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Abstract: Demand response technology is a key technology for distributing electricity tasks in
response to electricity prices in a smart grid system. In the current demand response research,
there has been much demand for an automated energy scheduling scheme that uses smart devices
for residential customers in the smart grid. In this paper, two automated energy scheduling schemes
are proposed for residential smart grid demand response systems: semi-automated scheduling
and fully-automated scheduling. If it is possible to set the appliance preference, semi-automated
scheduling will be conducted, and if it is impossible, fully-automated scheduling will be operated.
The formulated optimization problems consider the electricity bill along with the user convenience.
For the fully-automated scheduling, the appliance preference can automatically be found according
to appliance type from the electricity consumption statistics. A performance evaluation validates that
the proposed scheme shifts operation to avoid peak load, that the electricity bill is significantly reduced,
and that user convenience is satisfied.

Keywords: residential demand response; smart grid; fully-automated scheduling

1. Introduction

In recent years, industry development has occurred rapidly, increasing the demand for electric
power. This results in an overload of the electric power supply [1,2]. In particular, the power demand
is concentrated at a specific time, thus the frequency of power outages is also increasing. Smart grids
are emerging as a new technology to solve such problems by electricity demand control or integration,
sustainable mobility, and renewable energy sources; these technologies are essential [3,4]. Among smart
grid technologies, demand response (DR) technology is attracting much attention for its ability to
intelligently drive the usage of electricity [5–8]. DR technology and smart equipment help smart grid
systems efficiently manage the electricity load in order to optimize electricity resource usage in an
intelligent fashion [9]. To adjust the electricity load, DR uses two types of methodologies, which are
addressed in the literature: price-based and incentive-based programs [10]. In price-based DR, customers
change their electricity usage pattern by rescheduling the appliance or reducing usage during peak
periods according to real-time pricing. In incentive-based DR, on the other hand, incentives are
provided to customers who use electrical equipment in a manner guided by the grid operator [10].
The focus of this paper is only on a price-based DR program.

Energy scheduling schemes have been the main research topic regarding smart grids.
Various energy scheduling techniques for smart grids have been proposed in the literature [11–13].
The existing scheduling approaches can be classified by scheduling control strategies as follows.
(1) Day-ahead scheduling: scheduling is performed the day before. (2) real-time scheduling: scheduling
is performed when an electricity request comes. (3) Multi-scale scheduling: integrating day-ahead and
real-time scheduling [14]. This paper focuses on day-ahead scheduling.
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The existing energy scheduling approaches usually target at least one of the following scheduling
goals: reducing the electricity bill, reducing peak consumption, and improving user convenience.

Research efforts using additional optimization variables such as user convenience [11,15,16]
have been recently presented as opposed to using only the electricity bill and peak consumption.
These studies argue that users are trying to reduce the electricity bill without sacrificing the user’s
convenience. To achieve an acceptable trade-off between minimizing the payment and waiting time for
the operation of each household appliance under the peak consumption constraint, Mohsenian-Rad
and Leon-Garcia [11] proposed a residential energy scheduling scheme. However, this scheduling
scheme does not consider various types of appliances, instead only focusing on appliances that can be
reserved. Yi et al. [15] proposed an energy scheduling scheme that uses a stopping method to achieve
the minimum electricity bill and waiting time in a smart grid. They make a fake schedule based on
the optimal stopping approach at the first stage as if there are no power constraints. Then, the power
constraints are taken into account at the second stage. This scheduling scheme, however, does not
consider the operation duration of the appliances, and thus cannot meet the user convenience
requirement for appliances. Similarly, the above scheduling approaches using user convenience
do not consider the various types of possible devices, nor do they consider the appliance deadline. For
user convenience, Chen et al. [16] divided the energy scheduling tasks into two types: delay-tolerant
and delay-intolerant tasks. In delay-intolerant tasks, activating the device immediately upon its
arrival is the only choice. On the other hand, to make use of the fluctuating nature of the electricity
price, delay-tolerant tasks can be opportunistically scheduled. In day-ahead scheduling, classification
according to the tolerance is not suitable since it cannot shift the load to an earlier time. For day-ahead
scheduling, this paper classifies the appliance according to schedulability and interruptability.

