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Abstract: The significant improvements observed in the field of bulk-production of printed microchip
technologies in the past decade have allowed the fabrication of microchip printing on numerous
materials including organic and flexible substrates. Printed sensors and electronics are of significant
interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing
amount of research and deployment of specially printed electronic sensors in a number of applications
demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving
wider-scale electronics on different dielectric materials. Although there are many traditional methods
for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated,
and require more power for operation than additive fabrication methods. This paper serves as a
summary/review of improvements made to the additive printing technologies. The article focuses
on three recently developed printing methods for the fabrication of wireless sensors operating at
microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional
(3D) printing, and screen printing.
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1. Introduction

Progress in the area of wireless communication is directed toward a nonstop improvement of
device operations, ubiquity, and commercial viability of devices. Evolving research into millimeter
wave (mm-wave) radio frequency (RF) communication operations at frequencies ranging 30–300 GHz
is important for the advancement of such automation as gigabit wireless local area networks,
automobile contact prevention, self-operational steering radar systems, and fine-quality beam-tuning
image-processing equipment. The classic production methods for mm-wave structures comprise
patterning, lithographic masking, and reproduction of materials that require the use of severe liquid
materials, and are expensive. In order to enable the maintained assimilation and spread of rising
mm-wave methodologies, attempts should be made to boost their adaptability and minimize the price
of component manufacture.

An additive electronic fabrication technique known as “inkjet printing” has been gathering
immense attention for industrial uses as a greatly scalable, cost-effective, and above all,
environment-friendly substitute to classical lamination-based fabrication methods [1]. Using thick/thin
polymer-based and conductive nanoparticle-based ink materials, multiple layering structures for
RF industry—e.g., fully printed transformers, inductors and capacitors [2–4]—have been realized,
using inkjet-printing on stretchy materials. Through the refinement and characterization of these ink
materials, multilayer RF structures operational in the millimeter-wave frequency range have been
accomplished with the help of inkjet-printing manufacture on both solid and stretchy materials [5,6].
Conversely, numerous latest presentations of inkjet-printed millimeter-wave modules suffer from
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restrictions existing in the distinctive multiple layers of RF structure designs—e.g., material properties
and uniform thinness of corporate laminating materials—along with difficulties in multiple layers of
laminating material treatment (e.g., material alignment, bonding, and stacking) [7–10]. The upright
assimilated, additive aspect of inkjet-printed structure in electronics allows the integration with
structures of significant interest, such as system-on-chip modules, stretchable and wearable electronics,
and conformable/reconfigurable/rollable configurations [11,12]. With the help of this integration,
the versatility and efficiency of RF millimeter-wave systems has drastically increased by directly
post-process depositing antennas into any solid or stretchable active circuit configuration.

There are many additive manufacturing techniques such as gravure/dispenser printing,
spray deposition, stereolithographic, polymer-jet fused deposition modeling, laminated object
manufacturing, selective laser sintering, electronic beam melting containing liquid, solid and powder
based processes [13]. Nevertheless, the most popular additive manufacturing techniques for microwave
printed electronics are 3D printing, inkjet printing, and screen printing. Therefore, we review these
three additive printing techniques for microwave resonator-based wireless sensor applications.

In the case of creating the preferred designs for malleable electronic devices, many recent material
processing methods have been proposed including lithographic [14,15], stencil printing [16–21],
microchannel molding and coating, and space-filling techniques [22,23]. However, the aforementioned
techniques are expensive, lack fabrication scalability, or employ complex procedures and, consequently,
their widespread implementation has been restricted. Furthermore, three-dimensional (3D) printing
does not suffer from these restrictions, and has started to become a mainstream additive production
technique. This technique uses the mechanism of constructing complex-shaped objects layer-by-layer
containing thorough digital outlines [24]. Further, 3D printing technology has many benefits, such
as shorter fabrication time and a capability to construct multifarious configurations and shapes
with multiple materials at the same time, which certainly is beyond the capabilities of conventional
fabrication processes.

The speedy evolution of 3D and four-dimensional (4D) (time-managing) printing machinery
promises exclusive rewards in the formation of optimum non-orthogonal shapes, on-demand
deposition of nanostructures and other RF modules, such as antennas, and multiple layers on
stretchy hermetic RF suites for flexible electronics. However, there are noteworthy obstacles in
the construction of fully 3D multiple layer configurations. One of these obstacles is the bridging
or overhanging complications, where the materials are affected by gravity throughout the printing
course. Consequently, most schemes attempt to circumvent extremely overhung 3D structures and
approve printing electrical components over a surface, such as those described in [18,25]. To be
precise, these systems belong to the 2.5D printing classification. The existing marketplace proposes
three solutions for printing extreme overhang structures: zero support, solid support structures, and
non-solid supporting structures. Zero support printing is in the early stages of development [26].
Consequently, many limitations in the selection of printing materials and geometry design still exist.
Solid support structures are the most common solution for extreme overhang designs. However,
printing in this manner wastes material. Moreover, this technique is time-consuming, and it is difficult
to remove the support. Consequently, small marks, which cause dimensional inaccuracies, remain on
the printed object. In the case of non-solid supporting structures, powder-based technologies such
as selective laser sintering and direct metal laser sintering are extensively adopted printing methods
for commercial use. These techniques can use the surrounding powder to hold the structure in place
during printing; e.g., the 3DPandoras printer [27]. However, the powder can be tough to remove,
particularly when printing nylon or metal. Other methods in early development, such as embedded
3D printing [28], are still not sufficiently developed to be used in fabrication, since the ink utilized
requires a high resistivity (117 Ωcm) and the printing process is complicated.

Screen printing is the most popular and mature technology for printed electronics, since it
has been employed in the electronics industry to print metallic interconnects on printed circuit
boards for a long period. This technique is faster and more versatile than other printing tools,
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since the fabrication process is simple, affordable, quick, and adaptable. Screen-printed devices can
be reproduced by repeating a few steps, and an optimum operating envelope can be developed
quickly [29–34]. The feasibility of screen printing for flexible electronics has been demonstrated
through the production of many printed sensors, electronic devices, and circuits. For example,
all-screen-printed thin-film transistors (TFTs) have been demonstrated in [33,35,36]. Screen printing
has been used to develop organic light-emitting diodes, following the investigation of the fabrication
process and parameters of the screen printing solution i.e., viscosity of the solution and mesh count of
the screen [37]. Multilayer high-density flexible electronic circuits, connected to embedded passive
and optical devices through micro via holes, have been realized using advanced screen printing
processes [32]. Screen printing is also used for patterning to develop shadow masks for the fabrication
of organic TFTs. Screen-printed electrical interconnects for a temperature sensor on a polyethylene
terephthalate (PET) substrate have been reported in [38].

However, in this review article, a summary/review of the developments in only printing
technologies such as inkjet, 3-D and screen printing for the fabrication of batteryless wireless sensors
operating at microwave frequencies is presented. Easier processing stages, minimized material waste,
high speed and cost-effective substances, and simple patterning procedures render printing tools very
attractive for accurate, multi-layered, and cost-effective development [39]. These features of printed
electronics have allowed researchers to explore new avenues for material processing and to develop
sensors and systems on non-planar surfaces that are otherwise difficult to realize with the conventional
wafer-based fabrication techniques. In this paper, we compare the current developments in the three
aforementioned additive printing fabrication techniques, with respect to their fabrication time, power
consumption, and complexity.

The design and analysis of inkjet-printed sensors are presented in Section 2. Section 3 focuses
on the construction of a 3D RF sensor and its technological advantages. Section 4 comprises a review
of the latest screen-printed sensors. Section 5 compares the technologies presented and summarizes
this review.

2. Inkjet Printed Sensors

This section describes the advanced inkjet-printed batteryless RF sensor devices. Inkjet-printed
wireless sensor systems for numerous future applications are introduced in terms of their
environmental impact and performance as a sustainable technology.

