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In vitro blood cell viability profiling 
of polymers used in molecular 
assembly
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Biocompatible polymers have been extensively applied to molecular assembly techniques on a micro- 
and nanoscale to miniaturize functional devices for biomedical uses. However, cytotoxic assessments 
of developed devices are prone to partially focus on non-specific cells or cells associated with the 
specific applications. Thereby, since toxicity is dependent on the type of cells and protocols, we do 
not fully understand the relative toxicities of polymers. Additionally, we need to ensure the blood cell 
biocompatibility of developed devices prior to that of targeted cells because most of the devices contact 
the blood before reaching the targeted regions. Motivated by this issue, we focused on screening 
cytotoxicity of polymers widely used for the layer-by-layer assembly technique using human blood 
cells. Cytotoxicity at the early stage was investigated on twenty types of polymers (positively charged, 
negatively charged, or neutral) and ten combination forms via hemolysis, cell viability, and AnnexinV-
FITC/PI staining assays. We determined their effects on the cell membrane depending on their surface 
chemistry by molecular dynamics simulations. Furthermore, the toxicity of LbL-assembled nanofilms 
was assessed by measuring cell viability. Based on this report, researchers can produce nanofilms that 
are better suited for drug delivery and biomedical applications by reducing the possible cytotoxicity.

Biomaterials are either derived from nature or synthesized using polymers, ceramics, metals, and composite 
materials. Specifically, polymers have been extensively applied to controlled release systems since 1976, when 
Langer et al. developed a cornea assay that continually released macromolecules to inhibit angiogenesis1. In 
recent decades, polymers have been manipulated by the layer-by-layer (LbL) assembly technique to create con-
trolled release systems with miniaturized biomedical devices on a simple and tiny scale. The LbL assembly is a 
promising molecular assembly technique to fabricate multilayer thin films based on alternating deposition of 
oppositely charged polymers2. This process has introduced a new way to fabricate multicomponent and ultrathin 
films on curved surfaces of nano- and microparticles. Thus, nanoparticles for use as drug delivery carriers have 
been commonly prepared using the LbL technique with a variety of polymers, active biomolecules, and functional 
materials3–5. There have been many studies on drug delivery, but in vitro and in vivo toxicity assessments for each 
developed carrier are required. Most reports have assessed cytotoxicity using only target cells or non-specific cells 
from animals. This approach cannot represent the overall toxicity for humans because of the differences between 
many of the cells used in these studies and human cells.

To overcome these limitations, Choksakulnimitr et al. (1995) evaluated the in vitro cytotoxicity of several mac-
romolecules in macrophages, brain microvessel endothelial cells (BMECs), and hepatocytes from mice or rats. 
They assessed lactate dehydrogenase (LDH)-release to determine the cytotoxic effects of macromolecules based 
on their electric charges6. Kissel et al. (2003) also assessed the in vitro cytotoxicity of various biomaterials in L929 
mouse fibroblasts. They found that the cytotoxic effect and mechanism of each polymer were due to various fac-
tors (electric charge, molecular weight, and chemical structure) using different assays7. Cytotoxicity information 
is helpful for drug delivery research to predict and determine the cytotoxic effect of newly developed compounds. 
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For this reason, these reports have been cited thousands of times. However, they were unable to evaluate a broad 
range of polymers, and polymer toxicity has not been extensively studied with human cells.

Motivated by the lack of studies on polymers, we investigated the cytotoxic effects of polymers frequently 
used in the LbL assembly technique. We used red blood cells (RBCs) and a group of immunological cells, periph-
eral blood mononuclear cells (PBMCs) in an attempt to overcome the limitations of previous reports that were 
restricted to animal and normal cells. In an in vivo study, the first point to consider is the blood. When devices 
used for drug delivery, targeting, imaging, and diagnosis are injected in vivo, they initially contact the blood, 
which is composed of hemocytes and immune cells (Fig. 1). If a device shows toxicity to blood cells, it naturally 
would not be viable for biomedical use. Thus, the toxic effects of nanodevices should be assessed with regard to 
the blood system prior to uncharacterized or target cells.

Here, we demonstrate the blood compatibility of twenty types of polymers via in vitro toxicity profiling using 
RBCs and PBMCs derived from humans. RBCs are the most common cell type in blood, comprising approxi-
mately 45% by volume of blood, and PBMCs are a group of immune cells consisting of lymphocytes, including T 
cells, B cells, NK cells, and monocytes. We implemented three types of assays: a hemolysis assay using RBCs, cell 
viability and AnnexinV-FITC/propidium iodide (PI) staining assays using PBMCs.

A hemolysis assay is an indispensable initial step in evaluating the blood compatibility of polymers to identify 
severe acute toxic reactions in RBCs in vivo8. Hemolysis refers to the disruption of RBCs, and the assay detects 
the leaking of intracellular contents including hemoglobin into the plasma. Hemoglobin is an essential protein in 
RBCs and plays a significant role in transporting oxygen from the respiratory organs to the rest of the cells and 
tissues. However, hemoglobin released through hemolysis becomes a vasoactive and redox active protein that has 
toxic effects on vascular, myocardial, renal, and central nervous system tissues, inducing anemia, jaundice, and 
other pathological conditions9. Many studies have reported that in vitro hemolysis assays have good correlations 
with in vivo toxicity by the hemolytic effect10. Thus, this report is a preliminary investigation of the in vivo toxicity 
of polymers using the results of in vitro hemolysis assays.

