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Abstract

Aminopeptidase N (APN) is a naturally occurring ectopeptidase present in mammalian

semen. Previous studies have demonstrated that APN adversely affects male fertility

through the alteration of sperm motility. This enzyme constitutes 0.5 to 1% of the seminal

plasma proteins, which can be transferred from the prostasomes to sperms by a fusion

process. In the present study, we investigated the molecular mechanism of action of APN

and its role in regulating sperm functions and male fertility. In this in vitro study, epididymal

mouse spermatozoa were incubated in a capacitating media (pH 7) containing 20 ng/mL

of recombinant mouse APN for 90 min. Our results demonstrated that the supplementation

of recombinant APN in sperm culture medium significantly increased APN activity, and sub-

sequently altered motility, hyperactivated motility, rapid and medium swimming speeds,

viability, and the acrosome reaction of mouse spermatozoa. These effects were potentially

caused by increased toxicity in the spermatozoa. Further, altered APN activity in sperm cul-

ture medium affected early embryonic development. Interestingly, the effect of elevated

APN activity in sperm culture medium was independent of protein tyrosine phosphorylation

and protein kinase A activity. On the basis of these results, we concluded that APN plays a

significant role in the regulation of several sperm functions and early embryonic develop-

ment. In addition, increased APN activity could potentially lead to several adverse conse-

quences related to male fertility.

Introduction

Mammalian spermatozoa start their challenging journey after ejaculation that lasts until they

reach the oocyte. Female fallopian tubes provide a hostile environment to facilitate selection

of the best spermatozoon for fertilization. During this time, each spermatozoon tries to make

itself capable of fertilization through acquisition of progressive motility, hyperactivation,

capacitation, and the acrosome reaction [1, 2]. In a mixed sperm population, only the progres-

sively motile and hyperactivated spermatozoa are capable of continuing their journey until

they reach the oocyte [3]. Therefore, sperm motility has been considered as one of the major

factors governing male fertility [4]. Subsequently, progressively motile spermatozoa undergo

capacitation via the removal of outer glycoprotein layer together with an alteration of the
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acrosomal cap, commonly known as the acrosome reaction. This allows a spermatozoon to

attach and fuse with the oocyte during fertilization [5, 6, 7]. Alterations in membrane fluidity,

protein tyrosine phosphorylation, and protein kinase A (PKA) activity are the other prime

events that occur during this process [1, 8]. In particular, it has been demonstrated that semi-

nal plasma proteins and enzymes play significant roles in controlling sperm motility, hyperac-

tivity, and the acrosome reaction for successful fertilization [9]. Evidence showed that several

seminal plasma proteins are commonly found in other cell types, such as brain, liver, blood

cells, and, most relevantly, in spermatozoa [10, 11]. Among these, aminopeptidase N (APN) is

a seminal plasma enzyme, commonly found in different cell types in the human body, and is

associated with various disease conditions such as cancer, neoplasm, hypertension, obesity,

and inflammation [12]. Interestingly, APN in human seminal plasma showed 10 to 20 times

higher activity than that in the brain cells [13]. Arienti et al. [14] reported that APN transfers

from the seminal plasma vesicles to the sperm membrane via a pH-dependent (pH ~7) fusion

mechanism. Consistent with the findings of Arienti et al., localization of this enzyme has also

been confirmed in human sperm membrane by another research group [15]. Although a num-

ber of observations made in the laboratory and during human clinical studies have suggested

a possible role for altered APN levels in several diseases [16, 17], the underlying role of this

enzyme in regulating male fertility remains poorly understood.

A review of literature revealed that semen from subfertile males shows relatively higher

APN activity than that from their fertile counterparts [13]. A positive correlation also has been

reported between the percentage of dead spermatozoa and APN activity in both the soluble

and particulate sperm fractions [13]. Similarly, Subiran et al. [18] reported that complete inhi-

bition of APN in mice spermatozoa resulted in increased sperm motility. In addition, a signifi-

cant positive correlation has also been reported between APN activity and the number of

spermatozoa with abnormal apical ridges and overall sperm defects. Although these observa-

tions provided initial insights, the specific role of this enzyme in regulating sperm functions

related with male fertility, such as motility, capacitation, the acrosome reaction, protein tyro-

sine phosphorylation, and PKA activity, has not been investigated. To address these funda-

mental questions, we aimed at evaluating the effects of adding recombinant APN to sperm

culture medium (capacitating media, pH 7) on sperm functions, fertilization, and early embry-

onic development.