2.1. Inkjet-Printing on Paper Material

Inkjet-printing methods have many benefits for RF sensor fabrication. Inkjet printing technology
is cost-effective and environment-friendly because no hazardous chemicals are used to wash away the
unwanted metals on the surface of a substrate. In this technique, nanoparticle ink is deposited
at the desired position. Consequently, there are no by-products because inkjet printing is an
additive fabrication method. The advantages of this technology, such as fast fabrication and ease
of mass production, also reduce the cost of inkjet-printed electronics. The electrical properties of
inkjet-printed silver nanoparticles were thoroughly studied in [1]. Many microwave applications
utilizing silver nanoparticles have been proposed in [40–42]. The conductivity of the inkjet printing
silver nanoparticle inks is approximately 1.12 × 107 S/m, which is sufficiently high for microwave or
millimeter-wave applications.

Inkjet printing technology can be used to fabricate various electronic devices on many kinds of
materials; consequently, it is possible to utilize an environment-friendly alternative, such as paper, as a
substrate. Paper is a very attractive substrate in inkjet-printed electronics for agricultural applications.
Paper is a low-cost, renewable, and inkjet printable material. Apart from being one of the cheapest
materials in the world, paper decomposes completely in agricultural environments. Moreover, there
are many kinds of paper, such as hydrophobic, porous, and translucent paper. The hydrophilic
property of normal paper is useful for implementing humidity or rainfall sensors. These sensors are
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widely adopted because water monitoring is crucial in agriculture. The properties of paper that are
useful for inkjet printing have been reported in many studies based on measurements using different
characterization techniques, such as ring resonator or T-resonator methods [1,40]. Paper has a reported
dielectric constant (εr) of approximately 3.0 and a loss tangent (tan δ) of approximately 0.05–0.06.
The relatively high loss of paper is not a critical issue for radio frequency identification (RFID) or
planar structures, which have a low Q-factor, because paper is very thin. This high loss results in low
interaction between the electric field (E-field) and paper substrate.

2.2. RFID Enabled Sensor, Retro-Directive Transponders, and an Inkjet-Printed Sensor Platform

2.2.1. RFID-Empowered Sensor

RFID-empowered sensor devices have many benefits over state-of-the-art sensor components in
terms of cost-effectiveness and ease of use. Typically, the price of an RFID tag is small and the structure
is comparatively simple (reader and sensor tag). Thus, it is possible to realize an RFID-empowered
sensor device over a large agricultural field at a low cost. RFID principles are also appropriate for
current wireless sensor networks, which are easy to implement [43].

In this subsection [44], an inkjet-printed RFID-empowered sensor device for haptic and water-level
recognition is proposed. The device contains two similar RFID tags for the ultra-high-frequency (UHF)
band at approximately 915 MHz. The proposed sensor is combined with one of the RFID tags. The sensor
is a meandering line with a self-resonant frequency of approximately 915 MHz. When a material with a
dielectric constant and loss tangent different from those of air comes into contact with the meandering
stripline, the capacitance of the component varies, which results in shifting of the resonating frequency
of an RFID tag. Since the RFID tags have identical resonant frequencies, their unique IDs are returned at
a similar frequency values when they are activated by the tag reader. However, the resonant frequency
of the antenna connected to the sensor device (Figure 1) is moved to a lower frequency when the
detector is in contact with human skin or liquid (water in this case). Utilizing the tag without the
sensor for a reference, the existence of an analyst can be easily determined. Similarly, the level of
water can be identified because the variation of the capacitance of the sensor device influences the
resonant frequency of the RFID-empowered structure. A metamaterial-empowered resonating element
is attached to the tags for overturning crosstalk between the two tags.
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2.2.2. Retro-Directive Transponder for Sensing

A retro-directive antenna array can re-transmit an interrogation signal to its source without
any complicated computations [45]. The Van Atta topology is a widely used retro-directive antenna
array topology owing to its simple structure and passive implementation [46]. The integration of
a microfluidic sensor with a retro-directive antenna array was proposed in [47,48]. The resulting
device is purely passive and has a self-steering capability. The self-steering capability results in strong
system performance owing to the wide readable angle of the passive transponder. This property is
particularly critical in radar cross-section (RCS)-based backscattering communication applications,
such as passive wireless sensor systems. For example, the back-scattered power of most passive
RCS-based wireless sensors depends on the illumination angle. Retro-directive antenna arrays can be
used to improve the performance of the sensor because these antenna arrays can reflect near-identical
powers to the interrogation direction over a broad angle. The proposed inkjet-printed, dual-band,
substrate-integrated waveguide retro-directive array, and microfluidic sensor are shown in Figure 2 [47].
The operation of this device suggests a potential application as a chipless RFID-enabled sensor tag
operating at two different frequencies for temperature or water quality sensing. The variation of
the RCS of the microfluidic sensor can be measured over a broad range owing to the retro-directive
transponder. The dual-band property of the retro-directive transponder results in the ability to sense
two targets at two different frequencies.
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and (b) proposed microfluidic sensor [47].

2.2.3. Inkjet-Printed Sensor Platform

A cost-efficient inkjet-printed sensor module for agricultural applications was recently proposed
in [49]. The sensor platform has been improved to detect ambient moisture content, water content
of the soil, and rainfall because moisture sensing is a crucial aspect of farming. The block diagram
of the system, which contains a leaf sensor, soil humidity sensor, microcontroller unit, and antenna,
is shown in Figure 3a. The capacitance of the leaf sensor and soil humidity sensor differ based
on the water content and humidity of the soil or the environment surrounding the sensor module.
The microcontroller detects variations in the capacitance of the leaf sensor and the soil moisture sensor.
The microcontroller processes the data collected from the sensor and broadcasts this information
through the antenna. The microcontroller and antenna can also be used to gather ambient power
information to initialize the microcontroller or reduce battery consumption [50]. In contrast to
traditional sensor modules, all passive elements are inkjet-printed on an eco-friendly paper substrate.
Finally, dense monitoring of rainfall and soil humidity over large agricultural fields is possible owing to
the advantages of inkjet printing technology, such as low fabrication cost and ease of mass production.
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An implementation of the sensor platform is shown in Figure 3b. The soil moisture sensor is buried in
the ground to detect surface soil humidity. The leaf sensor, microcontroller, and antenna are visible.
The uncovered constituents can be chemically layered with Parylene or silicone, if required, to extend
the lifetime and protect the sensor platform.Sensors 2017, 17, 2068 6 of 30 
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Figure 3. Inkjet-printed sensor platform for agriculture applications: (a) block diagram of system; and
(b) proposed design in operation [49].

2.3. A Fully Inkjet-Printed Wireless and Chipless Sensor for Carbon Dioxide (CO2) and Temperature Detection

This subsection describes a printed CO2 and temperature sensor, which utilizes different industrial
inks. The sensitivity of a batteryless detector or sensor is the result of the removal of complex
single-walled/polymer carbon-nanotube (SWCNT) ink material [51]. It was recently demonstrated
that graphene sheets and carbon nanotubes (CNT) provide robust sensitivity to several vapors and
gaseous elements [52–55], mitigating alternative substantial limitations. Prior to this study [56],
a straightforward system verifying the sensitivity of the proposed device to smog, which impairs
many material properties, was proposed. This section intends to evaluate the performance of the
proposed sensor when subjected independently to temperature changes and CO2. Furthermore,
a tangential approach regarding the multiple layers of the responsive substance has been adopted for
the improvement of the sensing performance. Many specimens are tested to evaluate the reliability
of reproduction. With regard to the selectiveness, the authors include the results of coating the first
or topmost layer with a polymer-based ink for the sensitivity of the proposed sensor to CO2 and
temperature. In the following subsection, we review the dimensions and design of a batteryless sensor
device (see Figure 4), and explain its operating principles.



Sensors 2017, 17, 2068 7 of 30
Sensors 2017, 17, 2068 7 of 30 

 

 

Figure 4. Top view and side view of the fully inkjet-printed dual-polarized sensor device fabricated 

using three different inks [51]. 

