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Abstract: To encourage people to save energy, subcompact cars have several benefits of discount
on parking or toll road charge. However, manual classification of the subcompact car is highly
labor intensive. To solve this problem, automatic vehicle classification systems are good candidates.
Since a general pattern-based classification technique can not successfully recognize the ambiguous
features of a vehicle, we present a new multi-resolution convolutional neural network (CNN) and
stochastic orthogonal learning method to train the network. We first extract the region of a bonnet
in the vehicle image. Next, both extracted and input image are engaged to low and high resolution
layers in the CNN model. The proposed network is then optimized based on stochastic orthogonality.
We also built a novel subcompact vehicle dataset that will be open for a public use. Experimental
results show that the proposed model outperforms state-of-the-art approaches in term of accuracy,
which means that the proposed method can efficiently classify the ambiguous features between
subcompact and non-subcompact vehicles.

Keywords: vehicle recognition; multi resolution network; optimization

1. Introduction

Typically, subcompact cars are defined by the engine displacement, width, and height under
1000 cc, 1.6 m, and 2.0 m, respectively. To satisfy these specifications, the subcompact car has a unique
shape such as shorter-bonnet and hatchback. In addition, there are various environmental benefits
because the subcompact cars have a small displacement engine and a light weight. To encourage people
to drive subcompact cars, many countries provide several benefits—discounts on tall road charge
and parking fee. Since classification of subcompact cars from other requires labor-intensive human
investigation, an automatic vehicle classification system is needed. In general, vehicle classification
methods can be classified into two approaches: one uses infrared sensors to measure physical
dimensions of a vehicle such as length, height, and width. The other uses a single camera and image
processing algorithms to recognize the visual characteristics of vehicles [1,2]. Despite of accuracy and
robustness, the infrared sensor-based system is too expensive to be installed in many places. Thus,
we propose an image recognition system to reduce the installation and maintenance cost. To classify the
visual feature in images, Dalal et al. extracted the histogram of oriented gradients (HOG) and classify
the HOG using support vector machine (SVM) [3]. To the best of authors’ knowledge, the HOG-based
SVM is the most popular approach to recognize objects before deep learning has become popular.
To enhance HOG features that are affected by rotation, or distance, and occlusion, various approaches
were proposed. Llorca et al. proposed vehicle manufacturer recognition by detecting the vehicle-logo,
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but a subcompact car can not be completely classified using only manufacturer information [4].
Clady et al. recognized the vehicle type by separating objects and the background in interactively
selected regions [5]. This method is robust to the variance in the distance. However, the region should
be passively selected. Mohottala et al. created vehicle images using computer graphics (CG), and then
classify the type of vehicle using eigenvalues [6].

Although this approach can easily obtain the vehicle data, it cannot avoid error in real vehicle data.
Michael and Daniel classified the eigenvalues of vehicle classes using neural networks [7]. Since they
used an artificial neural network, classification accuracy was acceptable only without occlusion.
Huttunen et al. adaptively recognized the vehicle classes using a deep neural network [8]. This method
can recognize the multi-class vehicles such as sedan, truck, and bus. However, in subcompact car
classification, it has overffiting while learning the subcompact vehicle class because it is difficult to
discriminate the subcompact vehicle from others. Simonyan et al. proposed the deep convolutional
neural networks called VGG16 and VGG19 [9]. Since the VGG networks can be pre-trained via
a large-scale image dataset [10], it can have a very deep hidden-layer to recognize the vehicle.
However, it cannot robustly classify the subcompact vehicles because of both obscure features and
environmental variables as shown in Figure 1. He et al. proposed the more deep residual networks [11].
This network can be designed more deeply such as 50, 101, 151 layers because of the residual learning.
However, in the binary classification, the VGG networks are also deep enough. Xie et al. applied the
split-transform-merge strategy to deep residual networks [12]. This strategy can effectively recognize
various features, but it can not adaptively crop the image region. Karpathy et al. proposed the multiple
convolutional neural networks with center clipping and image fusion for video classification [13].
It can recognize the obscure objects and actions in video, but it cannot localize objects that are not in
the center of the image.