Taking full advantage of uncharacterized PBMCs, we conducted a cell viability assay as a preliminary study to 
assess biocompatibility and immunotoxicity of polymers. Here, we suggest several reasons for choosing unchar-
acterized PBMCs for this study. First, PBMCs include lymphocytes (T cells, B cells, and NK cells) and monocytes, 
which have nuclei, and do not include macrophages, erythrocytes, and platelets. PBMCs are cultured while float-
ing and do not require any substrates for anchoring, and we could investigate the early stage of polymer toxicity. 
Second, death of PBMCs could be considered as a surrogate of cytokine release and immunotoxicity. This is 
because cytokines associated with inflammation are released from the cells when the PBMCs enter the apoptotic 
phase8. In fact, PBMCs have been widely used in many fields, such as immunology, infectious diseases, hema-
tological malignancies, vaccine development, transplant immunology, and high-throughput screening for drug 
candidates. Therefore, the cytotoxicity of PBMCs could represent the potential of immune reaction and immu-
notoxicity of polymers, and we can predict the immune effects of drug delivery systems prepared by polymers 
during preclinical safety evaluations using in vitro assessments11. Third, there is not much research regarding the 
cytotoxic effects of LbL polymer structures in terms of immunotoxicity using uncharacterized PBMCs. Since our 
goal was to observe the response of untouched PBMCs near ex vivo conditions, directly separated from blood, it 
was important that we used uncharacterized PBMCs for this study.

The AnnexinV-FITC/PI staining assay is used to determine the state of cell death. This assay discriminates 
between intact cells (FITC−/PI−), apoptotic cells (FITC+/PI−), and necrotic cells (FITC+/PI+)12. In the early 
stages of apoptosis, phosphatidylserine normally located on the inner membrane is exposed on the outer mem-
brane of the cell surface; AnnexinV-FITC then binds to the phosphatidylserine with high affinity. After the cell 
membrane has disintegrated, PI is able to reach the nucleus and bind with DNA. Therefore, AnnexinV-FITC 
directly indicates cells in the early stage of apoptosis, and PI indicates cells in the late apoptotic stage that pro-
gresses to necrosis12, 13.

Following the hypothesis of the effects of injecting drug delivery systems in the blood, we implemented our 
assays in the order of hemolysis, cell viability, and AnnexinV-FITC/PI staining assays. When external mate-
rial enters the intravascular system of the human body, it certainly encounters blood cells, including RBCs and 
PBMCs (the rest of blood without RBCs composed of neutrophils, monocytes, eosinophils, lymphocytes, plasma 
cells, basophils, and platelets). The polymers used in this study were divided into three groups based on their 

Figure 1. Scheme of the first stage of an in vivo study of functional nanodevices prepared from biomaterials.
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electric charge: polycations, polyanions, and neutral polymers (Table 1). Additionally, we assessed the toxicity 
of the polymers as combinations and films. Combinations were composed of polycations and polyanions, com-
monly used LbL assembly technique (Table S1). Based on these findings, we believe that our report provides a 
guideline for the toxicity and safety of biomaterials used by researchers in the field of LbL assembly, as well as in 
all fields that use biomaterials.

Results and Discussion
Polymer toxicity profiling analysis. As shown in Fig. 2, we assessed each selected polymer and combi-
nation under different conditions as follows: (i) Three or five concentrations of each material were used over a 
range of 0.005 to 50 μg/mL for hemolysis, 0.01 to 100 μg/mL for cell viability, and 0.1 to 10 μg/mL for AnnexinV-
FITC/PI staining. We used high concentrations to account for bioaccumulation. In the AnnexinV-FITC/PI 
staining assay, only a practically effective range of concentrations (0.1 to 10 μg/mL) was examined. (ii) The four 
culture times (3, 9, 24, 48 h) covered approximately 1 min of blood circulation time corresponding to an average 
blood circulation rate of 5.25 L/min and considering 12 h of clearance time in the human body14. A long culture 
time would reflect an unexpected situation. (iii) Three assays were used to measure hemolysis, cell viability, and 
AnnexinV-FITC/PI staining (detects apoptotic or necrotic cells).

The overall results in the heat map are arranged by relative cytotoxicity and indicated by colors. The columns 
present each assay in order of cell culture times and different concentrations. The toxicity levels of each polymer 
can be easily compared using the colors of the overall heat map. In the hemolysis assay, most polymers showed 
no cytotoxicity, and in most cases in the cell viability assay, cell death increased with polymer concentration and 
culture time. In the AnnexinV-FITC/PI staining assay, apoptosis occurred in a time-dependent manner without 
a necrotic reaction. Details on the individual toxicity of the materials will follow.

