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ABSTRACT We present an adaptive regularization algorithm that can be effectively applied to the optimiza-
tion problem in deep learning framework. Our regularization algorithm aims to take into account the fitness
of data to the current state of model in the determination of regularity to achieve better generalization. The
degree of regularization at each element in the target space of the neural network architecture is determined
based on the residual at each optimization iteration in an adaptive way. Our adaptive regularization algorithm
is designed to apply a diffusion process driven by the heat equation with spatially varying diffusivity depend-
ing on the probability density function following a certain distribution of residual. Our data-driven regularity
is imposed by adaptively smoothing a simplified objective function in which the explicit regularization term
is omitted in an alternating manner between the evaluation of residual and the determination of the degree of
its regularity. The effectiveness of our algorithm is empirically demonstrated by the numerical experiments in
the application of image classification problems, indicating that our algorithm outperforms other commonly
used optimization algorithms in terms of generalization using popular deep learning models and benchmark
datasets.

INDEX TERMS Adaptive regularization, deep learning optimization, residual smoothing.

I. INTRODUCTION
Deep neural networks have made a significant progress
in a variety of applications at a number of domains such
as image understanding [1], sound recognition [2], motion
planning [3], and other decision support [4]. In particular,
the successful application of convolutional neural networks
(CNNs) [5] to the computer vision problems has driven
advanced performance in a variety of applications such as
recognition [6], segmentation [7], motion estimation [8] or
reconstruction [9] due to their effective characteristic power
and generalization capabilities, leading to large scale opti-
mization problems where the numbers of both model param-
eters and training data are often huge. The optimization in
the deep learning applications often involves the stochastic
estimation of gradients using the stochastic gradient descent
in order to improve the computational efficiency with a large
number of training data. Albeit the choices of mini-batch size
and learning rate are implicitly related to the generalization
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of the model [10], it is generally required to introduce an
explicit regularization term in the objective function to avoid
over-parameterization or over-fitting. The objective function
mainly consists of a data fidelity term thatmeasures a discrep-
ancy between estimation and observation and a regulariza-
tion term that imposes smoothness constraint in the solution
space, and their relative significance is usually determined by
a constant based on the ratio of variances between likelihood
and prior distributions. However, the computation of those
distributions is computationally intractable leading to the
grid search approach in determining the control parameter
between the data fidelity and the regularization. In addi-
tion, the choice of static control parameter implies that the
underlying likelihood and prior probabilities follow single
model distributions, which is often undesirable to represent
complicated models.

In this work, we propose a simple, yet effective regular-
ization scheme that is designed to impose adaptive regularity
depending on both spatial and temporal domain of optimiza-
tion.We consider residual that is indicative of fitness between
data and the current state of model in the determination of
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regularization in such a way that the adaptive application of
regularization is achieved in both space and time for better
generalization..We develop an implicit regularization scheme
based on a simplified objective function where the regular-
ization term is omitted and a diffusion process is applied to
the data fidelity term. The diffusivity of diffusion process
driven by heat equation is determined based on a probability
density function following a certain distribution of residual
at each residual element in the course of optimization. In the
application of our approach to the deep learning algorithm,
we present a neural network architecture incorporating our
adaptive regularization, which is efficiently implemented by
an additional smoothing layer with a deterministic smooth-
ing kernels. We present the effectiveness of our proposed
algorithm for generalization of model in the application of
image classification problems with popular network models
and commonly used benchmark datasets while our algorithm
can be naturally integrated with other architectures of net-
works such as autoencoder for image segmentation or motion
estimation.

In the remainder of this paper, we relate our method to the
prior works in Sec. II and present the conventional optimiza-
tion algorithm in Sec. III followed by our proposed algorithm
in Sec. IV. The implementation of our adaptive regularization
algorithm in the deep neural network framework is provided
in Sec. V and the results of numerical experiments are pre-
sented in Sec. VI and the conclusion follows in Sec. VII.

II. RELATED WORK
There have been a variety of regularization techniques in
machine learning applications. One can categorize the tech-
niques into two classes, namely, explicit regularization and
implicit regularization. We provide a number of algorithms
for the explicit regularization and the implicit regularization
in Sec. II-A and Sec. II-B, respectively. Then, we discuss
in more detail the closely related works to our algorithm in
Sec. II-C where the smoothing technique is considered to
impose regularity on the solution space.