Additionally, a smartphone-based energy scheduling methodology considering a large variety of
deployment scenarios, due to the increasing demand for smartphones for use as control entities in
smart grids, should be developed. In particular, smartphones are an attractive control and monitoring
tool for energy scheduling in a smart grid. In addition, smart appliances are evolving into intelligent
functions that can be operated through smartphones [17–19]. By using smartphones and smart
appliances, the customer can easily adjust their energy schedule and monitor their electricity usage.
Further, smartphone applications can remotely control smart appliance operation periods. For instance,
a number of consumer electronics companies have recently started to provide smart appliance controls
through smartphones. Through a simple procedure using a smartphone, customers can easily and
remotely register and control their home appliances.

With the development of DR and smart appliances, fully-automated scheduling is possible in
residential smart grids. However, previous studies [11,15,16,20] are limited in that they assume that
the user sets the preferred operation time for each appliance (the preferred time is referred to as user
convenience in this paper). In this paper, a demand response scheme is proposed that automatically
estimates a user’s convenience without configuring the convenience for fully-automated energy
scheduling. The proposed scheme provides the following contributions:

• A mathematical model is established to minimize the electricity costs and maximize the user
convenience, which is computed as a function of the operation time.

• Two automated scheduling schemes are proposed. If the user sets the preferred time sections
of the appliances, the proposed scheme can automatically schedule the appliances according
to the preferred time section (referred to as semi-automated scheduling). If the user cannot
set the preferred time of the appliances, the proposed scheme can search for the preference
based on the usage statistics and then automatically schedule the appliances (referred to as
fully-automated scheduling).

• Appliances are classified according to operation type. Then, a scheme that can estimate the
preference time according to the classification based on the usage statistics pattern is proposed.



Energies 2017, 10, 1326 3 of 17

The rest of this paper is organized as follows. In Section 2, the system architecture and model
are introduced. The fully-automated scheduling algorithm is given and optimization problems are
formulated in Section 3. Simulation results are given in Section 4. Finally, this paper is concluded
in Section 5.

2. System Architecture and Model

2.1. System Architecture

This section introduces the system architecture. In general, the overall composition of the smart
grid system contains the power utility/retailer, advanced metering infrastructure (AMI), load controller,
scheduling manager, database, and a number of appliances. In the proposed system architecture,
the smart grid system contains additional equipment such as an in-home display (IHD) or smartphone
in order to provide convenience to the user. The relationship among these systems is shown in Figure 1.

Figure 1. Concept of the proposed smart grid residential system architecture.

By using a smartphone or IHD, a user navigates the smart grid system, checking their electronic
bill, monitoring their energy consumption, requesting user convenience, and monitoring their
scheduling results. To request user convenience, the user sets their preferred begin operation time and
end operation time for each appliance. If the scheduling results of the appliance are between the start
time and the end time, the scheduling result is said to satisfy the user convenience. If the scheduling
results of the appliances are mismatched with the user’s preferred time, the user convenience will
decrease in proportion to the time gap.

As shown in Figure 1, the demand response system contains the AMI, load controller,
scheduling manager, and database. The AMI is able to communicate in two ways between a residential
smart grid system and the retailer company through a local area network (LAN). Assume that the
AMI receives real-time pricing data from the retailer. The real-time pricing data is delivered to the
scheduling manager to compute the scheduling strategy. The load controller is a connect point between
the demand response system and appliances. When the load controller receives the scheduling
results from the scheduling manager, it can then operate each appliance based on the scheduling
results. Moreover, the load controller receives the energy consumption information for each appliance.
Then, the information will be delivered to the scheduling manager. The database is used to store the
appliances’ usage patterns. These usage patterns can be converted into user convenience to calculate
the next schedule. For the scheduling strategy, the scheduling manager collects information regarding
the user convenience, real-time pricing, and energy consumption. The scheduling manager sends the
scheduling result to the load controller to operate the appliances. The user can monitor the scheduling
results by using a smartphone or IHD.