Cytotoxicity of polymers. To examine the cytotoxic effects of each polymer, the results of two assays for 3 
and 24 h are presented in Fig. 3. The results for 9 and 48 h are shown in Figure S1. To predict the toxic effects on 
an in vivo system, an early cytotoxic response (within 3 h) and cytotoxicity after 24 h are essential when consider-
ing blood circulation and clearance time. Although doses over 5 µg/mL would be too high to be used practically, 
we assessed this range as well to account for the accumulation of the polymers in certain tissues or organs. The 
overall results show that the polymers generally have a harmful effect on cells depending on their concentration 
and exposure time. In Fig. 3A, cytotoxicity is indicated at over 10% hemolysis7, and only LPEI at its highest dose 
showed mild toxicity. After 24 h (Fig. 3B), toxicity was indicated at the higher concentrations of several polymers 
in the order of LPEI (62.1%) > TA (21.5%) > PDAC (19.2%) > CHI (15.6%) > BPEI (13.6%) at 50 µg/mL. After 
48 h (Figure S1B), the toxic effects of the above polymers continuously increased; additionally, the higher concen-
trations of PAAM and PAH showed toxicity. However, most of the toxic effects were limited to higher concentra-
tions, longer exposure times, and cationic polymers. Based on these results, we can infer that RBCs are prone to 
be lysed when a large number of polycations attack their membrane.

Using PBMCs, we evaluated the cytotoxic effects of polymers on cells and the related cell death states. Cell 
viability was assessed by the dye exclusion method using trypan blue, which is a dye that stains only dead cells. 

Material Charge/monomer ratiod Monomer Mw Mw pKa

PDACa 0.006194 161.45 100,000~200,000 —

BPEIa 0.216666 60 ~25,000 9.36

PLLa 0.015625 128 70,000~150,000 9.4~10.5

GO(+)a 0.001887 4,239.48 — PI 10.7

COLa — — — PI 8.2

PAAMa — 71 5,000,000 —

LPEIa 0.013333 75 250,000 5

PBAEa 0.011905 252 ~10,000 —

PAHa 0.010701 93.45 ~15,000 8.5

CHIa 0.006173 162 Low 6.2

TAb 0.005878 1,701.20 1700 2.5

FUCOb 0.002041 490 20,000 2.0

PSSb 0.004854 206 ~75,000 —

DEXb 0.005917 338 Mr 2,000,000 2.0

HAb 0.002639 379 — 2.9

PAAb 0.013889 72 1,800 4.5

GO(−)b 0.002839 4227.48 — 4.2

HEPb 0.006745 593 — 3

PEGc — 62 200 —

PVAc — 44 89,000~98,000 —

Table 1. Physicochemical properties of the polymers used. *Polycationa, polyanionb, and neutral polymerc. 
*The charge/monomer ratiod is calculated as the number of charges/monomer Mw.
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Figure 2. Heat map indicating the cytotoxic effects of whole materials according to concentration and time. 
The colors indicate the relative cytotoxicity levels (percentages of hemolysis, cell death, and apoptotic or 
necrotic cells) for each polymer and combination under 64 different conditions in the rows (all polymers and 
combinations of three/five doses × four culture times × three assays).

Figure 3. Cytotoxic effects of polymers on RBCs and PBMCs. Hemolysis ratios of different polymer 
concentrations ranging from 0.005 to 50 µg/mL after (A) 3 h and (B) 24 h. Cell death ratios after exposure to five 
polymer concentrations from 0.01 to 100 µg/mL for (C) 3 h and (D) 24 h. The negative control is PEG.
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After 3 h, no cytotoxic effects were observed in the PBMCs (Fig. 3C and D). After 24 h, cell death increased 
in a concentration-dependent manner. For a more distinct analysis, the amount of cell death is presented in a 
normalized graph with comparison to PEG as a negative control (Figure S2A–D). At the early culture times, 
most polymers induced more cell death than the control. Over 24 h, with some exceptions, the cytotoxicity levels 
were almost in the same range. Based on this result, we surmised that the rate of action depends on the electric 
charge. According to the higher cell death ratio for polycations (left side) shown in Figure S2A and C, polycations 
acted on the cells very quickly, inducing cell death within 9 hours. Cell death occurred slowly in the presence of 
polyanions and PEG. Nevertheless, the final cytotoxic effects were similar due to the strong influence of higher 
concentrations and longer exposure times. We concluded that the rate of the cytotoxic action among the groups 
mostly depended on the charge of the polymers, as the cell membrane is negatively charged.

In the AnnexinV/PI staining assay results shown in Fig. 3, because few cells reacted with PI, we did not include 
necrotic cell data. Thus, no polymer induced severe toxicity to achieve continuous membrane disruption and 
necrosis.

After 9 h (Fig. 4A), a large proportion of cells exposed to PDAC (90.5%), LPEI (82.4%), and PLL (77.3%) at 
10 µg/mL were altered to apoptotic forms compared to PEG (45.6%). This result corresponds to those from the 
hemolysis and cell viability assays. These results confirm that polycations directly damage the cell membrane. In 
Figure S1F, the ratio of apoptotic cells is over 50%; however, PEG also showed a higher ratio (92%) at 10 µg/mL. 
This indicates that although PEG is non-toxic and non-immunogenic, the early apoptotic cell phase could be 
caused by the high amounts of polymers on the cell surface.