A. EXPLICIT REGULARIZATION
1) WEIGHT DECAY
The objective function is assumed to include a regularization
term that penalizes a perturbation of unknown parameters in
terms of L22 norm. The gradient descent of the regularization
term yields the decay of weights in a recursively manner with
a given rate parameter and a learning rate. It is considered as
one of the most practical regularization algorithms due to its
computational convenience, yet often blur the solution.

2) SPARSITY CONSTRAINT
Sparsity has emerged as a way to impose L1 regulariza-
tion to objective functions. The essential motivation of the
sparsity assumption on the solution space stems from the
modeling of the residual distribution with a sharp peak, which
is known to be more realistic in most real-world problems.

Sparsity constraints suppress undesirable perturbations while
preserving discontinuities in order to avoid over-fitting.

3) ENTROPY MINIMIZATION
In the application of sparsity constraint to the probability
distribution of solution, the entropy term in the objective
function has been introduced in [11]where the entropy is to be
minimized. Entropyminimization has been shown to improve
exploration ability, thus can regularize the objective functions
in reinforcement learning tasks [12].

In contrast to the above explicit regularization techniques,
our algorithm bases on the objective function that omits the
regularization term instead applying simple, yet effective
diffusion process to the data fidelity term.

B. IMPLICIT REGULARIZATION
1) NOISE INJECTION
In the estimation of gradients using the stochastic gradient
descent, stochastic noise is involved and its variance is related
to the size of mini-batch. The injection of stochastic noise
to the neural network can be used as a way to impose reg-
ularization to arrive at a better local minimum [13]. It is
also shown that the variance of injected noise is related
to the amount of imposed smoothness on the solution [14]
where a tighter lower bounds of the objective function can
be achieved by adding noises in a stochastic gradient descent
iteration. In addition to the manipulation of noise, smoothing
of ground truth label has been proposed to make the model
less confident regarding its trained weights, thus improving
generality [15] where the probability of each label is arbitrar-
ily perturbed depending on a random distribution. Similarly,
there has been a regularization algorithm that replaces one of
the ground truth labels with an arbitrary label uniformly at
random [16].

2) DROPOUT
One of the implicit implementations of sparsity constraints
that suppress the value of weights to be zero is Dropout [17]
that randomly eliminates units of the neural network with a
uniform probability while training, thus prevents units from
excessive co-adapting. There have been a variety of Dropout
techniques including maxout network [18] that proposes a
new activation function to leverage the dropout, stochastic
pooling [19] that replaces the deterministic pooling with a
stochastic procedure by randomly choosing activation from a
multinomial distribution.

3) LEARNING RATE DECAY
The stochastic gradient descent often yields better training
results with a learning rate annealing scheme that schedules
a temporal series of learning rates in epoch where a decreas-
ing scheduling is generally applied to improve convergence.
Whereas, a decreasing annealing pattern has been repeated
as a warm start to overcome undesirable sharp local minima
in [20].
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4) MODEL ENSEMBLE
There has been a regularization technique developed by com-
bining differently trained neural networks and introducing
regularization effects imposed by different network architec-
tures [21]. The random ensemble of prediction functions is
known to provide better training behavior [22] and the struc-
tural dropout, called Branchout [23], has been developed by
randomly choosing a subset of branches in the convolutional
neural networks.

5) BATCH NORMALIZATION
Batch normalization [24] has been proposed for resolving the
internal covariant shift by normalizing layer inputs, in which
the distribution of inputs of each layer changes during the
training process. However, batch normalization is proven that
it can also improve the regularization performance in train-
ing neural networks [25]. In addition, batch normalization
enabled training with larger learning rates, which induces
faster convergence and better generalization [26].

While the aforementioned implicit methods mainly impose
global regularity on the solution space, our method uses the
residual that is variable in energy space and optimization
time, thus spatially and temporally varying regularization
depending on the residual.

C. REGULARIZATION VIA ENERGY SMOOTHING
There is different perspective of imposing regularity that
the geometric property of energy landscape is modified in
such a way that undesirable insignificant local minima are
eliminated by smoothing the energy [27] where the objective
function is convolved with Gaussian kernels. The approxi-
mated solution to the specific evolutionary partial differential
equation (PDE) leads to convex envelopes of the objective
function, but the approximation is assumed to be a solution of
the PDEwith small perturbations, which is often not the case.
A modified network has been proposed in [28] where the
loss function is differentiable, smooth and computationally
stable.

Unlike the conventional smoothing approaches for regular-
ization in deep learning optimization, our algorithm considers
diffusion of residual with spatially and temporally varying
diffusivity leading to adaptive regularization that is more
suited for complex models in a variety of deep learning
applications.

