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Abstract: This paper presents a hierarchical deep reinforcement learning (DRL) method for the
scheduling of energy consumptions of smart home appliances and distributed energy resources
(DERs) including an energy storage system (ESS) and an electric vehicle (EV). Compared to Q-learning
algorithms based on a discrete action space, the novelty of the proposed approach is that the energy
consumptions of home appliances and DERs are scheduled in a continuous action space using an
actor–critic-based DRL method. To this end, a two-level DRL framework is proposed where home
appliances are scheduled at the first level according to the consumer’s preferred appliance scheduling
and comfort level, while the charging and discharging schedules of ESS and EV are calculated at the
second level using the optimal solution from the first level along with the consumer environmental
characteristics. A simulation study is performed in a single home with an air conditioner, a washing
machine, a rooftop solar photovoltaic system, an ESS, and an EV under a time-of-use pricing.
Numerical examples under different weather conditions, weekday/weekend, and driving patterns of
the EV confirm the effectiveness of the proposed approach in terms of total cost of electricity, state of
energy of the ESS and EV, and consumer preference.

Keywords: home energy management; deep reinforcement learning; smart home appliance; energy
storage system; electric vehicle

1. Introduction

Approximately 30 percent of the United States’ total energy consumption comes from the
residential sector, and the amount of the residential energy consumption is expected to grow owing
to increased use of home appliances (e.g., air conditioners (ACs) and washing machines (WMs)) and
modern electronic devices [1]. Thus, an efficient and economical methodology for residential energy
management is required to reduce the electricity bill of consumers and keep the efficiency of their
appliances. Furthermore, as distributed energy resources (DERs) (e.g., a rooftop solar photovoltaic
(PV), a residential energy storage system (ESS), and an electric vehicle (EV)) become integrated
into an individual residential house via an advanced metering infrastructure with smart meters for
reliable residential grid operations, the complexity of the residential energy management increases.
The aforementioned challenges require more intelligent systems, i.e., home energy management
systems (HEMSs), through which an electric utility or a third party provides consumers with an
efficient and economical control of home appliances.

A primary goal of HEMS is to reduce the electricity bill of consumers while satisfying their
comforts and preferences. To achieve this goal, HEMSs perform the following two functions:
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(1) real-time monitoring of the energy usage of consumers using smart meters; (2) scheduling of
the optimal energy consumption of home appliances. To implement this second function, an HEMS
algorithm is generally formulated as a model-based optimization problem. Recently, numerous studies
have been published on the development of HEMS optimization algorithms [2–12]. These studies
address the scheduling of the energy consumption for home appliances and DERs, while maintaining
the consumer’s comfort level using mixed-integer nonlinear programming (MINLP) [2], the load
scheduling using mixed-integer linear programming (MILP) for single and multiple households [3,4],
robust optimization for scheduling of home appliances to resolve the uncertainty of consumer
behavior [5], and distributed HEMS architectures consisting of local and global HEMSs [6]. A quickly
distributed HEMS algorithm was developed for a large number of households using the MINLP
approach with a nonconvex relaxation [7]. Based on an emerging technology for ESSs and EVs, a home
energy consumption model under the control of the ESS was presented in [8]. A model predictive
control-based HEMS algorithm was proposed using the prediction of the EV state [9]. An HEMS
optimization model considering both ESS and EV was formulated for a single household [10,11]
based on their bi-directional operation and multiple households with a renewable energy facility [12].
In addition, many studies proposed the methods to evaluate and preserve the consumer comfort during
the HEMS process. In [13], a quality of experience (QoE)-aware HEMS was developed where the
QoE-aware cost saving appliance scheduling and the QoE-aware renewable source power allocation
are conducted to schedule the operation of the controllable loads based on the consumer preferences
and the available renewable energy sources. A new demand management scheme based on the
operational comfort level (OCL) of consumer was proposed to minimize the peak-to-average ratio
while maximizing the OCL of consumers [14]. A score-based HEMS method was presented to maintain
the total household power consumption below a certain limit by scheduling various household loads
based on the consumer comfort level setting [15]. A QoE-aware HEMS algorithm was presented to
reduce the peak load and electricity cost while satisfying the consumer comfort and QoE with a fixed
threshold [16]. More recently, an advanced QoE-aware HEMS method considering renewable energy
sources and EVs was developed for adaptively varying the QoE threshold [17]. Compared to the
method with the fixed OoE threshold in [16], a fuzzy logic controller was designed to dynamically
adjust the QoE threshold for optimizing the consumer QoE in [17]. A recent work on HEMS was
summarized in [18].