2.3.1. Design and Principle 

Radiation Mechanism of a Dual-Polarization Split-Ring Resonator (SRR) 

The operational functionality of a batteryless RFID chip sensor device is comparable to the idea 

of a microchip-empowered RFID sensor without a unified analogue-to-digital converter (ADC). The 

observation of a dimensional criterion depends on the changes to the permittivity or conduction of a 

susceptible material. These variations result in the changes of the RCS of the RFID tag with respect 

to the frequency. Consequently, the magnitude shifts of some peaks and the resonant frequency can 

be sensed in the working range of the RFID tag. The electromagnetic device provides two different 

types of feedbacks on an equilateral basis. The electromagnetic (EM) results at one polarization are 

to be utilized for extracting the detected data, whereas the results at another polarization are to be 

utilized as a reference point for the identification of codes and calibration parameters. A similar idea 

was presented in [56] for smoke detection. Figure 5a,b shows currents in both scatterers when 

exposed to a vertically and horizontally polarized incident plane wave, respectively. From this 

illustration, it can be observed that only one scattering element is agitated at a particular polarization. 

Further, the EM response is isolated between each scattering element. Thus, variations in the degree 

of the detecting scatterer do not influence the degree of the corresponding referenced scatterer. 

The physical sizes of the scattering elements have been adjusted to operate in the 2.4–2.5 GHz 

band. The SRRs are square-shaped with a lateral length of approximately 18 mm. The two arms of 

the SRR are 6 mm apart; the value of 6 mm is selected as a compromise considering the bandwidth 

of resonance, size, and the highest magnitude of the e-field current distribution. The gap of the SRR 

is maintained at 2 mm, allowing a low strip resistance, which is favorable for the magnitude of the 

RCS. Undeniably, a slimmer strip dimension might result in a degradation of the performance in 

terms of the conductivity of a strip lithographed using silver nanoparticle ink, comparatively smaller 

conductivity than the printed-circuit-board etching of copper. Figure 2a,b demonstrates a distance of 

9 mm between the two scattering elements, allowing sufficient decoupling of the EM response  

(−15 dB isolation between polarizations). A minor estrangement space might have demanded higher 

bandwidth for the resonating dips in one and the other polarizations, also an abridged isolation of 

cross-polarization. 

Figure 4. Top view and side view of the fully inkjet-printed dual-polarized sensor device fabricated
using three different inks [51].

2.3.1. Design and Principle

Radiation Mechanism of a Dual-Polarization Split-Ring Resonator (SRR)

The operational functionality of a batteryless RFID chip sensor device is comparable to the
idea of a microchip-empowered RFID sensor without a unified analogue-to-digital converter (ADC).
The observation of a dimensional criterion depends on the changes to the permittivity or conduction
of a susceptible material. These variations result in the changes of the RCS of the RFID tag with respect
to the frequency. Consequently, the magnitude shifts of some peaks and the resonant frequency can
be sensed in the working range of the RFID tag. The electromagnetic device provides two different
types of feedbacks on an equilateral basis. The electromagnetic (EM) results at one polarization are
to be utilized for extracting the detected data, whereas the results at another polarization are to be
utilized as a reference point for the identification of codes and calibration parameters. A similar idea
was presented in [56] for smoke detection. Figure 5a,b shows currents in both scatterers when exposed
to a vertically and horizontally polarized incident plane wave, respectively. From this illustration,
it can be observed that only one scattering element is agitated at a particular polarization. Further,
the EM response is isolated between each scattering element. Thus, variations in the degree of the
detecting scatterer do not influence the degree of the corresponding referenced scatterer.

The physical sizes of the scattering elements have been adjusted to operate in the 2.4–2.5 GHz
band. The SRRs are square-shaped with a lateral length of approximately 18 mm. The two arms of
the SRR are 6 mm apart; the value of 6 mm is selected as a compromise considering the bandwidth of
resonance, size, and the highest magnitude of the e-field current distribution. The gap of the SRR is
maintained at 2 mm, allowing a low strip resistance, which is favorable for the magnitude of the RCS.
Undeniably, a slimmer strip dimension might result in a degradation of the performance in terms of the
conductivity of a strip lithographed using silver nanoparticle ink, comparatively smaller conductivity
than the printed-circuit-board etching of copper. Figure 2a,b demonstrates a distance of 9 mm between
the two scattering elements, allowing sufficient decoupling of the EM response (−15 dB isolation
between polarizations). A minor estrangement space might have demanded higher bandwidth for the
resonating dips in one and the other polarizations, also an abridged isolation of cross-polarization.
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CNT Loaded Scattering Element for Sensing

A scattering element, which is denoted by “H” in Figure 4, will be used to detect information.
An engraved patterning, which is composite SWCNT/poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate (PEDOT:PSS) ink-based [57,58], is interleaved between the space/gap of an SRR, to sensitize
it to changes in various electrical parameters [59]. According to earlier characterizing processes,
it is known that the conductivity and resolution of the deposit are the most sensitive parameters
with regard to a temperature or gas variation. Consequently, a variable resistor can model the
deposit. The impedance is at a maximum in the gap. Consequently, a strong deviation in the sensing
response may be observed because in the case of CNT ink, the bridging resistance of the deposit
has a high value. To increase the sensitivity of the sensing device, the size of the sensitive area
has to be maximized. Conversely, to avoid canceling the dominant resonant frequency mode of
the scattering element, the authors could not deposit a large resisting pattern in the SRR space.
For such a structure, the resisting lining can be modeled as a resistor in parallel with a circuit of
resonance. Thus, if the bridge resistance is minimized, the quality factor (QF) of the resonance dip is
reduced. Consequently, a resonant peak cannot be detected at low bridging resistances. The sensitive
stripline is inserted into the SRR gap, as illustrated in Figure 4, to prevent covering a majority of
space. The aim was to determine the longest path covering the large area inside the space of an SRR.
Further, the delicate stripline is in the shape of a meander line. The ratio of the length and width
of the route is selected in such a way that minimal bridge resistance is accomplished with respect
to the following research of sensitivity. Hence, a stripline width of 0.75 mm with a route length of
54 mm is employed. Furthermore, to ensure a healthy electrical connection between the SRR and
sensitive stripline, the SWCNT/PEDOT:PSS-based stripline overlays with the silver stripline toward
and adjacent to the gap-space, with a surface area of 4.5 × 2 mm2 (Figure 4).

In order to determine the minimum bridge resistance required to maximize the logarithmic and
linear RCS changes, the authors performed a parametric simulation using CST Microwave Studio
(CST MWS) by controlling the plate resistance of the susceptible stripline between 10 Ω/sq and
100,000 Ω/sq. They demonstrated a susceptible stripline area with zero thickness, which can be termed
as an ohmic area in CST software.

The simulation results for the RCS responses are illustrated in Figure 6a,b for several plate
resistances, for both horizontal and vertical polarizations, respectively. Figure 5a shows the decoupling
among both the polarizations, since by modifying the plate resistance of the susceptible deposit,
no response was observed in the vertical polarization result. Instead, a noteworthy deviation was
observed in the magnitude of the horizontal polarization result.
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(a) the vertical polarization; and (b) the horizontal polarization [51].

2.3.2. Description of the Measurement Setup

The sensors shown in Figure 7 are inkjet-printed over a stretchable 50-µm-thick polyimide coating
used as a specimen. The permittivity of polyimide is 3.5 with a tangential loss value of 0.0027.
The authors utilized the Dimatix DMP-2831 inkjet printer for the deposition of the material. They
used a silver ink known as Harima Nanopaste for generating higher conductivity in the stripline.
Two layers with a resolution of approximately 635 dpi (dots per inch) were printed initially, followed
by a sintering process for 70 min at 130 ◦C to achieve the thickness of 2 µm. The plate resistance
achieved was approximately 0.5 Ω/sq.
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Further, the authors used composite SWCNT/PEDOT:PSS conducting ink for the susceptible
conductive stripline [57,58]. The delicate material is inkjet-printed at a resolution of 1694 dpi after
being cured at 30 ◦C for 30 min. The process of sintering is not compulsory, and the ink dries rapidly
in the ambient atmosphere.