(a)

(b)

Figure 1. (a) Subcompact vehicles and (b) sedans. It is not easy to differentiate two classes using small
features such as head lamp or rear-view mirror. On the other hand, there are differences in bigger
features such as bonnet and overall shape of vehicles.

To solve this isolated problem, we proposed a novel multi-resolution network and stochastic
orthogonal learning method. More specifically, the proposed method include three functional steps:
(i) we emphasize the features using retinex model-based image-enhancement [14], (ii) we track the
bonnet region using an optimized correlation filters [15], and (iii) we engage this region and image
using the proposed multi-resolution network. In addition, we learned our muti-resolution network by
considering stochastic orthogonality of probabilities between subcompact and general vehicles. We also
build a subcompact vehicle dataset including 1500 training data and 2000 test-images. Experimental
results show that the proposed method outperforms state-of-the-arts approaches in terms of accuracy
by over 12.25%. This paper is organized as follows. In Section 2, we describe the related works.
The proposed multi-resolution network is presented in Section 3 followed by experimental results in
Section 4, and Section 5 concludes this paper.
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2. Related Works

2.1. Support Vector Machine

To classify the features in images, the SVM can be applied by minimizing as following
Equation [16]

∴ arg min
~w,b

1
2
‖~w‖2 −∑

i=1
αi (yi (~w •~xi + b)− 1), (1)

where ~w and b represent weight and bias of hyper-plane to classify the features, α is an operator to find
the support vectors, and y denotes the label such as positive or negative. The optimized hyper-plane
of the support vector machine works well, but it should be estimated low-dimensional features such
as histograms of gradients and scale-invariant features [3,17] to apply imaging systems.

2.2. Neural Network

The neural networks can classify the non-linear features because the each node in hidden-layer
discriminates the complicated patterns as shown Figure 2. Each node includes the weight, bias,
and activate function such as sigmoid, and relu. These parameters can be easily estimated by simple
cost function and chain rule as

Etotal = ∑
1
2
(y− f (x))2, (2)

and
∂Etotal

∂w∗
= ∂Etotal

∂outo1
∗ ∂outo1

∂neto1
∗ ∂neto1

∂w∗
,

∂Etotal
∂b∗

= ∂Etotal
∂outo1

∗ ∂outo1
∂neto1

∗ ∂neto1
∂b∗

,
(3)

where f returns the results of neural networks, w∗ and b∗ are weight and bias in ∗-th node. Therefore,
each parameter can be estimated as

w∗(t + 1) = w∗(t)− ∂Etotal
∂w∗

,
b∗(t + 1) = b∗(t)− ∂Etotal

∂b∗
.

(4)

However, the neural net also has limitation to apply large-scale image classification.

Figure 2. The architecture of neural network.

2.3. Convolutional Neural Network (CNN)

Since an image has various features such as gradients, color, and intensity information,
the convolution operators in the hidden layer are effective to extract the image features [9]. Furthermore,
these convolution operator can also be optimized by chain-rule. For example, we visualize the extracted
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image features in convolution layer using CNN feature simulator [18]. Note that the convolution
operator can extract the large scale features and textures as shown Figure 3. In other words, the CNN
can not only classify the multi-class image but also recognize the detail textures. Therefore, the CNN
can be applied to various field using the transfer learning method such as medical imaging [19],
intelligent transportation system [20,21], and remote sensing [22]

Figure 3. The convolutional neural network and convolution features.

3. Proposed Method

3.1. Subcompact Vehicle Dataset

To train and test the proposed network, we collected vehicle images using a digital
camera (gray-scale) at a parking gate in Seoul, South Korea. Since the camera was installed under
the charge machine, images were captured from an angle viewed from below as shown in Figure 4.
Furthermore, we collected vehicle images for 1 year and 6 months to reflect various environmental
variables such as day light, back light, dust, and night. The collected images were classified into
five types including subcompact sedan, subcompact van, subcompact truck, sedan and sport utility
vehicle (SUV), and truck and van according to the design and shape. The dataset was split into
training and test sets including 1500 and 2000 images, respectively. The goal of this work is the binary
classification (subcompact vehicle or not). To this end, each set of the proposed dataset is divided into
subcompact and non-subcompact vehicles as shown in Figure 5.

