± 0.107 0.021 ± 0.101

Foveal vessel density 48.58 ± 4.93 48.73 ± 4.45 48.39 ± 3.79 49.33 ± 3.53 0.149 1.880

Δ Foveal vessel density −0.16 ± 4.96 6.86 ± 16.3 6.04 ± 18.4

Parafoveal vessel density 52.29 ± 1.88 52.24 ± 1.31 52.29 ± 1.37 52.10 ± 1.53 0.695 0.483

Δ Parafoveal vessel density 0.05 ± 1.71 7.21 ± 18.79 7.37 ± 18.59

*Linear mixed-effect model

Table 1 Demographic and
clinical profiles Total Range

Number of eyes/patients 65/40

Severe nonproliferative DR/proliferative DR (eyes, n) 24/41

Age (years) 57.12 ± 11.33 40 to 88

intraocular pressure (mmHg) 14.46 ± 3.43 7 to 20

HbA1c (%) 7.94 ± 2.43 5.9 to 12.5

Hypertension (patients, n) 17

Visual acuity (logMAR) 0.26 ± 0.29 0 to 1.0

Refractive error (diopter) −0.52 ± 1.76 −4.75 to 4.25

DR, diabetic retinopathy
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the differences between the values before and 12 months after
PRP were not significantly different (Table 3).

Correlation between the changes in vascular
parameters 12 months after PRP and baseline values

The changes in central retinal thickness, subfoveal choroidal
thickness, and luminal/stromal ratio 12months after PRPwere
significantly correlated with baseline parameters (P < 0.001;
P < 0.001; P = 0.02, respectively). However, the differences in
CVI and choriocapillaris vessel densities in comparison with
the baseline values were not significant. Scatter plots of the
changes in vascular parameters against baseline values are
shown in Fig. 3.

Discussion

Our longitudinal study showed a significant decrease in the
SFCT, CVI, and L/S ratio over a 12-month follow-up period
after PRP. However, the choriocapillaris in the fovea and
parafovea did not show significant changes.

With enhanced-depth imaging OCT, a few studies
have shown a significant decrease in the SFCT after
PRP [7–9, 18–20]. We observed a significantly thinner
choroid in PRP-treated eyes in comparision with treat-
ment-naïve eyes in patients with advanced DR in an
earlier study [7]. Our results were consistent with pre-
vious studies showing decreased SFCT after PRP [8, 9,
19, 20].

Fig. 2 Comparisons of changes in
the central retinal thickness (CRT;
A), subfoveal choroidal thickness
(SFCT; B), choroidal vascularity
index (CVI; C), ratio of luminal
area/stromal area (L/S ratio; D),
foveal vessel density (E), and
parafoveal vessel density (F) over
12 months following panretinal
photocoagulation (PRP).
*P < 0.001. A. CRT showed a
minimal increase at 3 months
after PRP; however, the increase
in the central retinal thickness
normalized 6 months after PRP.
The changes were not significant.
B, C, D. SFCT, CVI, and L/S ratio
showed a significant decreasing
pattern over 12 months after PRP.
E, F. The changes in the foveal
and subfoveal vessel density were
not significant after PRP
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To analyze the effect of PRP on the choroid in detail, we
additionally investigated the changes in CVI, L/S ratio, and
vessel density of the choriocapillaris. Sonoda et al. described a
method for quantification of the luminal area in the choroid
(defined as CVI) by using the binary conversion image in

OCT B-scans [21]. A few recent studies have reported chang-
es in the CVI of eyes with DR. Tan et al. reported a signifi-
cantly lower CVI in a patient with diabetes mellitus than in
controls [10]. Kim et al. and Gupta et al. also described a
significant decrease in CVI with worsening DR [22, 23].

Table 3 Changes in systemic
parameters after panretinal
photocoagulation

Number of patients Baseline 12 months P value

HbA1c 31 7.64 ± 1.84 7.11 ± 1.07 0.091*

FBS 33 161.86 ± 58.72 116.39 ± 34.36 0.003*

PP2 25 197.0 ± 77.64 179.7 ± 51.19 0.37*

Cr 32 1.04 ± 0.52 1.39 ± 1.44 0.151*

eGFR 28 82.53 ± 33.70 78.07 ± 40.71 0.227*

MA 24 198.26 ± 240.94 532.57 ± 808.63 0.198†

MC ratio 25 1366.75 ± 2230.50 1416.54 ± 1983.28 0.363†

Cr = creatinine; eGFR = estimated glomerular filtration rate; FBS = fasting blood glucose; HbA1c = hemoglobin
A1c; MA=microalbumin; MC ratio =microalbumin/creatinine ratio of urine;