Materials and methods

Ethical approval

All procedures were approved by the Institutional Animal Care and Use Committee (IACUC)

of Chung-Ang University, Seoul, Korea. Experiments were performed according to IACUC

guidelines for the ethical treatment of animals.

Media and chemicals

All chemicals and reagents were purchased from Sigma–Aldrich (St. Louis, MO, USA), unless

otherwise stated. Recombinant mouse APN was obtained from R&D Systems (Minneapolis,

MN, USA). The anti-APN polyclonal antibody (CD13) was obtained from Abcam (Cam-

bridge, UK). Modified Tyrode’s medium, consisting of NaCl (97.84 mM), KCl (1.42 mM),

MgCl2.H2O (0.47 mM), NaH2PO4.H2O (0.36 mM), D-glucose (5.56 mM), NaHCO3 (25 mM),

CaCl2.H2O (1.78 mM), Na-lactate (24.9 mM), and gentamycin (50 μg/mL), was used as the

basic medium (BM) that was supplemented with 0.4% bovine serum albumin (BSA) for induc-

ing capacitation [19]. The pH of medium was maintained at 7 because transfer of APN from

the seminal plasma vesicles to the sperm membrane is known to be activated at this pH [14].
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After preincubation of spermatozoa, optimization of the initial incubation time (ranging from

30 to 90 min) and dose-dependence (ranging from 2 to 200 ng/mL) was conducted to under-

stand the effects of APN on sperm motility. This experiment allowed us to select an optimum

incubation time and dose of APN (S1 Fig). The range for dose selection was considered on the

basis of the study by Huang et al. [20].

Collection and preparation of mouse spermatozoa

One day before the start of the experiment, BM was incubated with additional APN (20 ng/

mL) at 37˚C in an atmosphere of 5% CO2. Mouse spermatozoa were collected from the cauda

epididymides of 12-week-old ICR mice (Nara Biotech, Seoul, Korea), as described by Lee et al.
[19]. Briefly, the cauda epididymides were collected and transferred to cell culture dishes con-

taining 2 mL of BM. After a 12-min preincubation, spermatozoa were incubated in BM media

with 0.4% BSA for inducing capacitation [19, 21] (with/without APN) for 90 min at 7˚C in an

atmosphere of 5% CO2. For each experiment, three male mice per replicate were used.

Immunofluorescence assay

The subcellular localization of proteins is very important because it can be readily used to

obtain information about their potential function. To evaluate the subcellular localization of

APN in the freshly collected epididymal mouse spermatozoa, an immunofluorescence assay

was performed using the CD13 antibody. Briefly, the air-dried spermatozoa placed on glass

slides were fixed with 3.7% paraformaldehyde for 30 min at 4˚C [22]. After washing with Dul-

becco’s phosphate-buffered saline (DPBS) containing 0.1% Tween 20 (PBS-T) and blocking

for 1 h in the blocking solution (5% BSA in PBS-T) at 4˚C, the slides were incubated with

diluted rabbit polyclonal primary antibody for APN (1:100; Abcam) in blocking solution, and

diluted lectin PNA 34 and 35 antibodies (1:100) conjugated with Alexa Fluor 647 (Molecular

Probes) in blocking solution overnight at 4˚C. After washing, the slides were incubated for 2 h

at room temperature (RT) with diluted fluorescein isothiocyanate-conjugated goat polyclonal

secondary antibody to rabbit IgG (1:100; Abcam) in blocking solution. After applying the

Hoechst 33342 and antifade reagents, the samples were observed with a Nikon TS-1000 micro-

scope using the NIS-Elements imaging software (Nikon, Tokyo, Japan).

Computer-assisted sperm analysis (CASA)

Briefly, after collecting the epidydimal spermatozoa, they were incubated for 90 min in the

capacitating media with/without APN, and the sperm motility (%), velocity distribution, and

kinematic parameters [hyperactive motility (HYP%), curvilinear velocity (VCL), velocity

straight line (VSL), velocity average path (VAP), linearity (LIN%), path straightness (STR),

beat cross-frequency (BCF), mean angular displacement (MAD), wobble coefficient (WOB),

dance mean (DNM), and lateral head displacement (ALH)] were measured using the CASA

system (SAIS Plus version 10.1; Medical Supply, Seoul, Korea). The phase contrast objective

(magnification, 10 ×) was used with the SAIS software to analyze the spermatozoa. Sperm

motion kinematics were measured, as described previously [19].