(a) (b)

Figure 4. (a) Camera installation and (b) four different illumination conditions.



Sensors 2020, 20, 2715 5 of 14

Sedan & SUV (C1) Truck & Van (C2)
Non-Subcompact Group

Subcompact Sedan (C3) Subcompact Van (C4) Subcompact Truck (C5)
Subcompact Group

Figure 5. An example of five vehicle classes in the proposed dataset.

3.2. Pre-Convolution Layer

The proposed network consists of pre-convolution and multi-resolution network layers. In the
pre-convolution layer, we resize the original 1920 × 1080 px images to 400 × 300 px, and we amplify
the intensity and increase the local-contrast using a simple retinex-based image enhancement algorithm
as [14]

H (x) =
I (x)

max (l (x) ε)
, (5)

where H represents high-resolution image, I the input gray-image in the dataset, and ε is a very small
positive number to avoid division by zero. The illuminance map l can be estimated as a smoothing
term [23]

l = med (I)−med (|med (I)− I|) , (6)

where Med represents the local-median filter [24]. Figure 6a,c show that the environmental variables
can be normalized, and at the same time local-contrast in the shadow region is also enhanced.
To process a low-resolution image, the vehicle region should be localized. In this paper, we detect the
region using a correlation filter which has low-computational complexity and efficient localization
performance [25]. To reflect a feature of texture, we applied multi-channel correlation filter (MCCF)
with the histogram of oriented gradients, which can be defined as ridge regression

E (w) =
1
2

N

∑
i

D

∑
j

(
yi (j)−

K

∑
k=1

w(k)Tx(k)i
[
∆τj
])2

+
λ

2

K

∑
k=1

(
w(k)

)2
, (7)

where yi(j) is the desired and shifted response in i-th sample yi = [yi(1), ...., yi(D)]T , xi[∆τj] is a set of
cyclically shifted vehicle images in the training dataset. N represents the number of training images,
K is the channels of feature map including HOG 34-channels, and w represents the correlation filter.
The response map y for a vehicle coordinate in the frequency domain has a Gaussian-shaped
distribution centering on a pre-annotated region. Since both input patch and response map are circular
matrices for cyclic convolution, the correlation filter w can be simply expressed in the frequency
domain as

ŵ∗ =

(
λI +

N

∑
i

X̂T
i X̂i

)−1 N

∑
i=1

X̂T ŷi, (8)

where, ŵ represents a variable w in the frequency domain, ∗ and T respectively represent the complex
conjugate and transpose of a matrix. The optimized correlation filter can estimate the coordinates of the
vehicle region via maximum response-region and distribution as shown in Figure 6d–f. We cropped
high-resolution images, based on this picking coordinates to obtain low-resolution images L (280× 200).
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Note that the proposed pre-convolution layer should be processed in Central processing unit (CPU)
for efficient memory allocation.

(a) Input (b) Illuminance (c) High-resolution image

(d) Feature extracting (e) Result of the correlation filter (f) Low-resolution image

Figure 6. Step-by-step results in the pre-convolution layer (a–f).

3.3. Multi-Resolution Network

We changed the size of both high- and low-resolution images to 224 × 224 to recognize vehicle
type. Note that the scale of the proposed subcompact dataset is gray. Therefore, we generate the
3 zero-min channels with the average color of ImageNet [10], and concatenate 3 zero-min channels to
create a pseudo color as

HR = H − 0.4850, HG = H − 0.4580, HB = H − 0.4076, (9)

and
LR = L− 0.4850, LG = L− 0.4580, LB = L− 0.4076, (10)

where H and L are single gray-scale (224 × 224 × 1), and H∗ and L∗ have pseudo RGB channel
(224 × 224 × 3) as shown as high- and low-resolution in Figure 7. We correspondingly defined
both high- and low-resolution network with 13 convolution layers, 5 max-pooling layers, and 3 fully
connected layers as shown in Figure 7. A 3 × 3 filter is used in each convolution layer, ReLU is used
for an activation function, and 2 × 2 max-pooling filters are used to maximize the receptive field [9].
Each fully connected layer has 4096 perceptrons, except for the last five layers. Finally, the soft-max
operator returns the probability using returned five values. In this paper, the proposed multi-resolution
network is combined to our pre-convolution layer described in Section 3.2.