III. PRELIMINARY
We consider a minimization problem in a supervised learning
framework. Let χ = {(xi, yi)}ni=1 be a set of training data
where xi ∈ X ⊂ RN is the i-th input and yi ∈ Y ⊂
RM is its desired output. Let hw : X → Y be a predic-
tion function that is associated with its model parameters
w = (w1,w2, · · · ,wm) ∈ Rm where the dimension of the
feature space is m. The objective of the supervised learning
problem is to find optimal parameters w∗ that are typically
obtained by minimizing the empirical loss L(w) defined on

the training data χ :

L(w) =
1
n

n∑
i=1

fi(w)+ λ γ (w), (1)

where we denote by fi(w) a data fidelity term for a pair of
data (xi, yi) and by γ (w) a regularization term, and λ > 0 is
a control parameter for the balance between the two terms.
The data fidelity fi(w) incurred by a set of parameters w
with a sample (xi, yi) is designed to measure the discrepancy
between the prediction hw(xi) with input xi and its desired
output yi. The regularization γ (w) aims to impose smoothness
condition on the prediction function hw(xi), thus avoid over-
fitting of the model. The control parameter λ is determined
based on the relation between the underlying distribution of
data and the prior distribution of model.

We consider a first-order optimization algorithm to min-
imize the objective function that is assumed to be differ-
entiable leading to the following gradient descent step at
iteration t:

wt+1 B wt − ηt
(
1
n

n∑
i=1

∇fi(wt )+ λ∇γ (wt )

)
, (2)

where we denote by ∇fi(wt ) gradient of fi with respect to w
at iteration t , and by ηt the learning rate. The computation of
the above full gradient over the entire training data is often
intractable due to a large number of data, which leads to the
use of stochastic gradient that is computed using a subset
uniformly selected at random from the training data. The
iterative step of the stochastic gradient descent algorithm at
iteration t reads:

wt+1 B wt − ηt

 1
|β t |

∑
i∈β t
∇fi(wt )+ λ∇γ (wt )

, (3)

where β t denotes a mini-batch that is the index set of a
subset uniformly selected at random from the training data.
The size of mini-batch |β t | is related to the variance of the
gradient norms, and thus to the regularization of the model.
The small size of mini-batch yields stochastic gradients with
higher variance due to noise involved in the stochastic process
leading to large regularization.

IV. REGULARIZATION VIA RESIDUAL SMOOTHING
The optimization of interest aims to minimize the objective
function that consists of a data fidelity term, a regularization
term, and a control parameter for their relative weight. The
selection of control parameter is often critical to obtain a
better solution and is determined by the ratio between the
underlying distributions of the residual and the prior smooth-
ness, both of which are mostly assumed to follow unimodal
distributions. Thus, the control parameter is chosen to be con-
stant, and it is generally required to apply a grid search over a
range of parameters to choose optimal parameters. However,
it is often ineffective to model the distribution of data fidelity
and determine the ratio of its variance to the variance of prior
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distribution for a smooth solution based on a unimodal prob-
ability density function leading to a static control parameter
for the trade-off between data fitting and smoothness. Thus,
we propose an adaptive regularization scheme that considers
residual in the determination of regularity at each point of the
residual domain.

A. ADAPTIVE REGULARIZATION BASED ON RESIDUAL
The computation of empirical stochastic gradient involves the
noise process following a certain distribution with zero mean,
and its variance is inversely proportional to the size of mini-
batch. In addition to the stability, the noise process is also
related to the regularization, thus the size of mini-batch can
be used in determining regularity in an implicit way. On the
other hand, the control parameter λ in the objective function
in (1) can be variable with a fixed mini-batch size for each
sample (xi, yi), leading to the following modified objective
function:

L̃(w) =
1
n

n∑
i=1

(fi(w)+ λi γ (w)), (4)

where λi ∈ R denotes a weighting parameter for the reg-
ularization term and it is designed to be associated with
each sample (xi, yi). We assume that the degree of regularity
follows a distribution of the residual leading to the following
data-driven regularity:

λi ∝ 1− exp
(
−
‖fi(w)‖
ν

)
, (5)

where ν is a parameter for the variance of the residual. The
degree of regularity is designed to be proportional to the mag-
nitude of residual for each sample. In addition to the adaptive
application of regularity with respect to sample, we consider
the temporal state of solution in the course of optimization
leading to the update of model parameters based on the
stochastic gradients incorporating data-driven regularity as
follows:

wt+1 B wt − ηt
1
|β t |

∑
i∈β t

(
∇fi(wt )+ λti∇γ (w

t )
)
, (6)

where λti is variable with respect to both optimization iter-
ation t and sample index i. The intrinsic motivation of the
temporally adaptive regularization stems from the limitation
of the existing static scheme that imposes the same degree
of regularity albeit the residual decays in the optimization
steps. However, it is computationally expensive to construct
the distribution from which the control parameter for reg-
ularization is determined while computing the gradients of
both data fidelity and regularization terms. In addition to
the computational efficiency, it is desired to consider the
relative magnitude of residual in its spatial domain. Thus,
we propose a simple, yet effective regularization scheme
that is designed to impose adaptive regularity depending on
both spatial and temporal domain of optimization, which is
achieved by smoothing residual with spatially and temporally

varying degree without explicit computation of gradient for
the regularization term that is omitted in the objective func-
tion, as presented in the following section.

B. REGULARIZATION VIA DIFFUSION PROCESS THAT
IS ADAPTIVE IN THE BOTH SPATIAL AND
TEMPORAL DOMAINS
We propose a regularization algorithm which is developed
based on smoothing the residual that measures the discrep-
ancy between model and sample data without taking into
account an explicit regularization term. We modify the objec-
tive function in Eq. (4) from which the regularization term is
omitted and the original data fidelity term fi(w) is replaced
with gi(w) as follows:

L̄(w) =
1
n

n∑
i=1

gi(w), gi(w) = ‖ui(w)‖22, (7)

where gi(w) is L22 norm of the diffused residual ui(w) for
each sample (xi, yi), and ui(w) is obtained by imitating the
diffusion process using the heat equation as follows:

∂ui(w; τ )
∂τ

= κ 1ui(w; τ ),

ui(w; 0) = di(w),
(8)

where κ denotes a diffusion coefficient, 1 the Laplace oper-
ator, and τ an auxiliary variable for the diffusion time. When
κ is constant, the solution of heat equation is given by the
convolution of initial data with the Gaussian kernel and it
implies that the value at every point of solution becomes
gradually averaged from its surrounding data as the diffusion
proceeds. The Neumann boundary condition is imposed and
the initial condition ui(w; 0) is given by the residual defined
by the magnitude of the discrepancy between the predication
and the desired output as follows:

di(w) = |hw(xi)− yi|, (9)

where di(w) ∈ RM . In the diffusion equation, the coefficient
κ is normally set to be constant, but we consider a diffusivity
map κ : RM → RM that is employed to impose spatially
varying regularity depending on the residual. The diffusiv-
ity map is designed to apply regularity following a distri-
bution of residual based on the sigmoid function S(x; s, α)
defined by:

S(x; s, α) =
s

1+ exp(−αx)
, (10)

where s, α ∈ R+ are parameters that determine the verti-
cal scale and the steepness of transition in function value,
respectively.

The graphical illustration of the sigmoid function with
varying parameters is presented in Fig. 1 where the functions
with varying s and fixed α = 1 are shown in (a), and
the functions with varying α and fixed s = 1 are shown
in (b). The update of parameters using the stochastic gradient
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FIGURE 1. Graphical illustration of sigmoid function with varying (a) scale
parameter s with fixed α and (b) steepness parameter α with fixed s.

descent based on mini-batch β t at each iteration t reads:

wt+1 B wt − ηt
1
|β t |

∑
i∈β t
∇gi(wt ), (11)

where the computation of stochastic gradient ∇gi(wt )
involves the diffusion ui(wt ) of residual di(wt ). The diffusivity
of the heat equation applied to the residual is determined
based on a distribution formed by the sigmoid function and its
associated parameters, scale s and steepness α, are chosen by
global and local properties of residual in the neural network
architecture as presented in the following section.

C. ANNEALING OF ADAPTIVE DIFFUSION
The proposed algorithm aims to impose adaptive regular-
ization depending on the magnitude of residual by applying
spatially varying diffusion to the residual. The diffusivity of
the heat equation applied to the residual is determined based
on the magnitude of residual following the sigmoid function
as follows:

κ ti = S(di(wt ); st , α) =
st

1+ exp(−α di(wt ))
, (12)

where the diffusivity map κ ti ∈ R
M of the heat equation is

determined by the sigmoid function of residual di(wt ) ∈ RM

at iteration t . We consider the temporal residual di(wt ) given
by the current state of solution wt in determining the degree
of temporal diffusion k ti for each sample (xi, yi). We also
consider the scale parameter st that is variable in optimiza-
tion time and present its annealing scheme in the following
section.