In the proposed system architecture, each smart grid element has the following perspectives.
The user normally intends to minimize their electricity cost while satisfying user convenience.
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Therefore, the user consumes electricity by taking into account real-time pricing and user convenience.
Power utilities are primarily responsible for providing quality power to users and preventing system
blackouts. To prevent blackouts, the utility uses the real-time pricing policy that increases the price
when the consumption is concentrated. Therefore, electricity consumption can be dispersed.

In general, the operation of some appliances may not be time shiftable or controllable. For example,
motion detectors or smoke detectors may not be time shiftable since they have to be on all of the time.
On the other hand, a television may not be controllable because it usually turns on unpredictably.
Therefore, the appliances are categorized according to their controllability as follows [20].

1. As mentioned earlier, the operation of some appliances may not be controllable. These appliances
are referred to as uncontrollable appliances. Lighting systems, computers, televisions, and hair
dryers are examples of uncontrollable appliances. Thus, they cannot be controlled by the load
controller. However, they should provide their power consumption and operating information
to the load controller since the smart grid system has strict energy consumption scheduling
constraints. Figure 2a shows the state diagram of an uncontrollable appliance. When the
appliance does not operate, it sleeps. If it receives an operation command from the user, it will
then be activated.

2. Although the start time could be controlled, there are some appliances that cannot be
stopped during operation. These appliances are referred to as non-interruptable appliances.
Non-interruptable appliances include dishwashers and washing machines. When a smart grid
system calculates the scheduling strategy, the non-interruptable appliances should be scheduled
continuously. Figure 2b shows the state diagram of a non-interruptable appliance. When the
appliance does not operate, it sleeps. If it receives an operation command from the load controller,
it will wait until the scheduled time and then be activated.

3. In contrast to non-interruptable appliances, some appliances can be stopped during their
operation time. These appliances are referred to as interruptable appliances. Interruptable
appliances include house heat ventilation air conditioning (HVAC), water heaters, and plugged
hybrid electric vehicles (PHEVs). They can be scheduled at discrete times to avoid the peak load
increasing. Figure 2c shows the state diagram of an interruptable appliance. When the appliance
does not operate, it sleeps. If it receives an operation command from the load controller, it will
wait until the scheduled time and then activate. After being activated, it can stop operation and
will then complete the remaining job.

Ready Ac ve Finish

Ready Ac ve FinishDelay

Ready Ac ve FinishDelay

Sleep

Sleep

Sleep

(a)

(b)

(c)

Figure 2. Different state diagrams of (a) uncontrollable, (b) non-interruptable, and (c) interruptable
appliances.

2.2. Demand Response Model

In this section, the energy scheduling optimization problem in a real-time pricing environment is
formulated. The objective of the optimization problem is to minimize the electricity bill and maximize
the user convenience. In this paper, assume that the real-time pricing information is provided from the
power retailer at the beginning of the day (i.e., assume day-ahead pricing).
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Assume that timeslot t is divided into equal unit times and denote by T the set of timeslots.

t ∈ T , {1, . . . , T}, (1)

where T is the end of the time. In this paper, assume T = 24.
Let A denote the set of appliances. For each appliance a ∈ A, a consumes an amount of electricity

Eon
a when it operates. Denote by It

a a scheduling indicator function of appliance a at t, where It
a is 1 if

appliance a is scheduled and 0 otherwise. Assume that a requires a certain number of timeslots for
operation, denoted by Ta. Therefore, Equation (2) is derived.

Ta = ∑
t∈T

It
a. (2)

As mentioned in Section 2.1, the appliance type is categorized as shown the Figure 2. Denote by
φa the appliance type of appliance a, which is expressed by

φa =


0, if appliance type of a is uncontrollable
1, if appliance type of a is non-interruptible
2, if appliance type of a is interruptible.

(3)

In order to prevent system blackout, the energy consumption at time t has a maximum limitation
BO, i.e.,

∑
aa∈A

It
a · Eon

a ≤ BO. (4)

As aforementioned, assume that the energy management system receives day-ahead real-time
pricing from the power retailer. Figure 3 shows the time-varying price provided by the Illinois Power
Company (Springfield, IL, USA) on 15 December 2009.