Measurement of enzyme activity

APN activity of the sperm culture medium was determined according to the method described

by Viudes de Castro et al. [23]. Briefly, APN activity was monitored using a commercially

available substrate, namely H-Ala-7-amino-4-methylcoumarin (Bachem, Bubendorf, Switzer-

land). Briefly, the samples (50 μL) were incubated with the above substrate in assay buffer for
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30 min at 37˚C, after which, the reaction was stopped by adding 0.1 M sodium acetate buffer

(pH 4.2). Cellular APN activity was monitored in terms of the amount of 7-amino-4-methyl-

coumarin (AMC) released, measured by using a microplate fluorometer, with maximum exci-

tation and emission wavelengths of 380 and 460 nm, respectively, and the SoftMax Pro 5 soft-

ware (Molecular Devices, Sunnyvale, CA, USA). It has been reported that the fluorescence

intensity is proportional to the level of APN activity.

Hypo-osmotic swelling test (HOST)

First, 100 μL of the control and treated samples were gently mixed with 900 μL of the hypo-

osmotic solution (distilled water:NaCl (0.9%), 1:1; 150 mOsm/kg) individually and incubated

for 30 min at 37˚C in an atmosphere of 5% CO2 in air. After incubation, 50 μL of the sample

solution was spread over a glass slide, allowed to air dry, and fixed with fresh fixative (metha-

nol:glacial acetic acid, 3:1). For each treatment, the number of viable cells were counted using

the Microphot-FXA microscope (Nikon). At least 500 cells were evaluated per slide.

Combined Hoechst 33258/chlortetracycline (CTC) fluorescence

assessment of spermatozoa

To determine the capacitation status of the spermatozoa from both the control and treated

sperm culture media, CTC staining assays were performed as described previously [21]. After

treatment, 15 μL of Hoechst33258 solution was added to 135 μL of the sperm sample and incu-

bated for 2 min at RT. Next, 250 μL of 2% polyvinylpyrrolidone in DPBS was added and centri-

fuged at 100 g for 2.5 min. Cell pellets were resuspended in 100 μL of DPBS and 100 μL of

CTC solution, as described previously [19]. The capacitation status was determined using the

Microphot-FXA microscope (Nikon) under epifluorescence illumination, using the ultraviolet

BP 340–380/LP 425 and BP 450–490/LP 515 excitation/emission filters for H33258 and CTC,

respectively. As per the published criteria [24], this analysis revealed four different patterns

indicating different capacitation status: dead, blue fluorescence pattern over the head (D); live

noncapacitated, bright green fluorescence pattern over the entire sperm head (F); live capaci-

tated, bright green fluorescence pattern over the acrosomal region with a dark post-acrosomal

region (B); or live acrosome-reacted, with no fluorescence over the head (AR). At least 400

spermatozoa were evaluated per treatment slide.

Detection of lactate dehydrogenase (LDH)

To determine cellular cytotoxicity, we used the CytoTox 961 Nonradioactive Cytotoxicity

assay kit (Promega, Fitchburg, WI, USA), which is based on the calorimetric detection of

released LDH. After collection of the epidydimal spermatozoa, they were incubated for 90 min

in the capacitating medium with/without APN. Next, 20 μL of lysis buffer was added to 200 μL

of both the control and treated sperm groups and incubated at 37˚C for 1 h. Subsequently, the

supernatant was collected after centrifugation at 250 g for 4 min. For each treatment, 50 μL of

substrate was added to 50 μL of supernatant in a 96-well plate and incubated in dark at RT for

30 min. LDH activity was measured as the absorbance at 490 nm using a luminometer (Gemini

Em; Molecular Devices) and calculated using the SoftMax Pro 5 software. LDH activity was

reported as the absorbance value for each tested sperm group, as described previously [21].

Measurement of cellular reactive oxygen species (ROS)

Cellular ROS were measured using the oxidation-sensitive fluorescent dye 20,70-dichlorofluor-

escein diacetate (DCFDA), 1 × buffer, and 1 × supplemental buffer (Abcam) according to the
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manufacturer’s instructions and a previously described method [25]. After collection of the

epidydimal spermatozoa, they were incubated for 90 min in the capacitating medium with/

without APN. The samples were washed at 300 g for 4 min and resuspended in 1 mL of the

DCFDA mix. After incubating for 30 min at 37˚C, the samples were washed with 1 × buffer

solution at 300 g for 4 min, and resuspended in 500 μL of 1 × supplemental buffer. Finally, the

cell suspension (500 μL) was placed in a 96-well plate. Each sperm suspension was exposed to

an excitation wavelength of 485 nm, and subsequently, the emitted fluorescence was measured

at 535 nm. Fluorescence was detected using a microplate fluorometer (Gemini Em) and calcu-

lated using the SoftMax Pro 5 software (Molecular Devices). The fluorescence values repre-

sented a measure of the activity of ROS in each group.