1) GLOBAL ADAPTIVITY
The scale parameter st ∈ R+ of S(dt (wt ); st , α) at time t in
Eq. (12) determines the degree of diffusion that is applied to
the entire domain of residual in an isotropic way with fixed
steepness parameter α = 0, thus it is global parameter that
is dependent on time t . The motivation of introducing time-
varying scale parameter is to consider the temporal decay of
residual resulting in the decrease of diffusion that is equiv-
alent to regularity. However, it is often necessary to allow
larger stochastic noise in order to avoid undesirable sharp
local minima in particular at the early stage of optimization.
Thus, we propose to employ annealing schemes for the scale
parameter s using the probability density functions of either

FIGURE 2. Graphical illustration of the scaled probability density function
associated with different distributions (a) Logistic distribution and
(b) Laplace distribution with varying scale b for the annealing of the scale
parameter s in sigmoid function. Each probability density function is
scaled to have the maximum value 1.

the Logistic distribution y1(x;µ, b) or the Laplace distribu-
tion y2(x;µ, b) as defined by:

y1(x;µ, b) =
1
4b

sech2
(
x − µ
2b

)
, (13)

y2(x;µ, b) =
1
2b

exp
(
−
|x − µ|

b

)
, (14)

where µ and b denote the mean and the scale, respectively.
The graphical illustrations of the scaled probability density
functions y1 and y2 with varying scale parameters b are pre-
sented in Fig. 2 where the maximum value of each probability
density function is scaled to have the maximum value 1 and
their associated distributions are (a) Logistic and (b) Laplace.
The global difusivity map κ ti is then defined by the sigmoid
function with st and fixed α = 0 as defined by:

κ ti = S(di(wt ); st , α), α = 0, (15)

st = y(t;µ, b), (16)

where y can be either y1 in Eq. (13) or y2 in Eq. (14), and
µ is chosen for the peak location and b is a scale parameter
for the sharpness of the distribution centered atµ. The degree
of regularization driven by the diffusion process based on the
sigmoid function with the annealing for its scale parameter
is gradually increasing up to the peak at the mean of the
annealing distribution and decreasing afterwards arriving at
the original objective function without diffusion.

2) LOCAL ADAPTIVITY
In the adaptive application of regularization in the domain of
residual, we consider the relative magnitude of residuals so
that different degree of regularization is applied to each resid-
ual element in its domain. The residual is initially normalized
to have mean 0 and standard deviation 1 at each iteration in
order to consider the relative significance among the residual
elements. The diffusivity map with the local adaptive scheme
is defined by:

κ ti = S(d̃ ti ; s, α), (17)

d̃ ti =
di(wt )− µti

σ ti
, (18)
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where parameters s, α ∈ R+ are chosen to be constant, and
d̃ ti is the normalized residual of d ti with meanµti and standard
deviation σ ti for each sample (xi, yi) at time t .

3) COMBINATION OF GLOBAL AND LOCAL ADAPTIVITY
Our final choice of the annealing scheme for adaptive regu-
larization incorporates both global and local approaches con-
sidering the global decay of residual and its relative weight in
the residual domain at each iteration, leading to the full adap-
tive scheme. The proposed diffusivity map for our algorithm
integrates the global annealing of the scale parameter and the
relative weight of residual leading to:

κ ti = S(d̃ ti ; s
t , α), (19)

d̃ ti =
di(wt )− µti

σ ti
, (20)

st = y(t;µ, b), (21)

where µti and σ
t
i denotes the mean and the standard deviation

of temporal residual di(wt ) for sample (xi, yi), respectively,
andµ and b denotes the mean and the scale for the probability
density function of the annealing distribution, respectively.

FIGURE 3. Schematic illustration of the network architecture
incorporating our regularization algorithm for image classification
problem. The target of the primary network is represented by an one-hot
encoding and the residual is subsequently fed into a series of smoothing
layers leading to the objective function based on the smoothed residual.