Denote by pt the real-time pricing at timeslot t. Therefore, the cost function B(·) can be formulated
as Equation (5).

B(·) = ∑
a∈A

pt · It
a · Eon

a . (5)

Figure 3. Example of time varying prices set by Illinois Power Company on 15 December 2009 [11].

In the proposed scheme, the user convenience is considered to be as important as the electricity
cost. Therefore, a user convenience model is used that is determined according to the scheduling
timeslot. As mentioned above, assume that each appliance has a preferred operation time. Denote
by αa the preferred starting timeslot and βa the preferred ending time of appliance a, where αa < βa

and αa, βa ∈ T . Suppose that for a dish washer (a), the user wants a to work from lunch time (13:00)
until dinner time (18:00). In that case, the preferred starting time αa = 13 and preferred ending time
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βa = 18 should be set. In addition, βa − αa is equal to or greater than Ta. For the convenience metric,
an operation should be scheduled during the preferred time. If the scheduling is advanced or delayed,
however, the user will experience discomfort. Therefore, the user dissatisfaction can be calculated
using the number of timeslots that are non-overlapping with the preferred time. Denote by va the total
number of time slots non-overlapping with the user preferred time, which is obtained by Equation (6).

va =
αa−1

∑
t=1

It
a +

T

∑
t=βa+1

It
a. (6)

If dissatisfaction is measured by the number of timeslots that are non-overlapping with the
preferred time, the following problem will occur. Figure 4 shows two cases of scheduling results if
αa = 1 and βa = 6. The scheduling result of case (a) is from 7 to 9 and the result of case (b) is from
10 to 12. Although case (a) is scheduled closer to the preferred time than case (b), the dissatisfaction
is calculated to be equal (i.e., va is 3.) Therefore, the dissatisfaction degree wt

a is introduced, which is
expressed in three cases:

wt
a =



αa − t, t < αa

0, αa ≤ t < βa

t− βa + 1, βa ≤ t.

(7)

Figure 4. Two different cases of va if the dissatisfaction is measured by the number of timeslots that are
non-overlapping with preferred time.

wt
a increases the further away it is from the preferred time. The dissatisfaction can be represented

as the product of wt
a and It

a. (i.e., ∑t∈T wt
a · It

a.) If this version of dissatisfaction is used, va is 6 in case
(a) and va is 15 in case (b). In this case, however, appliances with longer operating times have a greater
dissatisfaction. Figure 5 shows two example cases of appliances that have the same preference time but
have different operating times. Although case (c) is not scheduled at all at the preferred time and case
(d) is scheduled at some preferred time, both (c) and (d) have the same dissatisfaction of 6. However,
the user will likely be more dissatisfied in case (c). For this reason, divide ∑t∈T wt

a · It
a by the operating

time of the appliance and formulate a dissatisfaction function D(·) as Equation (8) [20].

D(·) = ∑
a∈A

∑
t∈T

wt
a · It

a
Ta

, (8)

where wt
a is calculated by Equation (7).
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Figure 5. Two different cases of dissatisfaction degree if the dissatisfaction increases the further away it
is from the preferred time.

Considering Equation (8), the dissatisfactions are 2, 5, 2 and 1 for cases (a), (b), (c), and (d), respectively.
Moreover, the appliance type needs to be reconsidered. In particular, uncontrollable appliances

and interruptible appliances need extra constraints. Uncontrollable appliances should be scheduled in
their preferred time. Therefore, Equation (9) is derived as:

βa

∑
t=αa

It
a ≥ Ta, ∀φa = 0. (9)

On the other hand, non-interruptible appliances cannot stop during operation. (i.e., the sum of
the changes of adjacent It

a values should be 2 except when It
a for the first and last timeslots are set to

one.) Therefore, Equation (10) is derived as:

T−1

∑
t=1

(It
a − It−1

a )2 ≤ 2− I1
a − IT

a , ∀φa = 1. (10)