PP2 = postprandial 2-h blood glucose

*Paired t test; †Wilcoxon rank test for nonparameteric variables

Fig. 3 Univariate association
between baseline value and the
changes in the central retinal
thickness (CRT; A), subfoveal
choroidal thickness (SFCT; B),
choroidal vascularity index (CVI;
C), ratio of luminal area/stromal
area (L/S ratio; D), foveal vessel
density (E), and parafoveal vessel
density (F) 12 months following
panretinal photocoagulation
(PRP). A, B, D. The changes in
CRT, SFCT, and L/S ratio over
12 months after PRP were
negatively correlated with the
baseline values. C, E, F. The
changes in CVI, foveal vessel
density, and parafoveal vessel
density were not significantly
correlated with the baseline value
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The changes in both CVI and L/S ratio in our study indicated a
significant decreasing tendency throughout the follow-up pe-
riod after PRP. These findings suggest that the vascular lumi-
nal area of the choroid was reduced after PRP. Using laser
Doppler velocimetry, Grunwald et al. and Patel et al. had
reported reduced blood flow to the retina in DR patients fol-
lowing PRP [24–26]. Similarly, using Doppler OCT, Song
et al. described decreased vessel diameter, velocity, and blood
flow in the retina after laser treatment [27], while Savage et al.
used a pneumotonometer to show decreased choroidal blood
flow after PRP [28]. In a recent study, Iwase et al. used laser
speckle flowgraphy and enhanced-depth imaging OCT to re-
port that ocular blood flow and choroidal vascular luminal
area showed greater reduction in laser-treated eyes than in
untreated eyes [29]. Our results showed reduced vascular pa-
rameters after PRP, and these findings suggest decreased
blood flow to the choroid. In this aspect, the findings of our
study are consistent with those of earlier studies.

To investigate the changes in systemic parameters over the
follow-up periods, several key profiles associated with diabetes
control and diabetic kidney disease were analyzed. The patients
tended to show good diabetes control and aggravated chronic
kidney disease. The changes, however, were not significant.

With the advent of OCTA, several studies have
shown changes in the choriocapillaris in retinal diseases
[30–32]. PRP has been performed as a standard treat-
ment for advanced DR [15]. The localized laser treat-
ment directly coagulates both the retinal pigment epithe-
lium and underlying choriocapillaris around the laser
burn lesion [33, 34]. However, there have been no stud-
ies regarding the indirect effects of PRP on the
choriocapillaris of the central fovea. Our study results
showed no change of vessel density in both the fovea
and parafovea after PRP. Choriocapillaris circulation in
the fovea is crucial for supplying nutrients and oxygen
to the fovea [6].

This study has several limitations. The first limitation
is its retrospective design with a small sample size.
Second, diurnal variation was not considered. Diurnal
variation has been reported to affect the choroidal vas-
cular parameters, including SFCT, luminal area, and
choriocapillaris [35–37]. Third, the changes in systemic
factors were not fully considered because of the retro-
spective design. The effect of systemic health on the
choroid has been investigated in several studies [38].
The changes of systemic parameters associated with di-
abetes, however, were not significant over the follow-up
periods in this study. Morever, this study analyzed in-
trapersonal change; hence, the confounding effects were
probably minimal. Fourth the choroidal vascular param-
eters were analyzed in the 1500-μm posterior pole only.
A previous study has shown the influence of the scan-
ning area on CVI [39]. Nevertheless, because the

peripheral choroid is affected by PRP ablation, we
aimed to analyze the changes in the posterior pole.
Fifth, the changes in retinal morphology (e.g.,
intraretinal edema or hard exudate) could affect the cho-
roidal reflectivity and the analysis results. Thus, this
aspect should be considered. Finally, the changes of
vascular parameters had high variability of measure-
ment, as shown in Fig. 3. Previously described limita-
tions, including diurnal variation, blood pressure, and
systemic status, might be responsible for this inconsis-
tencies in the measurement of vascular parameters.
Moreover, the measurement of total choroidal area using
the polygon tool is subjective. Lining, along with the
choroid-sclera interface, are subject to modification ac-
cording to the quality of OCT B-scan images. We be-
lieve that this subjectivity might cause measurement
variability of the vascular parameters. Especially, the
vessel density changes of the fovea and parafovea
showed higher variability compared with other vascular
parameters. Although the eyes with low-quality OCTA
images were excluded, the presence of several image
artifacts might potentially affect variability. The limita-
tions of this study will be addressed in future studies.
Despite these limitations, this is the first longitudinal
study to compare the effect of PRP on choroidal vascu-
lar parameters.

In conclusion, SFCT, CVI, and L/S ratio reduced signifi-
cantly after PRP during the 12-month follow-up period,
whereas the choriocapillaris in both the fovea and parafovea
show no change during the same follow-up period.
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