The authors of [51] produced nine models of the prototype illustrated in Figures 4 and 7.
The dimensions of the susceptible strip-lines and the SRR were maintained exactly equal. However,
the number of layers of the CNT-based stripline was varied between two and four. The measurement
process in Figure 8 was utilized for carrying out the CO2 experiment. An airtight plastic rectangular
box sufficiently large to enclose the sensing device, as shown in Figure 8b, was utilized as the
device-under-test chamber. The testing box contained an inlet and an outlet with checked regulators to
avoid any additional composite vapor travelling backwards. Dry air (10% relative humidity) or any
specific gas were injected into the testing box. According to a sensitivity research of CNTs implemented
in [52], numerous gases—e.g., NO2, NH3, and CO2—can be detected. In this subsection, we focus on
the sensitivity of the SWCNT deposit for CO2 only. CO2 gas was injected using a quick hand-operated
pump. Each injected amount soaks the purity of the gas inside the box at a degree of approximately
20,000 ppm. A HD37AB17D Delta Ohm probe recorded the purity of CO2, and simultaneously
measured the humidity and temperature. An ETS-Lindgren 3164-04 wideband dual-polarized ridged
horn antenna, with a gain between 9 dBi and 12 dBi and frequency in the range of 3 GHz to 6 GHz,
was positioned 20 cm from the testing box. The terminals of this antenna were joined to an Agilent
PNA E8358A vector network analyzer.
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Figure 8. Experimental process: (a) view of the antenna in front of the test chamber; (b) view of the test
chamber; and (c) description of the set-up for gas measurement [51].

This subsection describes a stretchable inkjet-printed batteryless sensing device, and evaluates
its sensitivity to CO2 gas and temperature [51]. An analysis to make this device reactive only for
temperature variation is also presented. Wireless measurement of the device, imperiled to a CO2 purity
of approximately 20,000 ppm, displayed changes of 0.23 dB and 0.51 dB with and without a dielectric
covering, respectively. The authors also observed variations of the magnitude of approximately 2 dB
in the changed prototypes over a temperature range of 35 ◦C to 65 ◦C. The top covering film in this
research did not interfere with the temperature recordings of the sensing device.
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3. 3D Printed Sensors

3D printers have been in use for approximately 35 years. With 3D printing, objects are constructed
brick-by-brick with comprehensive digital outlines [24]. Moreover, 3D printing has been utilized in
fabrication. Free software available online and low-cost 3D printers and 3D printing supplies have
resulted in the immense popularity of this trend. The benefits of 3D printing machinery include quick
fabrication and the ability to construct difficult structures from more than one material, which is a
limitation of the classic fabrication techniques. It has become evident that were will be a proliferation of
3D-printed applications in the near future. A Hyrel [60] System 30 3D printer is illustrated in Figure 9.
The printer utilizes Repetrel, a revised variety of the Repetier controller software, which employed the
mutual slicing computer-aided drawing software, known as Slic3r [61,62].
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3.1. Novel Strain Sensor Based on 3D Printing Technology and 3D Antenna Design

The foremost 3D printed stretchable RF strain sensing device is discussed here [18]. The RF
response of NinjaFlex, the famous 3D printer material, was characterized. A 3D antenna was analyzed
and constructed using these materials and stretchable electrically conductive adhesives (ECAs). These
materials hold immense promise for the upcoming 3D-printed RF solicitations, e.g., wearable RF
components and flexible 3D sensing devices. The NinjaFlex filament was presented by Fenner Drives,
Inc. in 2014 as one of the latest commercial 3D printing provisions [63]. NinjaFlex is a kind of
thermoplastic elastomer (TPE) composed of thermoplastic and rubber [64]. The properties of TPEs
hypothetically allow 3D printing to spread to various new domains, such as wearable antennas and RF
electronics, owing to their elasticity and higher flexibility. Following its announcement, NinjaFlex was
used in a variety of assignments [65,66]. This part of the review discusses a batteryless strain sensor
based on 3D printing stretchable ECAs and NinjaFlex.

3.1.1. 3D-Printed Strain Sensor Prototype

3D Antenna Design

The dimensions of the dipole structure are shown in Figure 10. The dielectric material is a
30 mm × 30 mm × 30 mm hollow cube made of NinjaFlex (dielectric constant of 2.98, and tangential
loss of 0.06 at 2.4 GHz). With two perpendicular arms, the dipole antenna is constructed using ECAs.
We can observe in Figure 10a that the dipole is positioned on the top exterior of the hollow cube and is
bent toward two additional planes on the sides. The feeding point of the dipole is at the midpoint of the
top exterior. The two arms extend to the edge of the top surface and bend along the other two vertical
surfaces. A similar dipole array geometry was also presented recently [67]. This 3D structure facilitates
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simple quantitatively analysis of the changes to antenna topology caused by strain. The NinjaFlex
structure contains a hollow cube at its center. This structured design improves the quality of printed
NinjaFlex, and enables easy stretching of the part of the dipole antenna on the front surface, as shown
in Figure 10. The directions in which strain is applied can be observed in Figure 10b.
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Figure 10. (a) 3D antenna on a hollow cube; and (b) directions in which strain is applied on the front
and the back surfaces of the cube [18].

3D-Printed Strain Sensor Prototype

First, the cube and antenna traces were 3D-printed using a Hyrel System 30 3D-printer and
NinjaFlex filament. Subsequently, the antenna traces were filled with the ECAs, based on a design
in ANSYS High Frequency Structure Simulator (HFSS). An impedance-matched balun was added
between the two antenna traces to connect to a sub-miniature version A (SMA) connector for insertion
loss tests, as shown in Figure 11.
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3.1.2. Strain Experiment and Results

Strain was applied to the front and rear faces of the cube-shaped box (Figure 10b), and the change
in the resonant frequency of an antenna was observed. Two dissimilar intensities of strain were applied
to the box during experimentation. The measured results are illustrated by the solid lines in Figure 12.
We observed that the center frequencies shifted by 30 MHz and 50 MHz, respectively, after applying
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strain-1 and strain-2. Owing to the 3D structure of the box, the most noticeable alteration in the length
of the antenna is at the front. After applying a strain, this location of the structure stretches owing
to the NinjaFlex. Consequently, the resonant frequency of the antenna is decreased as anticipated.
In [18], a 3D antenna for use as a strain sensor was planned and constructed using stretchable ECAs
and NinjaFlex. This technology offers enormous prospects for future 3D printing RF equipment, e.g.,
wearable RF devices and 3D stretchable sensor modules.
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Figure 12. Results of measurements and simulations of the strain test of the 3D-printed strain
sensor [18].