2.3. Objective Function for Semi-Automated Scheduling

In this section, the objective function for semi-automated scheduling is derived. Assume that
the preferred start time and end time of each appliance are given by the user. The objective function
considers minimization both of the total cost and dissatisfaction (i.e., B(·) and D(·)). To fairly consider
the two objectives, scaling parameters B̃ and D̃ are introduced since the scales of B(·) and D(·)
are different. B̃ is the difference between the expected maximum result (i.e., all appliances are
scheduled at the most expensive timeslot) and the expected minimum result (i.e., all appliances are
scheduled at the cheapest timeslot) of B(·). D̃ is the difference between the expected maximum result
(i.e., all appliances are scheduled at the farthest timeslot from the preferred time) and the expected
minimum result (i.e., all appliances are scheduled at farther timeslot from the preferred time) of D(·).
The parameter ω is introduced as a weight factor to combine the two objectives. The objective function
of a semi-automated energy scheduling scheme is derived for the residential smart grid demand
response system as Equations (11)–(17).

minimize
It
a

T

∑
t=1

{
ω · ∑

a∈A
pt

a · It
a · Eon

i +
(1−ω)B̃

D̃
· ∑

a∈A

wt
i · It

a
Ta

}
(11)
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subject to

0 ≤ ω ≤ 1 (12)

∑
aa∈A

It
a · Eon

a ≤ BO (13)

T

∑
t=1

It
a = Ta (14)

βa

∑
t=αa

It
a ≥ Ta, ∀φa = 0 (15)

T−1

∑
t=1

(It
a − It−1

a )2 ≤ 2− I1
a − IT

a , ∀φa = 1 (16)

wt
a =



αa − t, t < αa

0, αa ≤ t < βa

t− βa + 1, βa ≤ t.

(17)

3. Fully-Automated Energy Scheduling Algorithm

In this section, an algorithm that can automatically search the preferred time for each type of
appliance is proposed. The preference time search utilizes appliance-specific usage statistics stored
in the database of the demand response architecture. Denote by ut

a the probability that appliance
a will operate at timeslot t, which is expressed as a probability mass function (PMF) based on the
usage statistics. Denote by α̂a the estimated preferred starting time and β̂a the estimated preferred
ending time of appliance a. In the later part of this section, the algorithms for searching and estimating
preference times α̂a and β̂a for each appliance type are described.

3.1. Searching for the Preference Time for Uncontrollable Appliances

When an uncontrollable appliance a starts, it cannot stop during the determined operation time Ta.
Therefore, denote by µt

a the likelihood that the uncontrollable appliance a starts in timeslot t, which can
be obtained as Equation (18).

µt
a =

Ta−t+1

∑
j=t

uj
a. (18)

As mentioned above, uncontrollable appliances should operate exactly at the preferred
time. Therefore, the section with the highest frequency is estimated as the preferred time.
Figure 6 shows an example distribution for uncontrollable appliances. To estimate the preference time
of an uncontrollable appliance, a searching algorithm is proposed in Algorithm 1.

First, set α̂a and β̂a to the initial timeslot (Lines 1 and 2 in Algorithm 1). Here, i is the index for
searching and Temp is the temporary variable to compute the highest frequency (Lines 3 and 4 in
Algorithm 1). Then, search the highest frequency section linearly. (Lines 5∼13 in Algorithm 1). If the
higher frequency section is found, the α̂a and β̂a are updated (Lines 7∼11 in Algorithm 1).

Finally, estimate the preferred starting time and preferred ending time as α̂a = 9 and
β̂a = 16, respectively.
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Figure 6. Example probability mass function (PMF) of an uncontrollable appliance.

Algorithm 1: Preference Searching Algorithm for Uncontrollable Appliances
1: α̂a ⇐ 1
2: β̂a ⇐ Ta − 1
3: i⇐ 1
4: Temp⇐ 0
5: while i + Ta ≤ T do

6: Calculate µi
a by Equation (18)