Western blot analysis

Western blotting was performed for the detection of APN, phospho-PKA substrate, and tyro-

sine-phosphorylated proteins in spermatozoa, as described previously [21]. Briefly, after collec-

tion of the epidydimal spermatozoa, they were incubated for 90 min in the capacitating

medium with/without APN. All samples were washed three times with DPBS by centrifugation

at 10,000 g for 5 min. The supernatants were discarded and sperm pellets were resuspended in

the Laemmli sample buffer (63 mM Tris, 10% glycerol, 10% sodium dodecyl sulfate, and 5%

bromophenol blue) containing 2-mercaptoethanol (5%) and incubated at RT for 10 min.

Next, the supernatants were collected by centrifugation at 10,000 rpm for 10 min and boiled at

100˚C for 3 min. The proteins were resolved on 12% SDS-PAGE using a mini-gel system

(Amersham, Piscataway, NJ, USA). The separated proteins were transferred onto polyvinyli-

dene fluoride membranes (Amersham). Subsequently, the membranes were blocked at RT for

2 h with the blocking solution. They were washed twice for 2 min with PBS-T. To detect APN,

the membrane was incubated overnight with the rabbit polyclonal primary antibody for APN

(1:1000; Abcam) at 4˚C. After washing with PBS-T, the membrane was incubated with the

horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG secondary antibody (1:3000;

Abcam) at RT for 2 h. For detection of the phospho-PKA substrates, the membrane was incu-

bated with the anti-phospho-PKA substrate rabbit monoclonal antibody (1:5000; Cell Signal-

ing Technology, Danvers, MA, USA) overnight at 4˚C. Tyrosine phosphorylation was detected

using the HRP-conjugated mouse monoclonal anti-phosphotyrosine antibody (PY20, 1:2500;

Abcam) overnight at 4˚C. As an internal control, α-tubulin was detected using the anti-α-

tubulin mouse antibody (1:5000; Abcam). Detection was performed by the enhanced chemilu-

minescence (ECL) technique using ECL reagents. Bands were scanned and visualized using

the GS-800 Calibrated Imaging Densitometer (Bio-Rad, Hercules, CA, USA) and analyzed

using the Quantity One software (Bio-Rad). For each sample, quantification of bands was per-

formed by determining the ratios of APN, phospho-PKA substrates, and tyrosine-phosphory-

lated proteins to α-tubulin.

In vitro fertilization (IVF)

To investigate the effect of high APN activity on fertilization and embryo development,

12-week-old female B6D2F1/CrljOri hybrid mice were purchased from Nara Biotech. These

mice were superovulated with 5 IU of pregnant mare serum gonadotropin and 5 IU of human

chorionic gonadotropin by intraperitoneal (ip) injections, separated by an interval of 48 h. Fif-

teen hours after the second injection, the cumulus-oocyte complexes (COCs) were collected

and transferred to BM supplemented with 10% fetal bovine serum (FBS) under mineral oil

and incubated for 1 h at 37˚C in an atmosphere of 5% CO2 in air. To rule out the sex-specific

(female) factors and individual variations, the collected oocytes from one mice were divided
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equally for the in vitro fertilization assay. We used about 30 oocytes for each trial. After collec-

tion of the epidydimal spermatozoa, they were incubated for 90 min in the capacitating

medium with/without APN. After inducing capacitation, both control and treated spermato-

zoa were washed with 0.4% BSA-containing BM, and 1 × 106/mL spermatozoa were gently

inseminated into the incubated oocytes. The oocytes were incubated for 6 h at 37˚C in an

atmosphere of 5% CO2 in air, as described previously [21]. After fertilization, the normal

embryos were transferred to fresh 0.4% BSA-containing BM (50 μL) and incubated. Fertiliza-

tion rate was evaluated by counting the two-cell embryos 24-h post-insemination. All the two-

cell embryos were transferred to fresh 0.4% BSA-containing BM for 5 days at 37˚C in an atmo-

sphere of 5% CO2 in air. After 5 days, the number of blastocysts were counted.