Figure 7. The architecture of the proposed multi-resolution network. Blue, black, and red cubes
represent the resized input, convolution, and max-pool layers, respectively. Black and purple boxes are
fully-connected and softmax layers, respectively.
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3.4. Orthogonal Learning

To combine the results of low- and high-resolution networks, we define the average least square
loss as

Lleast =
1

2B

B

∑
n=0

N

∑
i=1

(gi
n − Pi (H∗n))

2 + (gi − Pi (L∗n))
2, (11)

where Hn and Ln respectively represent the n−th high and low resolution image, B denotes the size of
batch, and N is the vehicle type between C1 to C5. g represents the one-hot vector of size B× 5, which is
pre-labeled in our dataset described in Section 3.1. To reduce the correlation between two groups,
we also define the orthogonal loss as [26]

Lo =
1
B

B

∑
n=0

2

∑
i=1

(Pi (H∗n , L∗n) P3 (H∗n , L∗n) + Pi (H∗n , L∗n) P4 (H∗n , L∗n) + +Pi (H∗n , L∗n) P5 (H∗n , L∗n)). (12)

In binary classification, the error can be reduced when sum of multiplication between subcompact
and other group is closed to zero as shown in Figure 8. Therefore, the proposed total loss can be
defined as

Ltotal = Lleast + Lo. (13)

To reduce the total loss Ltotal , the set of parameters including convolution kernel, bias,
and perceptron weight are updated via stochastic gradient decent optimization [9]. The learning
and dropout rates are set to 0.0001 and 0.5, respectively. For supervised learning, we train the model
using 1500 labeled training data given in Section 3.1. For transfer learning, all of convolution layers are
pretrained by ImageNet data [10]. We trained the proposed model using 4500 iterations, and 15 batches
are engaged to the proposed multi-resolution network for each learning. Figure 9 shows the proposed
learning procedure. Finally, to distinguish subcompact vehicle, the probability values of the optimized
model are estimated using the thresholding operator as

Dn =

{
False arg max 1

2 (P (H∗n) + P (L∗n)) ∈ {C1, C2}
True arg max 1

2 (P (H∗n) + P (L∗n)) ∈ {C3, C4, C5}
(14)

Ideal (
2
∑

i=1
(PiP3 + PiP4 + PiP5) = 0)

Error (
2
∑

i=1
(PiP3 + PiP4 + PiP5) > 0)

Figure 8. An example of orthogonal learning.
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Figure 9. Dual procedure of the proposed method using both CPU and GPU.

4. Experimental Results

4.1. Quantitative Evaluation

To evaluate the proposed method, we compared experimental results with 2000 test data
and state-of-the-arts classification models including HOG based recognition model (HOG + SVM)
proposed by Dalal et al. [3], MCCF combined HOG recognition (MCCF + HOG + SVM) [15],
multi-resolution image based HOG recognition (Retinex + MCCF + HOG + SVM), deep neural
network based Huttunen’s method (DNN) [8], convolutional neural network (CNN) with 16 layers
proposed by Simonyan et al. [9], retinex CNN Retinex + CNN, based on proposed pre-convolution
layer (Retinex + MCCF + CNN), and the proposed multi-resolution network without orthogonal
learning (Retinex + MCCF + MRN). All the algorithms were implemented in visual studio 2015
and Python 3.5 using on a desktop PC with i7 CPU, 64 GB RAM, and NVIDIA RTX 2080ti
graphics processing unit (GPU). We also quantitatively measured accuracy (Acc.), precision, recall,
and false-positive rate (FPR) as

precision =
TP

TP + FP
, (15)

Recall =
TP

TP + FN
, (16)

FPR =
FP

TP + FP
, (17)

and
Acc. = 100× TP + TN

2000
, (18)

where TP, TN, FP, and FN respectively represent the true-positive, true-negative, false-positive,
and false negative. Table 1 shows several evaluation results using state-of-the arts and the proposed
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methods. Since HOG uses handcraft-based features, its recognition performance is limited for
ambiguous features. HOG + SVM method results in many mis-classification cases represented by FN
and FP as shown in Table 1.