3.2. Microfluidic Sensor Constructed on a Flexible Material of Kapton for Measurement of Complex
Permittivity of Different Liquid Materials

A sensitive and low-cost microfluidic sensor operating in the frequency range of 10–12 GHz
was validated and proposed in a previous study [68]. This sensor contains various dabs coupled
to a micro-strip (MS) line. The sensor is used for measuring and characterizing liquid chemicals,
with applications in chemical laboratories and biological fields. The device is constructed on
a stretching Kapton material by utilizing electronic printing technologies. With the help of
mathematical calculations that describe the characteristics of resonance, the variance between the
complex permittivity of a test and a reference sample predicts the complex permittivity of different
concentrations of sodium chloride (NaCl) water solutions. The estimated numbers for the imaginary
and real portions of the complex permittivity present a continuous deviation with the purity of the
NaCl-water solution. Two of the linear zones correspond to the real part—one for minor concentration
levels (<0.5 M), the other for larger concentration levels (>0.5 M). Only one linear region was achieved
for the imaginary part for the several concentration levels examined. A close similarity is observed
among the outcomes obtained from the Cole-Cole model and the experimental results recorded.
The recorded experimental results determine the sensitivity and practicality of the addressed device
for characterizing micro-quantity liquid chemical at microwave frequencies. Although the investigated
frequencies were approximately 10 GHz, the same approach can be implemented for any frequency in
the microwave range. Furthermore, the proposed method can be utilized to detect several new liquid
chemicals that possess a complex permittivity at the same specifications of frequency using the same
calibration. Although the proposed sensor is not common, it can be used favorably in a variety of
practical experiments where the material under observation is a mixture or a liquid chemical.
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3.2.1. Design and Fabrication of the Liquid Chemical Sensing Device

Sensor Design

Figure 13 shows the design of the proposed RF chemical sensing device, constructed on
0.13-mm-broad Kapton material in HFSS. As evident from the illustration, this batteryless sensing
device works on various dabs coupled to an MS line. The 25-mm-long MS has a width of 0.3 mm,
as shown in Figure 13c, matching a characteristic impedance of 50 Ω. The size or length of every dab is
4 mm, improved for a 50-Ω impedance matching. Two of the dabs are located symmetrically opposite
on each side of a central dab, which is situated at the center of the MS line. The space between the
dabs is fixed at 1.5 mm. This sensing scenario is designed to have a larger detection space, where the
E-field at resonance is also powerfully concentrated. A system is constructed for obtaining an accurate
response in the X-band (8 to 12 GHz). The measurement parameters of the bent area are shown in
Figure 13d. The sensor contains two orthodox segments (5 mm each) and three curves. With regard to
the stab in the center, 9 mm of the substrate is bent at an angle of 180◦, whereas the other two curves
that match the two orthodox segments are curved from lengths of 3 mm at an angle of 90◦.

Sensors 2017, 17, 2068 14 of 30 

 

shown in Figure 13c, matching a characteristic impedance of 50 Ω. The size or length of every dab is 

4 mm, improved for a 50-Ω impedance matching. Two of the dabs are located symmetrically opposite 

on each side of a central dab, which is situated at the center of the MS line. The space between the 

dabs is fixed at 1.5 mm. This sensing scenario is designed to have a larger detection space, where the 

E-field at resonance is also powerfully concentrated. A system is constructed for obtaining an accurate 

response in the X-band (8 to 12 GHz). The measurement parameters of the bent area are shown in 

Figure 13d. The sensor contains two orthodox segments (5 mm each) and three curves. With regard 

to the stab in the center, 9 mm of the substrate is bent at an angle of 180°, whereas the other two 

curves that match the two orthodox segments are curved from lengths of 3 mm at an angle of 90°. 

 

Figure 13. (a) Design and dimensions of the proposed sensor filled with aqueous chemicals; (b) 

zoomed structure of the bent portion highlighted in (a); (c) top view of the structure showing the 

dimensions; and (d) measurements of 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic 

module [68]. 

Sensor Fabrication Process 

The device is constructed on 130-μm-thick Kapton material using inkjet technology. Kapton was 

bought from Dupont Teijin films for this research. The reason for choosing Kapton material is its high 

thermal stability that enables sintering over high temperatures. Before printing, the Kapton sheet was 

washed in acetone chemical, cleaned by isopropyl alcohol, and completely dried using a flow of 

nitrogen. An easily accessible nanoparticle ink from market, acquired from Sun Chemical (Suntronic 

EMD5714) company, was used as a conducting material. The ink material contains silver 

nanoparticles distributed inside a blend of ethanol, glycerol, and ethanediol, at a 42% concentration 

by weight. Dimatix printhead (Spectra®  SE-128AA) was used for the deposition fixed in a Ceraprinter 

X-Series inkjet printer from Ceradrop society. The outlets were activated by a custom-made 57 V 

vibration at a jet frequency speed of 2 kHz. The space between the outlets and printing material was 

fixed at 800 μm. The drop spacing was fixed to 38 μm. Sintering was performed for 45 min at 200 °C 

for obtaining reliable silver tracker conductivity. The thickness of the final deposition material was 

as small as 1 μm for the metal parts (ground and conductive line). These were the constraints chosen 

to obtain acceptable realization with respect to conductivity (δ ≈ 5 × 106 (S/m)) [69] while maintaining 

the physical and biochemical properties of the Kapton material unaffected. Figure 14a,b shows the 

pictures of the resonator prototype. Notably, the resolution of the conductive pattern formed by using 

inkjet-printing is acceptable and there were no wrinkles observed. The proposed 

microwave/microfluidic device is attached to SMA connectors with an overall 50Ω impedance 

matched at both the sides of the MS line as shown in Figure 14c. A 3D-printed mold was constructed 

using Acrylonitrile butadiene styrene (ABS) material and hardened at an oven temperature of 125 °C 

with measurements indistinguishable from those obtained in Figure 13. Silicone glue is attached to 

Figure 13. (a) Design and dimensions of the proposed sensor filled with aqueous chemicals; (b) zoomed
structure of the bent portion highlighted in (a); (c) top view of the structure showing the dimensions;
and (d) measurements of 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic module [68].

Sensor Fabrication Process

The device is constructed on 130-µm-thick Kapton material using inkjet technology. Kapton was
bought from Dupont Teijin films for this research. The reason for choosing Kapton material is its high
thermal stability that enables sintering over high temperatures. Before printing, the Kapton sheet
was washed in acetone chemical, cleaned by isopropyl alcohol, and completely dried using a flow of
nitrogen. An easily accessible nanoparticle ink from market, acquired from Sun Chemical (Suntronic
EMD5714) company, was used as a conducting material. The ink material contains silver nanoparticles
distributed inside a blend of ethanol, glycerol, and ethanediol, at a 42% concentration by weight.
Dimatix printhead (Spectra® SE-128AA) was used for the deposition fixed in a Ceraprinter X-Series
inkjet printer from Ceradrop society. The outlets were activated by a custom-made 57 V vibration at a
jet frequency speed of 2 kHz. The space between the outlets and printing material was fixed at 800 µm.
The drop spacing was fixed to 38 µm. Sintering was performed for 45 min at 200 ◦C for obtaining
reliable silver tracker conductivity. The thickness of the final deposition material was as small as 1 µm
for the metal parts (ground and conductive line). These were the constraints chosen to obtain acceptable
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realization with respect to conductivity (δ ≈ 5 × 106 (S/m)) [69] while maintaining the physical and
biochemical properties of the Kapton material unaffected. Figure 14a,b shows the pictures of the
resonator prototype. Notably, the resolution of the conductive pattern formed by using inkjet-printing
is acceptable and there were no wrinkles observed. The proposed microwave/microfluidic device is
attached to SMA connectors with an overall 50 Ω impedance matched at both the sides of the MS line
as shown in Figure 14c. A 3D-printed mold was constructed using Acrylonitrile butadiene styrene
(ABS) material and hardened at an oven temperature of 125 ◦C with measurements indistinguishable
from those obtained in Figure 13. Silicone glue is attached to both sides of the bent device for avoiding
seepage of the tested chemicals, as shown in Figure 14d. The Kapton material utilized here is easily
curved on the 3D-printed mold and conforms to firm curves without the help of mechanical equipment.
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Figure 14. (a) Photograph of a set of resonators on Kapton substrate; (b) micrograph of a stub loaded
along the MS line; (c) photograph of the sensor curved on a 3D-printed support; and (d) photograph of
the sensor under testing [68].