Bioinformatic analysis

To investigate the interacting proteins, cellular regulation checkpoints, and diseases related to

APN, we used the Pathway Studio program (Elsevier, Amsterdam, The Netherlands). This pro-

gram allowed us to search for the molecular interactions after selecting APN as the input

object. Information retrieved from the program was reconfirmed by checking the PubMed

Medline hyperlink that was embedded in each node.

Statistical analyses

Data were assessed for normal distribution using the Shapiro–Wilk test. The data showing

normal distribution were further analyzed using the two-tailed Student’s t-test. The data show-

ing nonparametric patterns were analyzed using the Mann–Whitney U test, to analyze signifi-

cant differences. All analyses were performed using the SPSS statistical software (version 12.0;

Chicago, IL, USA) For a significant difference to be observed, a consistent and reasonable dif-

ference in magnitude is required between the control and treated samples; P< 0.05 was con-

sidered to be statistically significant. Numerical data have been represented as the

mean ± standard error of the mean (SEM).

Results

Immunolocalization of APN in the post-acrosomal region of spermatozoa

We evaluated the immunolocalization of APN in mice spermatozoa. Fig 1 shows that APN

was localized in the post-acrosomal region of the sperm head, over the midpiece, and in the

tail.

Addition of recombinant APN increases APN activity in sperm culture

medium

We evaluated APN activity and protein levels in spermatozoa following the addition of APN to

the sperm culture medium. Data showed that the addition of 20 ng/mL of recombinant APN

significantly increased the APN activity in spermatozoa (P = 0.00001) compared to the control

group. A non-significant difference was observed in the levels of APN protein between the

treated and control groups (P = 0.234) (Fig 1).

Increased APN activity affects motility of spermatozoa

We also evaluated the effect of increased APN activity in the sperm culture medium on sperm

motility and motion kinematics. As shown in Fig 2, the percentage of motile (P = 0.00001),

hyperactivated motile (P = 0.003), and rapid-speed (P = 0.00013) spermatozoa was signifi-

cantly lower in the treated group compared to the control group. In contrast, the percentage of
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medium-speed spermatozoa was significantly higher in the treated group (P = 0.001) com-

pared to the control group. Interestingly, no significant difference was observed among the

percentage of slow-speed spermatozoa between the two groups (P = 0.053). Other parameters,

namely VCL, VSL, VAP, LIN, STR, WOB, ALH, and BCF, were not affected (data not shown).

The average VAP and STR values for spermatozoa were less than 50 μm/s and 80, respectively,

in the APN-supplemented sperm culture medium. In contrast, the average VAP and STR

values for spermatozoa were more than 50 μm/s and 80, respectively, in the sperm culture

medium without APN (S1 Table).

APN supplementation affects cell viability and LDH level, but not ROS

level

To investigate the effects of recombinant APN supplementation in sperm culture medium on

sperm viability, cytotoxicity, and ROS levels, HOST, LDH measurement, and fluorometric

assays were performed, respectively. The results showed that the percentage of viable sperma-

tozoa decreased significantly in the presence of high APN activity in the sperm culture

medium (P = 0.002), correspondent with increased LDH levels (P = 0.045). However, no sig-

nificant difference in ROS level was observed between the control and treated spermatozoa

(Fig 2).

Increased APN activity does not affect the capacitation status, protein

tyrosine phosphorylation, and PKA activity in spermatozoa

Significantly lesser acrosome-reacted (AR pattern) spermatozoa were observed after treatment

with APN (P = 0.006). In contrast, the number of capacitated (B pattern) spermatozoa

increased substantially, but the difference was not statistically significant (P = 0.100) even after

high APN supplementation. In case of non-normal distribution, data were analyzed for signifi-

cant differences using the Mann–Whitney U test (Fig 3). Next, we evaluated protein tyrosine

Fig 1. Localization of APN in spermatozoa and the effect of recombinant APN (20 ng/mL) on APN level and its enzymatic activity in

mouse spermatozoa. (A) Localization of APN (green). (B) Location of nucleus (Hoechst 33258, blue). (C) Location of the acrosome (lectin

PNA, red). (D) Merged location of the nucleus, acrosome, and APN. Images were obtained using the Nikon TS-1000 microscope and

NIS-Elements imaging software (Nikon, Japan). Bar = 20 μm. (E) Quantification of APN in spermatozoa. (F) Representative image of

western blot showing the band (~100 kDa) corresponding to APN in the spermatozoa (P = 0.234). (G) Enzymatic activity of APN in the

control and treated groups (P = 0.00001). Data represent the mean ± SEM of three replicates. *P < 0.05, calculated using two-tailed

Student’s t-test.

https://doi.org/10.1371/journal.pone.0184294.g001
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phosphorylation and PKA activity by western blotting. Although two different bands (~30 and

90 kDa) were detected for tyrosine phosphorylation in both the treated and control spermato-

zoa, the extent of tyrosine phosphorylation was not significantly different for both the bands

(P = 0.353 and 0.342, respectively) between the two groups. Consistent with these results, the

PKA activity was also not significantly different in the control and treated spermatozoa for the

~34 and 55 kDa bands (P = 0.179 and 0.215, respectively) (Fig 4).