Table 1. Quantitative comparison with state-of-the art approaches.

Method TP FN TN FP Precision Recall FPR Acc.

HOG + SVM 165 335 912 588 0.2191 0.3300 0.7809 53.85%
MCCF + HOG + SVM 43 457 1477 23 0.6515 0.0860 0.3485 76.00%

Retinex + MCCF + HOG + SVM 37 463 1455 45 0.4512 0.0740 0.5488 74.60%
DNN 182 318 1377 123 0.5967 0.3650 0.4033 77.95%
CNN 198 302 1457 43 0.8216 0.3960 0.1784 82.75%

Retinex + CNN 410 90 1474 26 0.9404 0.8200 0.0596 94.20%
Retinex + MCCF + CNN 373 127 1444 56 0.8695 0.7460 0.1305 90.85%
Retinex + MCCF + MRN 417 83 1478 22 0.9499 0.8340 0.0501 94.75%

Proposed MRN 423 77 1477 23 0.9484 0.8460 0.0516 95.00%

MCCF + HOG + SVM method can improve the false-positive case because MCCF based
localization effectively removes unnecessary information such as background, but FN case can be
increased. Since retinex-based image enhancement enhance too much textures, MCCF + HOG + SVM
outperforms Retinex + MCCF + HOG + SVM in every sense. The deep neural network (DNN)
can effectively increase the TP compared with SVM-based methods, but false-positive rate was
slightly higher than MCCF + HOG + SVM. Simonyan’s convolutional neural network model can
improve both TP and TN, so accuracy was highly increased over 4% than both DNN and SVM based
methods, Especially, false-positive rate rapidly decreases compared with DNN and SVM based method,
but accuracy is not enough because of the imbalance between true positive and false negative. Since the
enhanced textures in a shadow region can compensate for the imbalance, the retinex-based CNN
model (Retinex + CNN) outperforms the vanilla CNN in terms of the recall, accuracy. As a result
of the localization error of MCCF, Retinex + MCCF + CNN can generate errors such as FN and FP,
but the combined version Retinex + MCCF + MRN outperforms CNN models in all of evaluation
terms. This is mean that the proposed MRN can adaptively reflect between localized information
and enhanced textures to recognize the sub-compact vehicle. Furthermore, the proposed orthogonal
learning method has TP values higher than Retinex + MCCF + MRN because it can generate the
uncorrelated group-probability vectors. Note that the precision, recall, fpr, and accuracy are better by
0.1268, 0.45, 1.268, and 12.25% than convolutional neural network (CNN). In conclusion, the proposed
approach can effectively classify the ambiguous objects because it designed and optimized with
consideration of the group-error and ambiguous features. In addition, the multi-class recognition
performance is compared with the CNN model as shown in Figure 10. The CNN method misclassifies
between sedan and subcompact vehicles many times. Furthermore, subcompact truck and van are
sometimes mis-recognized by the CNN method. However, the proposed method can not only reduce
the mis-recognized case but also improve the accuracy by 10.85%. In addition, we conducted ablation
study using validation check as shown in Figure 11. When we train the MRN without pseudo color (9),
the performance can be degraded as shown black line in Figure 11 because the MRN was pre-trained
by true color image dataset. The center crop-based MRN(Center crop) means that the MCCF operator
in proposed pre-convolution layer was replaced to center cropping method [13]. Since the center
cropping method can not adaptively localize the object, it can not outperform than proposed MRN.
Furthermore, if MRN was optimized by only least square loss (11), the extracted features are not
suitable for binary classification. Thus, when MRN was learned without proposed orthogonal loss (12),
the performance of the MRN can not reach the orthogonal learning-based MRN as shown in Figure 11.
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Convolutional Neural Network [9] Multi-Resolution Network

Figure 10. Multi-classification comparison.
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Figure 11. Ablation study: MRN (Lleast + Lo) is the proposed orthogonal learning based
multi-resolution network (MRN), MRN (Lleast) is the least square loss based MRN, MRN (Center
Crop) is the center cropping method to generate the low-resolution image, and MRN (Gray) is a single
channel based MRN.