7: if Temp < µi
a then

8: α̂a ⇐ i
9: β̂a ⇐ i + Ta − 1

10: Temp⇐ µi
a

11: end if
12: i⇐ i + 1
13: end while

3.2. Searching for the Preference Time for Non-Interruptible Appliances

Non-interruptible appliances cannot stop their operation in the same way uncontrollable
appliances can. Non-interruptible appliances, on the other hand, can be scheduled by shifting back and
forth. Therefore, the searching algorithm for non-interruptible appliances uses additional techniques
compared to the uncontrollable algorithm to find an extra timeslot. To find an additional timeslot,
the ε searching margin is introduced. If the difference between ua

t of two adjacent time slots is less
than ε, expand the preference time. Figure 7 shows an example scenario of the searching preferred
time for non-interruptible appliances. To estimate the preference time of non-interruptible appliances,
a searching algorithm is proposed in Algorithm 2. First, find α̂a and β̂a using Algorithm 1 (Line 1 in
Algorithm 2). In the example scenario, assume that α̂a and β̂a are 9 and 16, respectively. Next, conduct
the following steps iteratively until there are no extensions of the preferred section (Lines 2∼10 in
Algorithm 2). If the difference in probability of α̂a and the adjusted previous timeslot’s probability
is less than ε, update α̂a (Lines 3 and 4 in Algorithm 2). If the difference in probability of β̂a and
the adjusted next timeslot’s probability is less than ε, update β̂a (Lines 5 and 6 in Algorithm 2).
If there are no more extensions of the preferred time section, stop the iterations (Lines 10 and 11 in
Algorithm 2). Finally, estimate the preferred starting time and preferred ending time as α̂a = 6 and
β̂a = 16, respectively.
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Figure 7. Example PMF of a non-interruptible appliance.

Algorithm 2: Preference Searching Algorithm for Uncontrollable Appliances

1: Find α̂a and β̂a by Algorithm 1
2: while 1 do

3: if uα̂a
a − uα̂a−1

a ≤ ε then

4: α̂a ⇐ α̂a − 1
5: else if uβ̂a

a − uβ̂a+1
a ≤ ε then

6: β̂a ⇐ βa + 1
7: else

8: break
9: end if

10: end while

3.3. Searching for the Preference Time for Interruptible Appliances

In contrast to the previous two types of appliances, interruptible appliances can be scheduled
discretely. Therefore, α̂a and β̂a have a higher probability of use. To find the estimated preferred
time, the Γ threshold parameter is introduced. If the probability is higher than Γ, this timeslot is
included in the preferred time. Figure 8 shows an example scenario of searching for the preferred time
of interruptible appliances. To estimate the preference time of interruptible appliances, a searching
algorithm is proposed in Algorithm 3. In the proposed algorithm, the following steps are conducted
iteratively (Lines 1∼9 in Algorithm 3). First, find α̂a and β̂a that have higher probabilities than Γ
(Lines 2 and 3 in Algorithm 3). α̂a can be found by Equation (19).

α̂a = arg min
t

yt
a, (19)

where

yt
a =

{
∞, if ut

a > Γ
t, otherwise.

β̂a can be computed by Equation (20).

β̂a = arg max
t

zt
a, (20)
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where

zt
a =

{
0, if ut

a > Γ
t, otherwise.

In the example scenario in Figure 8a, α̂a and β̂a are 12 and 18, respectively. However,
these estimated preferred times cannot be used since the operation time Ta = 10 is larger than
the estimated preferred time. Therefore, update Γ by Equation (21) (Lines 4 and 5 in Algorithm 3).

Γ⇐ Γ− ε. (21)

0 5 10 15 20 25

timeslot

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
M

F

(a)

0 5 10 15 20 25

timeslot

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
M

F

(b)

Figure 8. Example of PMF of an interruptible appliance.

As shown in Figure 8b, extend the preferred time section by using the updated Γ. If the estimated
preferred time is larger than the operation time, the search iterations will stop (Lines 6 and 7 in
Algorithm 3). Finally, estimate the preferred starting time and preferred ending time as α̂a = 6 and
β̂a = 18, respectively.