The results shown in Figs 3 and 4 indicate that no severe cytotoxic effects are caused by polymers within 
effective ranges of concentration and time. However, at high concentrations (over 50 µg/mL) and particularly 
with increased time, several polymers, including LPEI, TA, PDAC, CHI, BPEI, and PLL, were cytotoxic against 
both RBCs and PBMCs. In fact, various polymer factors can induce cytotoxicity, such as high molecular weight, 
electric charge, degree of ionization (DOI), structure, and functional groups7. Our results show that most of the 
toxic polymers had a positive charge due to amine groups and a high molecular weight (>70,000). Polycations 
can easily bind to the cell surface, which is composed of negatively charged lipid bilayers, and cause damage to 
cells6, 7. Nevertheless, LPEI and CHI were not ionized at pH 7.4 in a physiological environment according to their 
pKa values in Table 1. Taking this into consideration, we must assume that not only electric charges but also other 
factors can have a harmful effect on cells.

PEIs including LPEI and BPEI showed a strong cytotoxic effect due to their large molecular mass and high 
charge density resulting from a large number of secondary amine groups. According to a report from Fischer 
et al., high molecular weight PEI (800 kD) induced massive necrosis within 30 minutes and low molecular weight 
PEI (25 kD) had low cytotoxicity15. PEI is well known for its cell transfection properties, but its cytotoxicity 
increases as its molecular weight increases. Similarly, PDAC has a large molecular weight and a high cationic 
charge density that both affect cells16. Kean et al. reported that the toxicity of CHI is related to the charge density 
of its secondary amine groups. However, low cytotoxicity can occur because a threshold level is not met when 
there are few contact points between a polymer and cells17. The toxicity of PLL results from higher molecular 
weight and secondary amine groups. Choksakulnimitr et al. found that high molecular weight (39,800 kD) PLL 
showed a higher toxicity than low molecular weight PLL (8000 kD)6. TA is a plant polyphenol known to be an 
antioxidant and was the only toxic polyanion in our study. Additionally, Labieniec et al. reported that 60 µM TA 
showed the highest toxicity with over 50% of cell death as well as DNA damage against B14 cells. The mechanism 
of TA toxicity has not been elucidated; however, we believe that the large number of hydroxyl groups in TA impart 
strong antioxidant and pro-oxidant properties, producing metabolites, including ellagic and gallic acids, that have 
a toxic effect on the cells18, 19.

To better understand the cytotoxic mechanisms of the polymers, we focused on LPEI and PLLs with var-
ious charges to determine the effects of chemical structure and electric charge through molecular dynamics 
simulations.

Figure 4. Cytotoxic effects of polymers on PBMCs. Apoptotic cell ratios of three polymer concentrations from 
0.1 to 10 µg/mL after (A) 3 h and (B) 24 h. Negative control is PEG.
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Molecular dynamics simulations of PEI and PLL in lipid bilayers. Linear random-coil polymers with 
different charges and structures were simulated in lipid bilayers with explicit water for 400 ns. Note that the sim-
ulated lipid bilayers differ from realistic cellular membranes composed of various lipid components and protein 
receptors. Despite this limitation, simulations of lipid bilayers have successfully reproduced experimental obser-
vations regarding the cytotoxicity of proteins and nanoparticles, and thus the dimyristoylglycerophosphocholine 
(DMPC) bilayer was used as a model membrane in this work20, 21. The simulated systems are listed in Table 2. The 
letters “a” and “n” following PLL indicate the polymers modified with anionic and neutral beads, respectively, 
to replace the cationic beads of PLL side chains. For example, “PLLn” designates the bilayer system with the 
neutrally mutated PLL. Figure 5 shows the initial and final snapshots of the simulations. Starting with the poly-
mers above the bilayer surface, PEI, PLL, and PLLa bind to the bilayer surface, while PLLn does not, indicating 
that the polymer charge affects the interaction between polymers and bilayers. In particular, PEI and PLL bind 
more tightly to the bilayer than PLLa chains, indicating a stronger interaction with cationic polymers than with 
anionic polymers. This is expected, as anionic polymers cannot interact with anionic lipid phosphates22, whereas 
cationic polymers do and thus can insert more deeply into the bilayer23, 24. These configurations and the binding 
extent of the polymers were also confirmed by calculating density profiles. In Fig. 6, the PEI chains are mostly 
located in the lipid head-group region, whereas PLLn chains are positioned farthest from the head-group region, 
showing that the adsorption order (PEI > PLL > PLLa > PLLn) is consistent with Fig. 5. The cumulative numbers 
of the charged (or neutrally mutated) beads of polymers were also calculated as a function of the distance from 
the bilayer surface, showing that the number of PEI beads drastically increases near the bilayer surface, whereas 
those of other polymers do not, as shown in the density profiles. These results indicate that cationic polymers 
more strongly interact with lipid bilayers than do anionic polymers and that neutral polymers do not bind to the 
bilayer. This finding supports the above-mentioned experimental results regarding the different extents of toxicity 
for various polymers.