4.2. Baseline Comparison

To compare the efficient baseline networks, we evaluate the accuracy with several efficient
networks such as VGG16 [9], residual network50(resnet50) [11], and resinext50 [12]. Table 2 shows
the maximum binary, and multi class accuracy values. Since general networks do not consider
ambiguous in binary classification problem, the MRN outperforms than several based line networks
in terms of both binary and multi-class accuracy. The residual network based MRN slightly lower
than the VGG16 based MRN because the VGG16 have already deep layers in binary classification.
However, resnext based MRN outperforms the VGG16 based MRN in terms of binary accuracy because
the split-transform-merge strategy can effectively apply to recognize the ambiguous binary objects.
Figure 12 shows the accuracy for each training epoch. Note that the proposed networks outperform
than state-of-the-arts baseline-networks in most epoch. In addition, we recorded computational
complexity and allocated GPU-memory on average to verify the computational efficiency.

Table 2. Effects on the accuracy for different baseline networks.

Method Baseline Tool Accuracy (Binary) Accuracy (Multi) Proc. Time (ms) GPU-Memory (GB)

CNN VGG16 Tensorflow 0.8275 0.8010 65 ms 1.3 GB
CNN Resnet50 Pytorch 0.8740 0.8435 80 ms 1.0 GB
CNN Resnext50 Pytorch 0.8890 0.8575 86 ms 1.0 GB
MRN VGG16 Tensorflow 0.9500 0.9095 70 ms 1.6 GB
MRN Resnet50 Pytorch 0.9290 0.8810 100 ms 1.2 GB
MRN Resnext50 Pytorch 0.9530 0.8955 106 ms 1.3 GB
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Figure 12. Accuracy evaluation according to each epoch.

4.3. Visualization

To verify the performance of the proposed orthogonal learning, we visualized the output values
of last layer in the both CNN [9] and the proposed MRN by projecting to two-dimensional space using
t-stochastic neighbor embedding (t-SNE) [27]. In Figure 13a, the visualization is not easy because of
the correlation between subcompact vehicle and other groups. However, Figure 13b shows that the
points are clustered to easily classify, which means that the proposed orthogonal learning can remove
the group-correlation. As a result, proposed orthogonal learning can improve the performance of deep
binary classification.

In Figure 14, we visualized the classified label and localized regions, where the localized bonnet
region is the input to the low-resolution network, and the entire image is engaged to the high-resolution
network. The resulting label (subcompact and non-subcompact vehicle) based on the average value of
the two probabilities is reflected at the end of red-box. The proposed MRN can not only classify in
various illuminations but also distinguish the ambiguous vehicle types.

(a) Convolutional Neural Network (b) Proposed Method

Figure 13. Probability Visualization using t-Stochastic Neighbor Embedding (t-SNE) [27].
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Input Subcompact Vehicle Data

Classification and Localization Result

Input Non-Subcompact Vehicle Data

Classification and Localization Result
Figure 14. Classification and localization result.

5. Conclusions

To recognize ambiguous features between the subcompact and other vehicles, we collected
a novel set of subcompact vehicle images, and proposed a pre-convolution layer that is combined
with the multi-resolution network with an orthogonal learning method. The proposed method
can not only enhance the textures using retinex-based enhancement but also adaptively cropped
the bonnet region using correlation computation. As a result, our MRN can avoid over-fitting by
ambiguous features between vehicle types, and outperforms the existing CNN(VGG16) method
by 12.25%. Therefore, the proposed method can be applied to various traffic management systems
such as toll and parking gates for automatic charging system. In the future work, we will expand
the proposed MRN by combining the license plate detection system. The source code is available
at https://github.com/JoongcholShin.
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