3.2.2. Simulation and Experiment Validity

As previously mentioned, a mixture of deionized (DI) water with various purity mixtures
of NaCl was examined to evaluate the sensitivity of the microwave/microfluidic device. The S21

spectrum illustrated in this paper was measured using a vector network analyzer (PNA-X N5242A
(10 MHz–26.5 GHz)). Figure 15a presents the measured spectrum of the sensing device under
experiment without and with the NaCl mixtures. In this study, the volume of the deposited solution
was maintained constant (0.3 mL) for all concentrations. Notably, the recorded spectrum (S21) was
completely repeatable with less than 0.29% change in the point of the resonant dip and approximately
1.9% variation in accordance with the magnitude of the attenuation dip. By considering the error
generated by the depositor, the variations are also expected to escalate in a manner undefined yet.
When there is nothing to examine (i.e., air is present on the sensor), the sensor has an insertion
resonant dip of 76 dB at 10.61 GHz. When pure DI water (C0) is injected, it shifts the resonant dip
to 10.32 GHz with an insertion loss of 70 dB. Notably, with the increase in the purity of NaCl in
the mixture, the resonant dip shifts toward lower frequency values, and the bandwidth of the dips
increases (Figure 15b). This outcome was expected owing to the fact that, when the purity of NaCl
is increased, the real component of the complex permittivity is observed to decrease, resulting in a
variation in the resonant dip. Furthermore, the decrease in the magnitude of the attenuation dip as the
purity of NaCl in the mixture increases is clearly related to the increased magnitude of the imaginary
component of the complex permittivity [70–72]. Simulations for many purity levels of NaCl were
investigated manually using the HFSS computer tool for detecting the subtlest area of the device and
for examining the magnitude of electric field distribution inside the bent region of the device during
the experiment.
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Figure 15. (a) Experimental S21 parameters of the sensor recorded in the X-band as a function of
different concentrations of NaCl; and (b) zoom of (a), with selected concentrations to highlight
the variation in the position of the resonant frequency and the magnitude of attenuation when the
concentration is increased [68].

As shown in Figure 16, the half-structures of the sensor are simulated using symmetry
(the symmetric plane is illustrated in Figure 13). The electric field distribution is evaluated at 10 GHz.
In the case of C0, it is demonstrated that the electric field is intensely gathered at the center dab of
the structure. Nevertheless, when the purity is increased, the electric field distribution is gathered
toward the board of the dab, but not around the center dab, which is near the MS line, similar to C0.
This result indicates that the center location close to the MS line is the most subtle with respect to the
increment in the purity of the solution under test [68].
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Figure 16. Electric field (E-field) distribution as a function of different NaCl-water concentrations
calculated inside a symmetric half-structure of the sensor [68].

A cost-efficient microwave/microfluidic sensor that characterizes the complex permittivity of
aqueous solutions in an efficient and exact manner is designed, fabricated, and validated in the X-Band.
This sensor is realized using inkjet-technology and 3D printing on a Kapton substrate. Simulation and
experimental investigations of the device are presented, and it is observed that the results obtained are
consistent with the Cole-Cole model [68].
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4. Screen Printing

Screen printing is a proven manufacturing technology that enables high-volume production at
low cost. Thus, the main advantage of screen-printed RF sensors is the potential for low-cost and
high-volume manufacturing. Practical implementation of screen printing technology for the fabrication
of antennas began in the 1970s, when low-loss dielectrics arrived in the market. Screen printing
technology offers the possibility for cost-optimized inline reel-to-reel manufacturing. Consequently,
RF components can be thinner, lighter, more flexible, and cheaper than when fabricated using a
conventional manufacturing process [73]. Screen printing is appropriate for fabricating electronics
owing to the ability to produce patterned, thick layers from paste-like materials. This technique
can produce conducting lines using inorganic materials (e.g., for circuit boards and antennas) and
passive insulating layers, where the thickness of the layer is more important than the resolution.
The characteristic throughput (50 m2/h) and resolution (100 µm) are similar to those observed with
inkjet printing. This versatile and comparatively simple method is used primarily for the fabrication of
conductive and dielectric layers [74,75]. However, organic semiconductors, e.g., organic photovoltaic
cells [76] and complete organic field-effect transistors [77], can be printed.

4.1. Novel Strain Sensor Based on 3D Printing Technology and 3D Antenna Design

The design of a stretchable RF strain sensor fabricated using screen printing technology is
suggested in [78]. The proposed sensing device is fabricated using a patch of half of the wavelength,
which has a resonant frequency of 3.7 GHz. Its resonant frequency is determined by varying the size
of the patch. Therefore, whenever the structure is stretched, it has a different resonant frequency.
Polydimethylsiloxane (PDMS) was utilized as a substrate, since it is a stretchable and screen-printable
surface. Dupont PE872 silver conductive ink (Dupont, NC, America) was utilized to produce a
conducting structure with elasticity. The sensing operation is determined using full-wave computer
simulations and experiments to be conducted on the fabricated prototype. After stretching, the resonant
frequency of the device decreases to 3.43 GHz from 3.7 GHz, increasing the horizontal size by 7.8%
and demonstrating a sensitivity of 3.43 × 107 Hz/1%. When the device is stretched in the vertical
direction, there is no change in the resonant frequency.

4.1.1. Design of a Strain Sensor

The construction of the sensing device is espoused from a rectangle resonator patch as shown in
Figure 17. These four-sided patches are extensively utilized in RF resonators or structures containing
resonator-based modules owing to their uncomplicated construction and ease of fabrication. In this
particular research, the conductive patterning was generated using screen printing technology.
The resistance of the surface of these conducting patterns was determined using the width-to-length ratio.
The value of resistance for the silver conducting ink with stretching ability and the rectangle-shaped
conductive patch are 0.64 Ω and 14.2 Ω, respectively. The diminished resistance on the surface of the
rectangle-shaped patch is owing to the smaller width-to-length ratio. Figure 7 shows the dimensions of
the strain sensor device. A coaxial transmission line feeding is utilized as an alternative to the classical
MS line feeding. This modification is performed to ensure that the feed structure remains unchanged
when the overall structure is stretched. Furthermore, PDMS is used here as a dielectric substantial
or a substrate for the top conducting patch. The permittivity (εr) and tangential loss of PDMS were
characterized using T-resonator process [79,80]. The resonant frequency ( f0) of the rectangle-shaped
conducting patch can be computed as [81,82]:

f0 =
c

2√εe f f

{
Lp + 0.824Hs

[
(εe f f +0.3)

(Wp
Hs +0.264

)
(εe f f−0.258)

(Wp
Hs +0.8

)
]} (1)
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εe f f =
εr + 1

2
+

εr − 1
2

 1√
1 + 12

(
hs

Wp

)
, (2)

where εe f f is the effective permittivity emanating from the fringing fields, c is the speed of light in
vacuum, Wp is the width of the rectangular patch, Lp is the length of the rectangular patch, and Hs

is the thickness of the dielectric material (PDMS). The permittivity and tangential loss of the PDMS
material were determined to be 3.01 and 0.025, respectively.

The length and width of the rectangle-shaped conductive patch were selected to be 17.05 mm
and 23.1 mm, respectively, to enable the sensor to have a resonant frequency of 3.7 GHz. Figure 18a,b
displays the respective real and imaginary portions of the input impedance, with various values of
D—the lengthwise distance of the coaxial feed to the edge of the rectangular patch. It can be observed
in Figure 18 that the resonant frequency and impedance decrease with the increase in D. Thus, to realize
matched impedance of 50 Ω, D is determined to be exactly 6.5 mm. ANSYS computer simulator (HFSS)
is utilized for the full-wave simulation analysis. The SMA Version A connector was also incorporated
in the simulation of the structure, as evident from Figure 17. If the resonant frequency highly depends
on the varied lengths of the conducting patch, it is expected that the operating frequency will decrease
when the device is to be stretched vertically. Figure 19a,b presents the simulation results of the
reflection coefficient for different values of Lp and Wp, respectively. Originally, the ideal sensor had
a resonant frequency of 3.7 GHz with a reflection coefficient of −25 dB. The frequency of operation
does not vary when Wp is changed [83], as shown in Figure 19a. However, it is demonstrated in
Figure 19b that the resonant frequency is reduced from 3.7 GHz to 3.43 GHz after stretching the device
by 7.8% in the vertical direction. Consequently, the proposed device can be effectively utilized as a
strain-sensing resonator by identifying variations in the resonant frequency. Therefore, to compute the
elastic capability, the strain can be defined as:

Strain =
∆L
Lo
× 100(%) (3)
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Figure 17. Dimensions of the addressed RF strain sensor: (a) top view; (b) perspective view; and (c) 

side view. Wp = 17.05 mm, Lp = 23.1 mm, Ws = 40 mm, Ls = 50.1 mm, D = 6.5 mm, and Hs = 1.01 mm [78]. 