V. NETWORK ARCHITECTURE INCORPORATING
ADAPTIVE REGULARITY
The neural network architecture with our proposed regular-
ization algorithm is constructed by a primary network that
yields an output of the prediction for the problem of interest
and computes the associated residual that is subsequently
fed into a series of smoothing layers leading to the objective
function based on the smoothed residual. The schematic illus-
tration of the network architecture is presented in Fig. 3 where
the target of the primary network is represented by a one-hot
encoding for the image classification problem. Our regular-
ization algorithm applies a diffusion process to the residual
depending on its magnitude using the heat equation based
on the Laplace operator with spatially varying diffusivity,
however the application of the Laplace operator is not suited
for the residual domain, in which the spatial property among
the neighboring elements is not locally related to the regu-
larity of solution in the image classification problem while
the Laplace operator is constrained to be applicable at the
residual domain where the local affinity implies the regularity
in the solution space, for example, autoencoder architectures.

In the sequel, we employ an extended Laplace operator result-
ing in a global interpolation of all the elements in the residual
domain to blur a one-hot encoding representation based on a
fully connected layer with the following weights:

wjk =

1− κj, if k = j
κj

M − 1
, otherwise

(22)

where wjk ∈ RM×M denotes the filter element of a fully con-
nected layer that connects from the k-th node of the residual
to the j-th node of the successive diffused residual layer,M is
the dimension of residual, and κj denotes the diffusivity value
obtained by Eq. (19) for the j-th element of the residual. The
number of smoothing layers is related to the diffusion time
τ and the diffusivity κ in the heat equation in Eq. (8), and
we set the number of smoothing layer to be one while the
scale factor of the diffusivity varies for numerical stability
and computational efficiency. The overall algorithm of our
proposed method is presented in Algorithm 1.

VI. EXPERIMENTAL RESULTS
In the experiments, we empirically provide the quantitative
evaluation of our algorithm by the comparative analysis using
an image classification task. A detailed description of the
experimental setup is presented in the following:
Datasets:We use four commonly used benchmark datasets

including CIFAR-10, CIFAR-100 [29], Street View House
Numbers (SVHN) [30], and Fashion-MNIST [31]. CIFAR-10
consists of 50K training and 10K testing images of the size
32 × 32 × 3 for 10 categories. CIFAR-100 is the same as
CIFAR-10 except that it has 100 classes. We apply conven-
tional image augmentation with padding, random cropping
and flipping to CIFAR-10 and CIFAR-100 as pre-processing
stesp. SVHN is a dataset of house numbers in the street
images. It consists of 73257 training and 26032 testing
images of the size 32 × 32 × 3 for 10 categories. Fashion-
MNIST consists of 60K training and 10K testing images of
the size 28× 28 for 10 categories.
Neural Network Models: We consider neural network

architectures ranging from shallow to deep models including
ResNet20, ResNet56 [32] and DenseNet-BC with 100 layers
(k = 12) [33].
Optimization and Hyperparameters:We use the stochastic

gradient descent method and the objective function is the
mean squared error of the residual that measures a difference
between the prediction and the desired output. We use the
following common hyperparameters across all the experi-
ments; momentum is 0.9, mini-batch size is 128, number
of epoch is 160 for CIFAR-10 and CIFAR-100, 100 for
SVHN and 48 for Fashion-MNIST, learning rate is set to
be 0.1 for the first 75 percent of epochs and 0.001 for the
rest. For Fashion-MNIST dataset, we try several different
values (1e−2, 1e−3, 1e−4, 1e−5) of weight decay for base-
line experiments and the parameter 1e−3 which shows the
best test accuracy among baselines is adopted for the pro-
posed method. For other datasets, weight decay value 1e−4
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Algorithm 1 Pseudocode for the Proposed Method
1: Initialize the weights w of neural network hw
2: Select annealing scheme y
3: Iteration t = 0
4: for t = 0, 1, 2, · · · do
5: Sample a mini-batch β t from training dataset.
6: Initialize loss L(wt ) = 0
7: for a i-th pair of data (xi, yi) in β t do
8: Get residual d ti = |hwt (xi)− yi| and normalize it to get d̃ ti .
9: Get diffusivity κ ti = S(d̃ ti ; s

t , α) where st = y(t;µ, b)
10: Construct a fully connected layer L with the weights wjk as in (22)
11: Pass d ti to the above fully connected layer L and get the smoothed residual r ti
12: L(wt )← L(wt )+ ‖r ti ‖

2
2

13: end for
14: wt+1← wt − ηt 1

|β t |
∇L(wt ) where ηt is a learning rate at t

15: t ← t + 1
16: end for
17: return Trained neural network hw

TABLE 1. Validation accuracy based on ResNet20 using Fashion-MNIST dataset by SGD (left) with varying weight decay (wd) parameters from larger to
smaller, our algorithm with global annealing scheme (middle) and the combination of global and local annealing scheme (right). The annealing of
adaptive regularization parameter follows Laplace (left) and Logistic (right) distributions where the associated parameters are chosen by the grid search.