Because cationic polymers have a stronger interaction with lipid bilayers, the different charge states of poly-
mers may modulate the bilayer properties. To answer this question, the polymer-bilayer interactions were further 
quantified by calculating radial distribution functions (RDFs) between lipid phosphates and the charged (or neu-
trally mutated) beads of the polymer. Figure 7 shows the peak heights in the order of PEI > PLL > PLLa > PLLn, 
indicating that cationic polymers have stronger electrostatic interactions with the bilayer surface, consistent with 
Figs 5 and 6. Note that although PEI and PLL have the same positive charge density, the RDF peak is much higher 
for PEI than for PLL. This is apparently because PLL chains consist of backbones and side chains, whereas PEI 
chains contain only backbones, so the charged beads of PEI are more accessible to the bilayer surface than the 
charged beads of PLL side chains, as visualized in Fig. 5. In Fig. 7 (bottom), the RDFs between lipid head groups 
and PLLa side chains show that the anionic beads of PLLa tend to electrostatically interact with cationic cholines 
of lipids rather than with anionic phosphates, which explains why there is less adsorption of anionic polymers 
onto the bilayer in Fig. 6.

These simulation findings indicate that charged polymers strongly interact with lipid bilayers, whereas neutral 
polymers do not, illustrating the effect of polymer charge on the interaction between polymers and lipid bilayers. 
In particular, cationic and anionic polymers interact with lipid phosphates and cholines, respectively, leading to 
a stronger adsorption of cationic polymers onto the bilayer. Additionally, our simulations show that linear poly-
mers with only charged backbones (PEI) have a stronger electrostatic interaction with the bilayer than those with 
backbones and charged side chains (PLL) because the charged beads of the former are sterically more accessible 
to the lipid head groups. This dependence on the structure and charge state of linear polymers agrees well with the 
above experimental results showing a higher toxicity for cationic polymers than for anionic and neutral polymers 
and that linear PEI is more toxic than non-linear PLL.

Cytotoxicity of polymer combinations. As shown in Fig. 8, there was no severe toxicity from any com-
bination. Additional results after 9 and 48 h are presented in Figure S3. Despite low hemolysis levels, some of the 
combinations, including PAH + PAA and COL + GO, showed higher cell death ratios after 48 h (Figure S3D). 
In addition, PLL + HA and PLL + DEX showed higher apoptotic cell levels at 10 µg/mL after 48 h (Figure S3F). 
Figure S4 shows the overall cytotoxicity results of the combinations normalized to the results for PEG. According 
to these results, we conclude that there are no toxicity tendencies among the three assays and that the combi-
nations generally had less cytotoxicity than polymers alone. We hypothesize that the reason for this finding is 
that opposite charges are counterbalanced, eliminating the electric charges seen in the polymers. To confirm 
this hypothesis, we investigated the electric charges of combinations under physiological conditions at pH 7.4 
using the zeta potential method, as shown in Table S1. In this simulation, we assumed that positively charged 
combinations would show a stronger cytotoxic effect on cells. However, our results did not indicate any toxic 

Name

No. of charges per 
molecule Adsorption 

onto the 
bilayerCation Anion

Polyethylenimine PEI 128 — √

Poly- l-lysine (PLL) PLL 128 — √

Mutated PLL PLLa — 128 √

PLLn — — —

Table 2. List of simulations.
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effects according to the charges. There are several possible reasons explaining why the combinations have less 
cytotoxicity. First, aggregated colloidal shapes could cause less physical damage to the cell surface. Second, the 
zeta potential was not a sufficient measurement to evaluate the counterbalanced charges of the combinations 
because it recognizes solutions as particle shapes. Third, the movement of individual polymers was restricted due 
to aggregation via electrostatic interactions.

Based on these results, we expect that LbL films fabricated using combinations will be more biocompatible 
than individual polymers. To verify this assumption, four types of LbL films were assessed for their effects on the 
viability of PBMCs.

Cytotoxicity of LbL films. To examine the cytotoxic effect of polymers incorporated into LbL films, four 
types of films in different compositions were prepared at thicknesses of 30 and 100 nm. Based on the above results, 
the first combinations were composed of toxic polymers, including PDAC, FUCO, BPEI, and TA. The second 
combinations were prepared using non-toxic polymers, including PAH, PSS, COL, and HA. Thus, the toxic com-
binations were PDAC/FUCO and BPEI/TA, whereas the non-toxic combinations were PAH/PSS and COL/HA. 
To exclude the surface charge effect on cytotoxicity, every film was terminated with negatively charged polymers. 
In addition, we hypothesized that when the films are disintegrated in the aqueous solution, the disintegration 

Figure 5. Snapshots of the side view at the beginning (0 ns; top) and the end (400 ns; rows 2–5) of the 
simulations. The initial configuration is shown only for PEI, but for other systems, the polymer chains are also 
similarly distributed above the bilayer surface. Red and brown colors represent polymers and lipid phosphates, 
respectively. Schematic structures of polymers are shown with charges, whereas lipid tails, water, and counter 
ions (Na+ or Cl−) are omitted for clarity. Note that the side views show only one cross-section of the system and 
cannot capture all eight polymer chains. The images were created using Visual Molecular Dynamics25.
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rate varies depending on the thickness, and cytotoxic effects from degradation products may differ. Therefore, 
we prepared both 30-nm and 100-nm films. We predicted that apoptosis would occur by toxic combinations and 
thick films, provided that direct cell-surface interactions and disintegration products are the cause of cell death.