Algorithm 3: Preference Searching Algorithm for Uncontrollable Appliances
1: while 1 do

2: Update α̂a by Equation (19)
3: Update β̂a by Equation (20)
4: if β̂a − α̂a + 1 < Ta then

5: Update Γ by Equation (21)
6: else

7: break
8: end if
9: end while

3.4. Objective Function for Fully-Automated Scheduling

The result of the proposed searching algorithm is used for the objective function of
fully-automated scheduling. Therefore, Equations (11)–(17) can be updated to Equations (22)–(28),
respectively. The fully-automated scheduling consists of two stages. First, the estimated preferred time
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of each appliance is found by Algorithms 1–3. Then, optimal scheduling of each appliance is given by
the following objective function (Equations (22)–(28)).

minimize
It
a

T

∑
t=1

{
ω · ∑

a∈A
pt

a · It
a · Eon

i +
(1−ω)B̃

D̃
· ∑

a∈A

wt
i · It

a
Ta

}
(22)

subject to

0 ≤ ω ≤ 1 (23)

∑
aa∈A

It
a · Eon

a ≤ BO (24)

T

∑
t=1

It
a = Ta (25)

βa

∑
t=αa

It
a ≥ Ta, ∀φa = 0 (26)

T−1

∑
t=1

(It
a − It−1

a )2 ≤ 2− I1
a − IT

a , ∀φa = 1 (27)

wt
a =



α̂a − t, t < α̂a

0, α̂a ≤ t < β̂a

t− β̂a + 1, β̂a ≤ t.

(28)

4. Simulation Results

In this section, simulations are conducted to verify the proposed fully-automated demand
response algorithm. The simulation is implemented based on the C language, and MOSEK (Version:
7.1.0.54, MOSEK ApS, Copenhagen, Denmark) [21] is used for the optimization interface.

The scenarios include 33 appliances and consider the energy consumption, time duration,
and preferred time. The appliances are evenly distributed according to type (i.e., number of φ = 0,
number of φ = 1, and number of φ = 2 are all 11). Table 1 shows the appliance profile for the
simulation. The performance of the proposed algorithm is compared with previous research [11].

Table 1. Appliance Profile.

φa = 0 φa = 1 φa = 2
Index (a) α̂a β̂a Ta Eon

a Index (a) α̂a α̂a Ta Eon
a Index (a) α̂a α̂a Ta Eon

a

1 16 24 4 120 12 6 7 1 360 23 20 24 3 90
2 12 22 2 120 13 20 23 1 74 24 20 24 1 60
3 16 23 2 198 14 11 22 2 24 25 1 24 7 100
4 5 7 1 150 15 7 21 10 12 26 1 24 24 15
5 10 16 2 30 16 17 22 1 12 27 20 24 3 195
6 20 23 1 600 17 19 22 1 198 28 16 24 5 200
7 11 17 5 60 18 14 18 1 900 29 1 8 2 440
8 21 23 1 540 19 1 24 24 84 30 1 24 24 5
9 14 22 1 600 20 1 24 24 18 31 20 24 3 40
10 11 22 5 36 21 20 24 3 500 32 1 24 17 320
11 6 9 1 780 22 1 8 2 44 33 10 22 5 9.1

Figure 9 shows the scheduling result of each appliance type according to the timeslot if the
objective function only considers the user preferred time. As shown in the figure, the uncontrollable
and non-interruptable appliances are scheduled in consecutive timeslots. On the other hand,
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interruptable appliances are scheduled in non-consecutive timeslots. Therefore, the proposed
optimization problem works well according to appliance type. Figure 10 shows the electricity bill
according to the timeslot if the objective function only considers the user preferred time. As shown in
the figure, appliances are scheduled according to their preferences regardless of the real-time pricing
for both schemes. However, the scheduling results of the proposed scheme and comparison scheme
are a little different. This is because the required operation time of some appliances (such as appliance
index 23 or 24) are longer than the preferred section. Therefore, the scheduling of these appliances can
belong to any part of their preferred section.