is chosen for baseline and proposed method as recommended
in [32], [33]. The unknown weights are initialized by the
algorithm proposed in [34].
Quantitative Evaluation:We compute the learning curves

that include training loss, training accuracy and validation
accuracy. We perform 5 independent trials for each set of
experiment and the maximum validation accuracy is taken
across all the epochs and the average of the maximum is taken
over 5 trials.We also compute the average validation accuracy
over the last 10% of epochs and the average of the average is
taken over 5 trials.
Computational Cost: The additional computational cost of

our algorithm is O(M2) for each training data where M is
the dimension of residual. We use a single NVIDA GeForce
GTX 1080 Ti GPU. When training CIFAR-10 dataset with
ResNet56 architecture, the baseline (SGD) takes about one
and half hours whereas our algorithm takes about two and
half hours. For CIFAR-10 with DenseNet-BC, baseline takes
about four hours whereas our algorithm takes about five
hours. Although our algorithm is slower than SGD, it is
affordable within a few hours.

A. ABLATION ANALYSIS ON THE ADAPTIVE
REGULARIZATION PARAMETERS
We analyze the effect of global and its combination with
local annealing schemes for the adaptive regularization based
on ResNet20 using Fashion-MNIST dataset. We compare
the performance of our algorithm to the baseline, stochastic

gradient descent (SGD), to demonstrate that our algorithm
outperforms SGD with grid search of regularization param-
eter. We apply SGD with varying weight decay values such
as 1e−2, 1e−3, 1e−4, 1e−5 and the validation accuracy is
presented in Table 1 where the results with our algorithm
based on global adaptive annealing following Laplace and
Logistic distributions are presented at the middle block, and
the results based on the combination of global and local adap-
tive annealing following Laplace and Logistic distributions
are presented at the right block. For the global adaptivity, the
steepness parameter α = 0 in Eq. (12) is used and the scale
parameter b of distribution varies from 0.1 to 0.9 with step
size 0.2 while the mean µ of distributions is set to be 75%
point of epochs, the maximum of distributions is scaled to
be 1. In the application of full adaptive schemes integrating
global and local schemes, the same parameters as the global
adaptive scheme are used except the steepness parameter
α = 0.25, 0.5, 1, 2, 4. We apply a grid search in the selection
of parameters associated with our algorithms. It is shown
that our algorithm outperforms SGD regardless of weight
decay value associated with SGD, and the performance gain
is achieved with the local adaptivity in addition to the global
adaptivity.

B. EFFECT ON GENERALIZATION BASED
ON PARTIAL TRAINING DATA
We empirically demonstrate the effect of our adap-
tive regularization algorithm based on ResNet20 using
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TABLE 2. Validation accuracy based on ResNet20 using partial (1/2, 1/4
and 1/8) Fashion-MNIST dataset by SGD (left) with varying weight
decay (wd) parameters from larger to smaller, our algorithm with the
global+local adaptive scheme (right). The annealing of adaptive
regularization parameter follows Laplace (left) and Logistic (right)
distributions where the associated parameters are chosen by the grid
search.

Fashion-MNIST dataset. We select partial subset of training
data uniformly at random for the training phase with varying
ratio such as 1/2, 1/4 and 1/8 in highlighting of the effective-
ness of our algorithm in generalization. The validation accu-
racy of SGD is computed at a range of weight decay values,
1e−2, 1e−3, 1e−4, 1e−5, and its maximum and average are
computed over 5 independent trials as shown at left block in
Table 2. The maximum and average of validation accuracy
obtained by our algorithm with fully adaptive regularization
incorporating global and local schemes are presented at right
block in Table 2 where Laplace and Logistic distributions
are used for global annealing of adaptive regularization. The
associated steepness parameter α with the sigmoid function
for the local adaptive regularization is fixed as 1 whereas
the associated scale parameter b with the distribution for the

global adaptive regularization is selected by a grid search over
a range of values from 0.1 to 0.9 with a step size 0.2 except for
Laplace adaptivity scheme with 1/8 partial data where grid
search for b is done over a range from 0.9 to 1.7 with a step
size 0.2.