Contrary to our expectations, there was not much difference in cell death between the toxic and non-toxic film 
combinations (Fig. 9). For 30-nm-thick films, cell death levels were similar to those of the negative control, except 
at 24 h, as shown in Fig. 9A. At 24 h, the films seemed to show toxic effects, but after 48 h, no severe cytotoxic effect 
was observed compared to the control. Figure 9B shows the cytotoxic effects of 100-nm-thick films, and there 
were no differences among the types of films. Over 24 h, the 100-nm-thick films showed similar cytotoxic tenden-
cies to the 30-nm-thick films shown in Fig. 9A. All types of films induced more cell death than that of the negative 
control at 24 h, but by 48 h, similar levels of cell death were found for all films and the negative control. Based on 
this, we concluded that the films were not very harmful to cells overall but that they could accelerate cell death up 
to 24 h. The reason for this effect could be that cells are affected by direct contact with the film surface both phys-
ically and chemically. In order to determine why thicker films had slightly higher cytotoxicity, we investigated the 
disintegration rates of the films to find the effects of the film surface as well as individual polymers released from 
the films. The disintegration rates of the films exhibited similar tendencies regardless of thickness (Figure S5). The 
combination PDAC/FUCO films swelled to 164.7% and 160.2% of the original 30-nm and 100-nm thicknesses, 
respectively, due to the water retention property of fucoidan (FUCO) derived from Fucus vesiculosus, a kind of 
alga. The BPEI/TA film thicknesses decreased by a narrow range, and the PAH/PSS films based on only synthetic 
polymers maintained their structures with little swelling. With the increase of water retention, the intermolecular 
interaction of multilayer films declined, and polymers were likely to be disassembled from the film. However, in 
the case of Col/HA films, films of both thicknesses were completely reduced within a few hours. Even though 
collagen and hyaluronic acid are biomaterials, cell death at variable levels can be caused by an increase in the pol-
ymer concentration in the media. Fortunately, cell death was not significantly higher because detachments from 
the film are not harmful to cells forming sub-micrometer size particles26, 27.

In summary, cytotoxicity was not affected by the outermost layer of films but presented in a manner depend-
ent on the thickness and disintegration profile. Considering our hypothesis and results, we concluded that 
cell-surface interaction is likely a near-field interaction in which cells can be affected by polymers that are tens of 

Figure 6. Density probabilities of polymer chains on the bilayer surface as a function of distance from the 
z-directional center of mass of lipid-phosphate beads in the adjacent leaflet (top) and the cumulative numbers of 
charged (or neutrally mutated) beads (bottom).
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nanometers into the film surface, while the polymers released from the films could instigate cell death. Of note, 
we determined that when polymers are assembled in films, toxicity is lower than that of the polymer itself due to 
the stable state of films and offset of electrical charges.

Conclusion
In this report, we investigated the cytotoxic effects of twenty types of polymers with different electric charges 
on blood and immunological cells. Most of the polymers did not show severe toxicity, but several polycations, 
possibly due to their cell membrane penetration properties, showed stronger toxic effects depending on dose 
and exposure time. Based on the molecular simulations of polymers interacting with lipid membranes, cytotoxic 
effects increase in the order of polycation, polyanion, and neutral polymers. Polymer combinations exerted less 
toxicity, due to counterbalanced charges and an aggregated structure. According to the cell death state assay, all 
polymers damaged cell membranes but did not induce necrotic cell death. Furthermore, we found that the nano-
films induced low levels of cell death because only a small amount of polymer was incorporated into the film and 
the films did not break down in a physiological environment. This study of polymer effects on the early immune 
system provides safety guidelines for in vivo applications of biomedical devices produced by LbL, as well as other 
techniques.

Materials and Methods
Materials. Poly(diallyl-dimethyl-ammonium chloride) low-molecular-weight solution (PDAC, Mw 
100,000–200,000, 20% (w/w) in H2O), branched poly(ethylene imine) (BPEI, Mw ~ 25,000), poly-l-lysine solu-
tion (PLL, Mw 70,000–150,000, 0.01 wt% in H2O), poly(allylamine hydrochloride) (PAH, Mw ~ 15,000), chi-
tosan low molecular weight (CHI), tannic acid (TA, Mw 1,700), poly(4-styrenesulfonic acid) solution (PSS, Mw ~  
75,000, 18 wt% in H2O), dextran from Leuconostoc spp. (DEX, Mw ~ 2,000,000), hyaluronic acid sodium salt 
from Streptococcus equi (HA), poly(acrylic acid) (PAA, Mw 1,800), heparin sodium salt from porcine intesti-
nal mucosa (HEP), poly(ethylene glycol) (PEG, Mw 200), and poly(vinyl alcohol) (PVA, Mw 89,000–98,000) 