Increased APN activity does not affect fertilization, but affects early

embryonic development

We detected the effect of increased APN activity in sperm culture medium on fertilization

and early embryonic development. Fertilization was not affected by APN treatment

(P = 0.568). Intriguingly, a significant inhibition of embryonic development was observed

for the APN-treated spermatozoa (P = 0.008) (Fig 5). According to blastocyst grading (1 to

3) by Balaban et al. [26], most blastocysts in the control group were categorized as grade 1

Fig 2. Effects of addition of recombinant APN (20 ng/mL) on motility, hyperactive motility, viability, LDH, and intracellular ROS levels in

mice spermatozoa. (A) Sperm motility (%) (P = 0.00001). (B) Hyperactive motility (HYP%) (P = 0.003). Data represent the mean ± SEM of four

replicates. (C) The percentage of rapid- (P = 0.00001), medium- (P = 0.001), and slow-speed (P = 0.053) spermatozoa (D) The percentage of viable

spermatozoa (P = 0.002). (E) LDH levels (P = 0.045). (F) Intracellular ROS levels (P = 0.142). Data represent the mean ± SEM of three replicates.

*P < 0.05, calculated using two-tailed Student’s t-test.

https://doi.org/10.1371/journal.pone.0184294.g002

Role of APN in male fertility

PLOS ONE | https://doi.org/10.1371/journal.pone.0184294 August 31, 2017 8 / 17



blastocysts, while grade 2 and grade 3 blastocysts were predominantly observed in the APN-

treated group (Fig 5).

Bioinformatic analysis using APN

Although numerous roles of APN have been elucidated in many cells and organs, there is little

information on its role in the sperm cells. Various studies have proposed that all cell types

share a common function through their regulatory network [27]. Therefore, we used bioinfor-

matic tools to identify the cellular functions of APN that may regulate sperm cell functioning

and fertilizing potential. In the present study, investigation of protein interactions, cellular

functions, and diseases related to APN was performed using the Pathway Studio program.

The results showed that APN interacted with several proteins, such as protein kinases, super-

oxide dismutase, enkephalin, caspase, Ras-related proteins, heat shock proteins, and matrix

Fig 3. Effect of recombinant APN (20 ng/mL) on the capacitation status of mouse spermatozoa. Different patterns of spermatozoa, such as

(A) acrosome-reacted (AR pattern), capacitated (B pattern), non capacitated (F pattern), and dead (D pattern), observed after combined Hoechst

33258/chlortetracycline fluorescence staining. (B) Difference in AR pattern spermatozoa (P = 0.006). (C) Difference in B pattern spermatozoa

(P = 0.100). (D) Difference in F pattern spermatozoa (P = 0.123). Data represent the mean ± SEM of three replicates. *P < 0.05, calculated using

two-tailed Student’s t-test.

https://doi.org/10.1371/journal.pone.0184294.g003
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metalloproteinase. Our analysis also revealed that these proteins potentially regulate several

important cellular processes, including oxidative stress, apoptosis, angiogenesis, ROS regula-

tion, DNA damage, and cell adhesion. Finally, functional association among these proteins

was observed to be important for the pathogenesis of several conditions, such as fertility regu-

lation, neoplasia, cancer, obesity, and inflammation (Fig 6).

Fig 4. Effect of addition of recombinant APN (20 ng/mL) on protein tyrosine phosphorylation and PKA activity in mouse

spermatozoa. (A) Densities of tyrosine phosphorylated proteins (~90 and 30 kDa) in the control and treated groups (P = 0.179 and 0.215,

respectively). (B) Representative image of the western blot for tyrosine phosphorylated proteins. (C) Densities of PKA substrates (~55

and 34 kDa) in the control and treated groups (P = 0.353 and 0.342, respectively). (D) Representative image of the western blot for

phospho-PKA substrates. Data represent the mean ± SEM of three replicates. *P < 0.05, calculated using two-tailed Student’s t-test.