The maximum validation accuracy obtained by our algo-
rithm with different annealing distribution is presented in
Figure 4 where the accuracy with Laplace and Logistic
annealing distributions is shown in blue and red, respectively
along with the baseline in black for each ratio of partial
training set, (a) 1/2, (b) 1/4 and (c) 1/8. It is shown that
our algorithm outperforms the baseline across all the scale
parameters for both annealing distributions, indicating that
our algorithm achieves better generalization.

C. COMPARATIVE ANALYSIS WITH OTHER
OPTIMIZATION ALGORITHMS
We compare our algorithm with previous smoothing method
called label smoothing [15] and the commonly used opti-
mization algorithms including Adam [35] and AdaGrad [36].
For label smoothing, we use the same hyperparameters as
that of baseline and smoothing parameter ε = 0.1. In our
comparative analysis, we use deeper networks including
ResNet56 and DenseNet-BC with 100 layers (k = 12) for
the benchmark datasets that are CIFAR-10, CIFAR-100 and
SVHN. The associated parameters with our algorithm are
used by b = 0.2, 0.5 for Laplace, b = 0.25, 0.5 for Logistic
distribution respectively and α = 1. The maximum and
mean validation accuracy are presented in Table 3 where

FIGURE 4. Validation accuracy (y-axis) with varying scale parameter of distribution b (x-axis)
associated with the annealing distribution using partial Fashion-MNIST dataset. The training is
performed based on ResNet20 by SGD and our global+local adaptive regularization schemes.
The partial ratios of training data used are (a) 1/2 (b) 1/4 and (c) 1/8.

TABLE 3. Comparison of validation accuracy obtained by SGD, Adam, AdaGrad, Label smoothing (LS), our fully adaptive algorithm with Laplace and
Logistic distributions from left to right. The training is performed based on the model ResNet56 (top block) and DenseNet-BC (bottom block). For each
block of model, the dataset CIFAR-10 (top), CIFAR-100 (middle), SVHN (bottom) are used.
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FIGURE 5. Learning curves obtained based on ResNet56 model using CIFAR-10 (top), CIFAR-100 (middle), and
SVHN (bottom) datasets. The validation accuracy, training loss, testing loss are presented in red, blue, green
color, respectively. The learning performance of our regularization scheme based on (b) Laplace and
(c) Logistic distributions is compared with (a) the SGD algorithm.

FIGURE 6. Learning curves obtained based on DenseNet-BC (k = 12, L = 100) model using CIFAR-10 (top),
CIFAR-100 (middle), and SVHN (bottom) datasets. The validation accuracy, training loss, testing loss are
presented in red, blue, green color, respectively. The learning performance of our regularization scheme based
on (b) Laplace and (c) Logistic distributions is compared with (a) the SGD algorithm.

the results using ResNet56 (top block) and DenseNet-BC
(bottom block) with SGD, Adam, AdaGrad, and our algo-
rithms with Laplace and Logistic distributions are shown
from left to right.

It is shown that our algorithm outperforms the other algo-
rithms under comparison with their recommended parame-
ters. Note that adaptive optimization methods such as Adam
and AdaGrad often generalize worse than SGD for image
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classification task [37]. There is potential that our algorithm
can be improved with wider range of grid search for the
parameters α and b. The learning curves obtained by (a) SGD
and our algorithms with (b) Laplace and (c) Logistic distri-
butions using CIFAR-10 (top), CIFAR-100 (middle), SVHN
(bottom) are presented in Figure 5 and Figure 6 where the
learning curves with our algorithm indicate better generaliza-
tion in terms of the validation accuracy. The learning rate is
scheduled to be dropped at 75% of epochs from 0.1 to 0.001
and the global adaptive annealing reaches the peak of the
associated distribution at 75% of epochs, which leads to an
abrupt change in the learning curves.

VII. CONCLUSION AND DISCUSSION
In this paper, we have investigated the data-driven adaptive
regularization by smoothing the residual of neural network
for the image classification problem in an adaptive man-
ner. The residual is defined by the discrepancy between the
output of the neural network and the desired output. The
regularization is imposed by diffusing the residual depending
on the probability density function following either Laplace
or Logistic distributions where the degree of regularization
is proportional to the magnitude of each residual element.
The combination of local and global annealing scheme that
is designed to take into account residual in determining the
degree of diffusion has been presented to spatially and tem-
porally varying regularization. The effectiveness of the pro-
posed algorithm has been demonstrated by the experimental
results indicating the potential of our algorithm that can be
easily integrated to a variety of problems in deep learning
applications.
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