Figure 7. Radial distribution functions between charged (or neutrally mutated) polymer beads and lipid 
phosphates (top) and between the anionic beads of PLLa and lipid head groups (bottom).
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were purchased from Sigma-Aldrich (St. Louis, MO). Linear poly(ethylene imine) (LPEI, Mw 250,000) and poly-
acrylamide (PAAM, Mw ~ 5,000,000, 1% (w/w) in H2O) were obtained from Polysciences Inc. (Warrington, PA). 
COO-functionalized graphene oxide (GO−) and NH3+-functionalized graphene oxide (GO+) were synthesized 
as previously described28. Collagen I from rat tail (COL) was supplied by BD Biosciences (San Jose, CA). Poly 
β-aminoester (PBAE, Mw ~ 10,000) was synthesized as previously described29. Fucoidan from Fucus vesiculosus 
(FUCO, Mw 20,000) was supplied by SantaCruz Biotechnology (Santa Cruz, CA). The physicochemical charac-
teristics of the polymers are provided in Table 1.

Hemolysis test. Red blood cells used in this study were isolated from whole blood by Ficoll–Hypaque 
(Sigma-Aldrich) gradient centrifugation. Random study samples were chosen from a healthy donor cohort at 
the Massachusetts General Hospital in Boston, Massachusetts. The Partners Healthcare Institutional Review 
Board and the Massachusetts Institute of Technology Committee on the Use of Humans as Experimental Subjects 
approved the study, and each subject gave written informed consent. All methods were performed in accordance 

Figure 8. Cytotoxic effects of polymer combinations on RBC and PBMCs. Hemolysis ratios of different 
combination concentrations ranging from 0.005 to 50 µg/mL after (A) 3 h and (B) 24 h. Cell death ratios 
after exposure to five combination concentrations ranging from 0.01 to 100 µg/mL after (C) 3 h and (D) 24 h. 
Apoptotic cell ratios after exposure to three combination concentrations ranging from 0.1 to 10 µg/mL after (E) 
3 h and (F) 24 h. Negative control is PEG.

Figure 9. Cytotoxic effects of four types of LbL films with thicknesses of 30 and 100 nm on PBMCs. Cell death 
was investigated up to 48 h with films with thicknesses of (A) 30 nm and (B) 100 nm. N and P in each graph 
indicate the negative control and positive control, respectively (*p < 0.05, **p < 0.01, ***p < 0.001 with respect 
to 30% MeOH as the positive control; 56.25% of A and 75% of B, no significant difference from negative control; 
two-tailed t-test).
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with the relevant guidelines and regulations by the Committee on the Use of Humans as Experimental Subjects 
(COUHES) at MIT.

The hemoglobin concentration was measured using the cyanmethemoglobin (CMH, Drabkin’s reagent, 
Sigma-Aldrich) method based on a hemoglobin concentration standard (Stanbio Laboratory, Boerne, TX) curve 
at an absorbance wavelength of 540 nm. The blood was then diluted to a hemoglobin concentration of 10 mg/mL 
with Ca2+/Mg2+-free DPBS (Dulbecco’s phosphate-buffered saline; Gibco, Gaithersburg, MD). The polymer and 
combination solutions at five different concentrations from 0.005 to 50 μg/mL were analyzed using blood from a 
different donor on each test day. Diluted blood and polymer solutions were added to each well of a 96-well plate. 
The 96-well plates were incubated in a 37 °C water bath for 210 min. Following the incubation, the supernatants 
were collected and transferred to a new plate. The supernatants were mixed in a 1:1 ratio with CMH reagent and 
analyzed with a plate reader (Synergy H1; BioTek, Winooski, VT, USA) at 540 nm. Sample absorbance was cor-
rected for background interference (i.e., films in DPBS without blood). The concentration of cell-free hemoglobin 
in each sample was determined using the hemoglobin standard curve. Finally, the percent hemolysis was obtained 
by dividing each sample’s cell-free hemoglobin concentration by the total hemoglobin concentration (10 mg/mL).

Cell viability test. To assess cell viability against polymers, uncharacterized PBMCs (CTL-UP1; Cellular 
Technology Ltd., Shaker Heights, OH, USA) were seeded in 12-well culture plates at a density of 1 × 104 cells per 
well. After 3 hours, the cells were then treated with polymers diluted with cell culture medium at different con-
centrations (0.01–100 μg/mL). At appropriate time points after exposure to the polymers, the cells were harvested 
and resuspended in PBS (Gibco), pH 7.4, and then stained with 0.4% trypan blue (Sigma-Aldrich) for 5 min. The 
percentage of viable cells was determined using a cell counter (JuLI Br, NanoEntek, Seoul, Korea). Cell viability 
(%) was calculated as follows:

= ×Cell viability (%) Live cells
Total cells

100 (1)

AnnexinV-FITC/PI double staining. PBMCs were cultured in 12-well cell culture plates and incubated 
under 5% CO2 at 37 °C for 24 h. The polymers and combinations were diluted to the desired concentrations with 
cell culture medium and added to each well. Cell culture was continued for 48 h at 37 °C and 5% CO2. Once the 
cells reached at a density of 1 × 105 cells per well, they were collected, centrifuged at 400 × g for 5 min, and resus-
pended in binding buffer. AnnexinV-FITC (BioVision, Milpitas, CA) was added and mixed. After the addition 
of PI (BioVision) staining solution, the cells were incubated for 15 min in the dark at room temperature (25 °C); 
binding buffer was then added, and the cells were analyzed using an automated inverted fluorescence microscope 
(Zeiss Observer Z-1, Carl Zeiss Inc., Novi, MI) to detect cell apoptosis.