https://doi.org/10.1371/journal.pone.0184294.g004

Role of APN in male fertility

PLOS ONE | https://doi.org/10.1371/journal.pone.0184294 August 31, 2017 10 / 17



Discussion

APN is a moonlighting enzyme that regulates several important functions in the body associ-

ated with growth and development [12]. It constitutes up to 0.5 to 1% of the seminal plasma

proteins [28]. It has been reported that the seminal plasma proteins play a potential role in the

regulation of male fertility [29]. However, the relationship between APN and sperm/male fer-

tility reported by several investigators remains discordant [13, 15, 17, 18]. In the present study,

we supplemented APN in sperm culture medium during capacitation in order to understand

the specific role of APN in the regulation of sperm function(s) and fertilization.

Sperm motility is a critical factor that provides a qualitative assessment for the prediction of

semen fertility. Only progressively motile spermatozoa are able to reach the oocyte for fertiliza-

tion. In the present study, sperm motility and motion kinematic parameters were investigated

using CASA. We demonstrated that the addition of recombinant APN in sperm culture medium

significantly inhibited the percentage of motile, hyperactivated, and rapid-speed spermatozoa

during capacitation. However, the percentage of medium-speed spermatozoa was significantly

higher in the APN-supplemented group (Fig 2). Based on previous studies, a progressively

motile spermatozoon can be defined as a spermatozoon with> 50 μm/s VAP [30] and> 80

STR [31]. The present study demonstrated that high APN activity in sperm culture medium

affected spermatozoa by decreasing their average VAP and STR (S1 Table). Thus, we concluded

Fig 5. Effect of recombinant APN on fertilization and embryonic development. (A) Blastocyst quality in the control and APN-treated groups

(Bar = 50 μM). Red, blue, and yellow arrows indicate grade 1, 2, and 3 blastocysts, respectively. (B) Difference in cleavage rate between the control

and treated groups (P = 0.568). (C) Blastocyst formation rate in the control and treated groups (P = 0.008). Data represent the mean ± SEM of three

replicates. *P < 0.05, calculated using two-tailed Student’s t-test. (D) Effect of APN on mouse spermatozoa and its hypothetical mechanisms of

action. High APN activity induces toxicity in spermatozoa and subsequently decreases sperm motility, viability, and acrosome reaction. Ultimately,

the affected spermatozoa display pathological conditions induced by dysregulation of early embryonic development.

https://doi.org/10.1371/journal.pone.0184294.g005
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Fig 6. Illustration of the APN-regulated proteins, cellular functions, and diseases analyzed using the Pathway Studio program.

https://doi.org/10.1371/journal.pone.0184294.g006
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that the addition of APN affected the progressive motility of spermatozoa. As expected, no dif-

ference was observed in APN expression between the control and treated groups (Fig 1). This

was mostly because spermatozoa are believed to be transcriptionally and translationally silent,

and therefore, are incapable of protein synthesis [32]. Concurrently, high APN activity in

seminal plasma has also been reported in subfertile males [13]. In addition, Subiran et al. [18]

reported that the addition of leuhistin, a specific inhibitor of APN, could increase the motility

of mice spermatozoa. Therefore, we hypothesized that higher APN activity in seminal plasma/

sperm culture medium had an inhibitory effect on sperm motility.

A positive correlation between necrozoospermia and high APN activity has been reported

in a previous study [13]. Piva et al. [33] showed increased APN activity in HeLa cells following

in vitro exposure to chemical stress, subsequently leading to an upsurge in transforming

growth factor-alpha and bioactive molecules. Nevertheless, the association between altered

APN activity and germ cell death is not completely understood. To investigate the mechanisms

underlying decreased sperm motility in APN-rich medium, we evaluated sperm viability and

the level of cellular LDH, a cytosolic enzyme released during cell damage. As expected, the

spermatozoa treated with recombinant APN showed significantly lower cell viability (Fig 2D)

and higher LDH levels. Interestingly, although a slight increase in ROS level was observed fol-

lowing APN supplementation, the alteration was statistically insignificant. Identification of

ROS using oxidized DCFDA and fluorometry might be less sensitive for detecting cellular

ROS level. In order to compensate for this weakness and measure the levels of cellular ROS,

the use of dichlorofluorescein diacetate (DCFH-DA) and flow cytometry is recommended

[34]. It has been demonstrated that increased LDH and ROS levels may lead to male infertility

by decreasing motility and hyperactivation of mice spermatozoa [35]. In this study, increased

APN activity might indicate a toxic cellular microenvironment (increased LDH level) that sub-

sequently reduced sperm motility (Fig 2E).