Figure 17. Dimensions of the addressed RF strain sensor: (a) top view; (b) perspective view; and
(c) side view. Wp = 17.05 mm, Lp = 23.1 mm, Ws = 40 mm, Ls = 50.1 mm, D = 6.5 mm, and
Hs = 1.01 mm [78].
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4.1.2. Fabrication of the Strain Sensor

PDMS

Figure 20 presents the method to fabricate in-house PDMS material. In Figure 20a, the desired
PDMS mold has been constructed on a plastic sheet using 3D printing (Ultimaker2 + 3D printer
(Ultimaker B.V, Geldermalsen, The Netherlands)) procedure. Since 3D production is faster and easier
than classic fabrication methods [84], it is extensively used. The thickness (Hs), length (Ls), and width
(Ws), of the flexible PDMS material were 1.01 mm, 50.1, and 40 mm, respectively. After constructing
the mold, a liquid conformation of a fraternization, a curing agent with base was created with a ratio of
10:1. Subsequently, a void vacuum machine was utilized for the removal of air bubbles created during
the fraternization process. A dense liquid conformation was cured at 30 ◦C for approximately 50 h,
or at 110 ◦C for 40 min. The device also underwent heat curing process for 35 min at a temperature
of 75 ◦C using a hot plate. Subsequently, a PDC-32G plasma cleaner (Harrick Plasma, NY, USA) was
used to perform plasma treatment on the PDMS material. The plasma treatment was performed for
approximately 20 s at 19 W.
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Figure 20. PDMS fabrication process: (a) 3D-printed mold for the PDMS substrate; (b) mixing the
base and curing agent; (c) pouring liquid PDMS into the fabricated outline; and (d) plasma treatment
processing [78].

Screen Printing

The silver screen printing method is shown in Figure 21. As shown in Figure 21a,b, the conducting
pattern for the upper rectangle-shaped patch and the ground of the structure were screen-printed on
the flexible PDMS material using the silver conductive ink (Dupont PE872, Bucheon, Korea), which
exhibits elasticity. Daeyoung Technology Co. (Bucheon, Korea) produced the screen printer used
in this project. The device has a printing speed in the range of 45–595 mm/s, and a squeegee angle
between 60◦ and 90◦. The 400 wire count mesh of stainless steel with a mesh tension of approximately
150 N was utilized. A mask of the pattern was created and placed on the PDMS material onto which
the silver conducting nanoparticle ink was screen-printed using a squeegee. Figure 21c displays a fully
fabricated and functional sensor. The rectangle-shaped conductive patch resides on the top, and the
bottom is also screen-printed as the top patch. It is necessary to cure the prototype for improving the
conduction on the screen-printed area. Therefore, heat sintering was performed in a vacuumed oven
(ON-22GW) [85,86] for approximately 35 min at 90 ◦C. A hovel was subsequently pierced on the patch
through to the bottom and an SMA connector pin was implanted using silver glue epoxy (the inner
conductor pin of SMA attached to the top patch; the outer part of SMA connected to the ground in the
same manner).
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4.1.3. Experimental Results

The specimen of the proposed RF sensor is shown in Figure 21c. Further, an Anritsu MS2038C
vector network analyzer (Anritsu, Kanagawa, Japan) was used for the measurement of the reflection
coefficients of the RF strain sensor. The measurement results of the reflection coefficients recorded for
the strain sensor were compared with the corresponding simulation results in Figure 22a. Originally,
the non-stretched device has a resonant frequency of 3.7 GHz with reflection coefficients of −27 dB.
The recorded measurement results and the computer-simulated results are consistent with each other.
The repeatability test is carried out for ensuring the reliability of results and is shown in Figure 22b.
The graph shows the recorded reflection coefficient after every 1, 5, 10, 15, and 20 cycles. One cycle
represents the relaxed state after stretching the strain sensor. It can be observed in Figure 22b that the
resonant frequency does not change until 10 cycles of stretching and relaxation have been performed.
The resonant frequency changes slightly to 3.67 and 3.68 GHz after 15 and 20 repetitions, respectively.
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Figure 22. (a) Simulated and measured reflection coefficients of the proposed patch resonator before
stretching; and (b) repeatability test of the fabricated strain sensor [78].

Furthermore, the reflection coefficients were recorded for different strain scenarios. The specimen
was stretched along the vertical and horizontal axes; this can be observed in Figure 23. Figure 23a
illustrates the recorded reflection coefficient results when the device is stretched along the vertical axis.
It was already expected from the simulation results of reflection coefficients, as observed in Figure 19a,
that the resonant frequency does not vary with the stretch being applied. Nevertheless, the impedance
varies, since the coaxial feedhole becomes larger during the stretch. Moreover, Figure 23b demonstrates
that the recorded reflection coefficient was changed as the stretch was applied in the horizontal
direction. Compared to the reflection coefficient results of the simulation shown in Figure 19b,
the resonant frequency varied from 3.7 GHz to 3.44 GHz, after a stretching of 7.82% was applied to
the sensor. The strain of 7.82% corresponds to a 1.85 mm increase in length, and it was selected by
maintaining the mechanical strength of the flexibility of PDMS material.

The relationship between the resonant frequency and the strain alongside the vertical direction
(width) and horizontal direction (length) is graphically shown in Figure 24a,b, respectively. As stated
before, the frequency does not change when a strain is applied in the vertical direction; nonetheless,
it is linearly proportional to the strain applied along the horizontal direction, as evident in Figure 24b.
The sensor calibrate/fitting curve is defined as y = −0.0343x + 3.7. Consequently, the sensitivity of
the proposed RF straining sensor is 3.443 × 107 Hz/percentage. Table 1 confirms the significance
of this work, and the proposed sensor is compared to the other strain sensors recently developed.
The proposed RF strain sensor exhibits longer flexibility and strain scale owing to its stretch-proof
conductive inks and flexibility.
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Table 1. Comparison of RF strain sensors [78].

[78] [87] [88] [89] [90]

Substrate PDMS Kapton tape Si Duroid 5880 Kapton
Conductive Material Au Au Au Cu Cu/Al
Maximum Strain (%) 7.8 N/A N/A 0.2 1

Strain Gauge * (%) 7.3 5.69 0.21 0.14 2.35
Resonant Frequency (GHz) 3.7 12.3 0.4742 5 3.62

* Strain Gauge = ∆ f
f0
× 100(%)

In this subsection, an RF strain sensor using screen printing with stretch-proof silver conductive
ink over a flexible PDMS material is presented. A rectangle-shaped top patch was considered and
utilized for RF strain detection. The sensing operation considers the variation in the frequency of
operation after a strain is applied along the vertical and horizontal dimensions of the sensing resonator.
The practicality of the sensor was also verified by comparing both simulation and recorded results.

4.2. Flexible Screen Printed Biosensor with High-Q Microwave Resonator for Rapid and Sensitive Detection
of Glucose

This section describes a sensitive and fast moderator-free glucose biosensor based on the
phenomenon of an RF batteryless resonator realized using circular bent T-shaped identical impedance
resonators printed using screen printing on a stretchy polyethylene material. Since the device has
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a high QF of 166, the proposed glucose biosensor has a sensitivity of 72 MHz/(mg·mL−1) and an
ultralow detection limit of 0.0167 µM at a central frequency of 11.8 GHz, within the linear detection
range of 1–5 mg/mL. Moreover, the fair dependency of the loaded QF (QL), propagation constant
(γ), reflection coefficient (S11), and device impedance (Z) on the levels of glucose facilitates adequate
multidimensional sensing by the glucose sensor.