Film preparation. The multilayer films were fabricated onto a silicon wafer using four toxic polymers 
(PDAC, FUCO, BPEI, and TA) and four non-toxic polymers (PAH, PSS, HA, and COL). The substrate was 
cleaned and modified to have a negative charge with RCA solution (H2O:H2O2:NH3 = 5:1:1% (v/v)) for 10 min 
at 75 °C. The cleaned substrate was dipped into the polymer solution for 10 min, followed by three rinsing steps 
for 2, 1, and 1 min. Then, the substrate was dipped into an oppositely charged solution, and the rinsing steps were 
repeated. Each polymer solution was prepared in distilled water at 1 mg/mL. Sodium chloride was added to the 
PDAC and FUCO solutions at 1 M and to the PAH, PSS, and HA solutions at 0.5 M. The pH was adjusted using 
1 M HCl or 1 M NaOH to reach 7.0 for BPEI, 7.0 for TA, and 4.0 for COL. The multilayer films were dried under 
a gentle stream of nitrogen, and the thicknesses were measured with a profilometer (Dektak 150; Veeco, Oyster 
Bay, NY). Each film was prepared to thicknesses of 30 and 100 nm in duplicate.

Film disintegration. The films described above were dipped into PBMC cell culture medium and incubated 
(MI-20A; BioBiz, Incheon, Korea) at 37 °C for 48 h. The thickness of each film was measured with a profilometer 
at certain time intervals.

Cell viability test for LbL films. To provide direct contact between the cells and LbL films, PBMCs were 
seeded in 12-well culture plates at a density of 1 × 104 cells per well along with each LbL film for 24 hours. At 
appropriate time points after polymer exposure, the cells were harvested and resuspended in PBS, pH 7.4, and 
then stained with 0.4% trypan blue for 3 min. The percentage of viable cells was determined using a cell counter 
(JuLI Br). Cell death (%) was calculated as follows:

= ×Cell death (%) dead cells
Total cells

100 (2)

Significant differences in cell death (%) between the controls and each film at equal culture times were evalu-
ated by two-tailed t-tests using Excel.

Simulation for PEI and PLL. All simulations and analyses were performed with the GROMACS4.6.7 
simulation package30–32. Models for DMPC lipids and PLL molecules were taken directly from the “MARTINI” 
coarse-grained (CG) force field (FF)33–35, which lumps a few (three or four) heavy atoms into each CG bead. 
To generate polymer chains that contain different charge states while still maintaining a random-coil structure, 
cationic beads of the PLL side chain (the CG bead type “Qd”) were replaced with either anionic (“Qa”) or neu-
tral (“P1”) beads. For linear polyethylenimine (PEI), the original parameters for polyethylene glycol (PEG), 
which were previously developed within the framework of the MARTINI FF by our group36, 37, were modified by 
replacing the originally assigned PEG beads with the cationic “SQd” beads. This modification yields a significant 
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increase in the radii of gyration (~50%), which favorably compares to recent simulations of PEI at different pro-
tonation states38. To compare the effects of polymer charge, all simulated polymer chains had the same charge 
density per molecule (Table 2).

Eight polymer chains were positioned above the equilibrated bilayer with a distance of 5 nm between the pol-
ymer and bilayer centers (Fig. 5, top). Polymers were evenly distributed on the bilayer to avoid initial clustering. 
The final simulated system consisted of 8 polymers, 8192 DMPC lipids (4096 DMPC/leaflet), ~29,0000 water 
beads (equivalent to 1,160,000), and 1024 counterions (Na+ or Cl−) in a periodic box sized 50 × 50 × 18 nm. 
A temperature of 310 K and a pressure of 1 bar were maintained by applying a velocity-rescale thermostat39 and 
Parrinello-Rahman barostat40 on the NPxyPzT ensemble (semi-isotropic pressure coupling). A real space cut-
off of 11 Å was used for the Lennard-Jones (LJ) potential with a smooth shift to 0 between 9 and 11 Å. For the 
Coulomb potential, a short-range interaction with a cutoff of 11 Å and a long-range interaction with the particle 
mesh Ewald summation (PME)41 were used, as our previous work showed that long-range electrostatics need to 
be included for CG simulations of polymers in lipid bilayers42–46. The LINCS algorithm was used to constrain the 
bond lengths47. Simulations were performed for 400 ns with a time step of 10 fs on computational facilities sup-
ported by the National Institute of Supercomputing and Networking/Korea Institute of Science and Technology 
Information with supercomputing resources including technical support (KSC-2016-C3–36). The last 200-ns 
trajectories were used for the analyses.
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