Following ejaculation, mammalian spermatozoa become competent to fertilize an egg

through unique processes called capacitation and the acrosome reaction. The functional modi-

fications of spermatozoa are regulated by several signaling pathways, most importantly, those

involving the PKA-dependent phosphorylation of tyrosine residues [8]. In this study, we dem-

onstrated that higher APN activity decreased the percentage of acrosome-reacted spermatozoa.

Interestingly, the decrease in the acrosome reaction rate was independent of the PKA activity

and protein tyrosine phosphorylation (Fig 4). In addition, we confirmed the localization of

APN in the post-acrosomal, midpiece, and tail regions of mouse spermatozoa (Fig 1). It has

been reported that understanding the compartmentalization of specific proteins within cells

provides a basic idea of their potential cellular function(s) [36, 37]. Therefore, localization of

APN in the post-acrosomal region hinted at its potential functional relationship with the acro-

some reaction, while localization in the neck and tail regions may indicate its role in the regu-

lation of sperm motility [38].

Recently, Viudes de Castro et al. [23] also showed a significant negative correlation between

APN activity and the acrosome reaction in rabbit spermatozoa. It has been reported that the

role of the seminal plasma enzyme enkephalin is important for the regulation of the sperm

acrosome reaction [39]. Since APN is an enkephalin-degrading enzyme, the decrease in acro-

some reaction rate observed in our present study might be regulated indirectly by the degrada-

tion of enkephalin. Bioinformatic analysis revealed that APN facilitated the chemical reaction

with enkephalins (Fig 6). Consistent with the findings of previous studies, our findings sug-

gested that APN may suppress the acrosome reaction by altering enkephalins in spermatozoa.

However, further studies are required to confirm this hypothesis.

The most important result from this study was that high APN activity had a significant

inhibitory effect on early embryonic development; however, it did not affect fertilization
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(Fig 5). An efficient sperm–egg interaction is necessary for embryo development; therefore,

functional integrity of both cells is extremely important [40]. If cellular toxicity is increased, it

may cause DNA damage and oxidative stress in spermatozoa, subsequently affecting its motil-

ity [41]. Moreover, the quality of sperm DNA also has a direct influence on human embryo

development [42, 43, 44]. It has been reported that oocytes are capable of repairing sperm

DNA damage [45]. Therefore, a spermatozoon with substantially high DNA fragmentation,

can still fertilize an oocyte [45]. The repair of sperm DNA fragmentation basically depends on

the cumulative effects of sperm chromatin damage and the ability of the oocyte to repair it.

Gawecka et al. [45] also reported that the ability of oocytes to recover abnormal sperm DNA is

mostly dependent on the quality of oocyte and type of DNA damage in spermatozoa. Consis-

tent with these findings, the APN-mediated increase in cytotoxicity noticed in the present

study (Fig 4) may cause persistent damage to the spermatozoa. As such, even though they were

able to fertilize the oocyte (collected from wild type mice), the damaged spermatozoa were

incapable of continuing embryo development any further.

To elucidate the role of APN in spermatozoa, we investigated the interactions of APN with

other proteins and their regulatory mechanisms in the pathogenesis of diseases using the Path-

way studio program. Proteins do not work independently. They interact with a wide range of

molecules to regulate diverse cellular process. We noted that APN potentially interacts with

several other proteins, most importantly protein kinases, superoxide dismutase, enkephalin,

caspase, Ras-related proteins, heat shock protein, and matrix metalloproteinase. It is also

important to note that most proteins that interact with APN are extremely important in the

regulation of normal sperm functions and fertilization. Therefore, increased APN activity

might have a significant influence on the functioning of other interacting proteins. We also

illustrated (Fig 6) that functional alteration of these proteins may affect several biological pro-

cesses, such as oxidative stress response, cell cycle progression, transmembrane signaling, and

DNA integrity, finally resulting in increased predisposition towards pathological conditions.

To the best of our knowledge, this is the first comprehensive in vitro study to investigate the

effect of high APN activity (in sperm culture medium) on spermatozoa. We concluded that

APN plays a significant role in the regulation of several sperm functions. Further, high APN

activity affected sperm motility, viability, acrosome reaction, and early embryonic develop-

ment. Therefore, exposure of spermatozoa to increased APN levels may disturb cellular

homeostasis, and subsequently result in several adverse consequences (Fig 5D). These effects

might also be mediated by the functional alteration of other interacting proteins. However,

further studies are necessary to prove this hypothesis.
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