4.2.1. Designing and Construction of the Sensor

Two circular-folded T-shaped uniform impedance resonators (TSUIRs) joined with
parallel-coupled feeding lines for the construction of biosensor device over a PET complement are
clearly illustrated in Figure 25a. The condition for the resonance of TSUIR is to be disclosed as an
adjustment to the condition of resonance for the two sections of a stepped-impedance resonator, with
Zin = 0 and Z1 = Z2 as below [91]:

tan θ1 tan θ2 =
Z2

Z1
= 1. (4)

Figure 25a depicts two sections of the resonator with electrical lengths of θ1 and θ2.
The measurements of the structure were optimized for resonance at the fundamental frequency
of 11.8 GHz. This selection of frequency was relevant for glucose detection since the changes in the
dielectric constant of this region are highly significant to the glucose–water solution with purity in
contrast to the regions with lower frequency [92]. The geometry of the biosensing resonator compels
the coupling gap (S) to affect the coupling coefficient significantly, which consequently affects the QF
of the resonator [93]. Hence, the coupling gap was designated as the sensing region of the biosensor, as
demonstrated in Figure 25b. The size of the coupling gap was optimized to 0.2 mm in order to realize
a high QF of 166. Figure 25c shows a snapshot of the sensor prototype and compares the measurement
and simulation results of S11 parameter of the resonator. The recorded fundamental frequency was
reduced by 50 MHz. The quality factor was reduced, which was ascribed to a combination of bending
loss, dielectric loss of the substrate, and physical dimension accuracy. Figure 25d demonstrates the
corresponding design of the device loaded with a glucose section, expressed by LT and RT, which
denote the source inductance and resistive loss of the load feed coupler, respectively. LR and CR
represent the inductance and capacitance of the resonator, respectively.
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Figure 25. Proposed flexible glucose biosensor: (a) 3D layout of the resonator fabricated on a PET
substrate; (b) schematic view of the sensing region of the resonator with a glucose–water solution;
(c) simulated and measured S11, including a photograph of the fabricated resonator; and (d) the
equivalent circuit of the proposed biosensing resonator [94].
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Lc and Cc denote the inductance and capacitance, respectively, owing to the magnetic and electric
coupling of the resonators with the load and the source, and are dependent on the glucose-level
inside the testing sample. A Smart 3S screen printer was used to print the intended designs on a
0.245-mm-thick PET material using pg 007 silver ink (PURU, Seoul, Korea) diluted with ethylene
glycol. The PET dielectric material has a permittivity of 3.1 and tangential loss of 0.0324. The deposited
silver nanoparticle ink has a thickness of 1 µm. The printed patterns are placed in a heating chamber
for 5 min at 150 ◦C to dry them and to increase the conductivity.

4.2.2. Preparation of Testing Samples and Measurements

A standard solution of glucose consisting of a combination of DI water (Millipore TM) and
D-glucose powder (SIGMA, life science, GC, St. Louis, MO, USA) was prepared at the concentrations
of 1, 2, 3, 4, and 5 mg/mL. Subsequently, 2 µL of these liquid mixtures were positioned on the surface
of the sensor using a micropipette. The reflection coefficients were recorded at frequencies ranging
1–15 GHz using an Agilent 8510C vector network analyzer. The testers were positioned over the
detecting area of the biosensor after every 2 s.

4.2.3. Detection using S-Parameters

The shifts in the central frequency, indicated by the peak value of S11 of the five samples of
glucose–DI water mixtures examined, are shown in Figure 26a. The fundamental frequencies of the
sensor were 10.81 and 11.09 GHz for glucose samples with the maximum and minimum concentrations
of 5 and 1 mg/mL, respectively. Therefore, the fundamental frequency of the sensor was observed
to further reduce when the purity of the glucose liquid was reduced. However, for the rest of the
glucose samples, the fundamental frequency increased from 10.81 GHz as the concentration of the
glucose was increased. This behavior is caused by the interaction between aqueous glucose and
the electromagnetic coupling among the resonators and feeding line. This interaction appears to be
dependent on the increase in the permittivity of the glucose composition, as a result of the decrease in
glucose concentration [95]. A regression analysis reveals a good linear correlation (r2 = 0.9993) between
the glucose concentration and shift in central frequency. The linear equation is expressed as follows:

y = 0.071x + 10.725, (5)

where y and x represent the central frequency and concentration of glucose, respectively. Therefore,
the sensor exhibited a sensitivity of 71 MHz/(mg·mL−1) for glucose–water solution. According to the
optimization study and the associated calibration plot (see Figure 26b), the detection limit of the assay
for a signal-to-noise ratio (S/N) of 3 was calculated as 0.0167 µmol of glucose in a 2 µL sample, as
outlined in [96]. The S-parameters for each sample were measured four times. Although the points
deviated from the central frequency, as shown by the error bars, there was no overlapping between
each purity solution. Thus, the observation confirmed that the experiment is repeatable with the same
phenomenon. Figure 26c shows the changes occurring in the loaded QF (QL) and reflection coefficient
(S11) of the sensor for glucose testing samples of different purity levels. S11 was maximized at −28.1
and −14.9 dB for glucose compositions of 1 and 5 mg/mL, respectively. There is a negative correlation
between QL and the concentration of glucose. This relationship is expected owing to the positive
correlation between the loss factor and concentration of glucose.
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Figure 26. Detection of glucose level using measured S-parameters: (a) shift of central frequency;
(b) linearly fitted central frequency and actual central frequency with error bar; and (c) variation of
loaded quality factor (QL) and return loss (S11) with variation in glucose concentration [94].

4.2.4. Detecting through Derived Parameters

The propagation constant (γ) and impedance (Z) were obtained from the recorded reflection
coefficients of the glucose testers, using the approach described in [97]. The propagation constant
increased with changes in glucose purities, from approximately 11.51 GHz to 12.51 GHz, as shown in
Figure 27a. Dips in resonance, which have a positive correlation between the frequency and glucose
concentration, are observed. Dips in resonant impedance are also observed. These dips occur at
dissimilar frequencies for varying glucose concentrations. The frequencies of these dips also have a
positive correlation with glucose concentration, as shown in Figure 27b.
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(b) impedance (Z) [94].

This subsection presents a stretchable biosensor using screen printing technology as a high QF
RF batteryless resonator recognized for moderator-less sensing of glucose levels. Two circular-folded
T-shaped uniform impedance resonators were joined with parallel-coupled feeding lines on PET sheets.
Based on the central frequency shifts, the projected sensor device confirmed a highly sensitive and
quick sensing mechanism of glucose with a significantly lower sensing limit.

5. Summary

Printed RF microelectronics is an evolving zone of investigation with larger commercial
expectations owing to its capability to sidestep conventional inflexible and expensive silicon-based
circuits to fabricate different types and shapes of components on bendable materials using high-quality
printer methods. For the three additive techniques mentioned in this review, inkjet-printing is an
alluring process for manufacturing electronic components owing to the negligible waste produced
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and its effectiveness at handling some expensive materials. Inkjet printing of the conducting
forerunner materials, typically conductive nanoparticles or metallic–organic facilities, is employed as a
comparatively faster method that can effectively handle roll-2-roll (R2R) manufacture. However, the
sintering process in this fabrication, which is necessary to purify the patterns containing conductive
inks, involves times longer than 20 min or higher temperatures (>200 ◦C). Specially, the higher sintering
schedules are not scalable for R2R manufacturing. For instance, a web-speed of 1 m/s with a sintering
time of 35 min corresponds to the production line required to be at least 1.9 km long. However,
screen printing techniques are suitable for bulk production. Further, 3D printed structures, such as
origami, are gaining interest owing to their ease of fabrication, which was previously an issue with the
technique owing to the support structures required for fabrication. Some of the recent works involve
combination of inkjet and screen printing in the development of batteryless sensors [98–101]. For this
review, we have discussed and compared the recent advances in the three popular printing fabrication
techniques with respect to their fabrication time, power consumption, and complexity. The focus
was on the additive manufacturing of batteryless RF sensors and the advantages of these fabrication
techniques for sensors perspective.
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