Appliance schedule considering user convenience only
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Figure 9. Scheduling results of appliance vs. timeslot considering only the preferred time.
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Figure 10. Electricity bill vs. timeslot considering only the preferred time. The bar is real-time pricing
and the plot is the electricity bill.
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Figure 11 shows the scheduling results of each appliance type according to timeslot if the objective
function only considers the electricity bill. As shown in the figure, appliances can be scheduled at
00:00 to 04:00 and 22:00 to 24:00 at the lowest real-time pricing and constraints work well. Figure
12 shows the electricity bill according to timeslot if the objective function only considers electricity
bill. In the figure, the electricity consumption is concentrated at 00:00 to 04:00 and 22:00 to 24:00 at
the lowest real-time pricing. In contrast to the comparison scheme, the scheduling of the proposed
scheme is more concentrated at around 04:00. In the proposed scheme, an appliance can be scheduled
earlier than the preferred starting timeslot. Therefore, some appliances have a preferred starting time
later than 04:00, and the preferred section larger than 22:00 to 24:00 will be scheduled at around 04:00.
However, the comparison scheme cannot be scheduled earlier than the preferred starting timeslot.

Appliance schedule considering bill only
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Figure 11. Scheduling results of appliance vs. timeslot considering only the electricity bill.
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Figure 12. Electricity bill vs. timeslot considering only the electricity bill. The bar is real-time pricing
and the plot is the electricity bill.
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Figure 13 shows the scheduling results of each appliance type according to timeslot. Like previous
figures, the proposed constraints for appliance type work well. Figure 14 shows the electricity bill
according to timeslot if the objective function both considers electricity bill and preferred time. At 22:00
to 24:00, the electricity bill is distributed since the objective function considers the preferred time,
unlike in Figure 12. At 15:00, the electricity bill is reduced since the objective function considers the
electricity bill, unlike in Figure 10. Therefore, the proposed scheme satisfies both the electricity bill
and preferred time. In contrast to the proposed scheme, the comparison scheme is concentrated at
22:00 to 24:00. As mentioned above, the comparison scheme cannot shift to an earlier time. Therefore,
the comparison scheme can be concentrated at a later timeslot that has lower real-time pricing.

Appliance schedule considering both user and bill
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Figure 13. Scheduling results of appliance vs. timeslot if considering both the electricity bill and the
preferred time.
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Table 2 shows the sum of the electricity bill and dissatisfaction. If the optimization problem
only considers the electricity bill, the bill will be reduced to 479 cents. However, user dissatisfaction
rapidly increases to 103.2. The electricity bill of the comparison scheme is a little expensive and user
dissatisfaction is lower than for the proposed scheme if the optimization problem only considers
electricity. This is because the proposed scheme can shift to an earlier timeslot. Since this optimization
does not consider user dissatisfaction, it found the lowest pricing timeslot. If the optimization considers
both the electricity bill and the user convenience (i.e., ω = 0.5), the proposed algorithm reduces the
electricity bill by 10% when the optimization considers only user convenience. The proposed algorithm
can reduce the user dissatisfaction to 0.6. If both the electricity bill and the user convenience are
considered, the electricity bill of the proposed scheme is a little more expensive than the comparison
scheme, by 2 cents. However, the dissatisfaction of the comparison scheme is larger than the proposed
scheme since the comparison scheme can only shift to a later time to reduce the electricity bill. Therefore,
the proposed algorithm can satisfy both the electricity bill and user convenience.

Table 2. Sum of the electricity bill and the dissatisfaction.

Only Consider
the Electricity Bill

Consider Both the Bill
and the Convenience

Only Consider
the User Convenience

Proposed Scheme electricity bill (cents) 479 486 522
sum of dissatisfaction 103.2 0.6 0

Comparison Scheme electricity bill (cents) 482 483 520
sum of dissatisfaction 59.7 40 0

5. Conclusions

In this paper, an optimization problem and corresponding algorithms for automated appliance
scheduling of residential demand response systems are proposed. For the semi-automated scheduling
scheme, the appliance type was categorized according to the controllability, and mathematical
formulations that consider the electricity bill and user convenience were proposed. Moreover, scenarios
where the user cannot set the appliance preferred time were the main focus, and a fully-automated
scheduling algorithm was proposed that can automatically determine the appliance preferred time
based on usage statistics. Through intensive simulations, the proposed algorithm was verified to
significantly reduce the electricity bill by 10% and satisfy the user convenience. The proposed searching
algorithm is sensitive to the values of ε and τ. Future research will focus on finding optimal values
for ε and τ. In addition, the proposed scheme will expand to consider control-wise modeling and
multi-scale control approaches in the future.
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