However, the aforementioned optimization-based HEMS methods were executed according to
deterministic equations to illustrate the operation characteristics of home appliances and DERs (e.g.,
consecutive operation time intervals of WMs and state of energy (SOE) dynamics of ESS) as well as
consumer’s comfort level (e.g., preferred indoor temperature using indoor temperature dynamics).
Consequently, the model-based HEMS optimization approach suffers from two limitations. First,
the characteristics for the operation of appliances/DERs and consumer preference are expressed
through approximated unrealistic equations with fixed parameters, thereby leading to an inaccurate
energy consumption schedule. Second, an optimization method including a large number of decision
variables could significantly increase the computation complexity and could not scale well with a
greater number of houses. Furthermore, the solution resulting from model-based optimization may
not always be guaranteed and often diverges owing to a smaller feasible region with a large number of
operational constraints for the HEMS optimization problem. To address the aforementioned limitations,
we propose a data-driven approach that leverages model-free reinforcement learning (RL) to calculate
the optimal schedule of home energy consumption.

Recently, data-driven approaches based on various machine learning (ML) methods have gained
popularity owing to their more efficient residential energy management. In [19,20], methods to predict
the generation output of a PV system accurately during the day for efficient energy management of
buildings were presented. These methods employed an artificial neural network (ANN) and a deep
neural network (DNN), respectively. DNN methods were also used in [21–23] for load forecasting to
minimize the energy usage of buildings and households. More recently, RL has received attention as
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a promising ML method for the energy management of buildings and homes. A pioneering study
on RL-based energy management is Google DeepMind, which was developed using RL and proved
to decrease the electricity bill by cooling the data center by approximately 40%. Another RL-based
method, referred to as Q-learning, was applied to HEMS problems. It was integrated with the ANN
module for estimating the consumer’s comfort level, maintaining the energy efficiency of household
appliances [24,25] and predicting the pricing in real time [26]. A new demand response strategy for
HEMS was proposed through the combination of Q-learning and fuzzy reasoning, which reduces the
number of state-action pairs and fuzzy logic for reward functions [27]. Furthermore, methods based
on deep reinforcement learning (DRL) such as Deep Q-Network, and policy gradient, were applied for
energy management of building [28,29] based on both discrete and continuous action spaces. A holistic
DRL method for the energy management of commercial buildings was presented in [30] where Heating,
Ventilation, and Air conditioning (HVAC) system, lighting, blind, and window systems are controlled
to achieve energy savings within the buildings’ occupants comfort in terms of thermal, air quality,
and illumination conditions. To resolve the limit of model-free DRL methods such as low sample
efficiency, a model-based RL method was developed for building HVAC control that trains the system
dynamics using neural networks [31]. Based on the trained system dynamics, the operation of the
HVAC system was managed by model predictive control to minimize both the energy cost and the
indoor temperature constraints violation. The DRL approach was also applied to data centers with
servers, which aim to minimize the energy used for moving air and on-demand cooling in the data
centers through the control of the temperature and relative humidity of air supplied to the server [32].

Recent studies addressed on energy management systems for buildings and households using
an RL-based method. However, to the best of the authors’ knowledge, no study has presented an
DRL-based algorithm that considers the continuous operations of heterogeneous home appliances and
DERs according to the consumer’s comfort and preferences. In prior studies [24–26], the operations of
home appliances and DERs were scheduled using a simple Q-learning method based on an unrealistic
discrete action space. Furthermore, prior studies [28,29] focused on the scheduling of the energy
consumption of buildings without considering the operation characteristics of home appliances
in detail.

In this study, we propose a two-level DRL framework that employs an actor–critic method where
the controllable home appliances (WM and AC) are scheduled at the first level according to the
consumer’s preferred appliance scheduling and comfort level. The ESS and EV are scheduled at the
second level to cover the aggregated WM and AC loads that are calculated at the first level along
with the fixed load of the uncontrollable appliances. The proposed two-level scheme is motivated by
the interdependent operation between the home appliances at the first level and the ESS/EV at the
second level. If the proposed algorithm is executed in a single-level framework, the optimal policy for
charging and discharging actions of the ESS and EV is independently determined without considering
the energy consumption schedule of aggregated home appliances, thereby degrading the performance
of the algorithm. Figure 1 presents the conceptual system model for the proposed two-level DRL-based
HEMS that employs an actor–critic method, along with the data classification associated with the
utility company, weather station, and consumer. The main contributions of this study are summarized
as follows:

• We present a two-level distributed DRL model for optimal energy management of a smart
home consisting of a first level for WM and AC, and a second level for ESS and EV. In such a
model, the energy consumption scheduling at the second level is based on the aggregated energy
consumption scheduled at the first level to determine the better policy of charging and discharging
actions for the ESS and EV.

• Compared to the existing method using Q-learning in a discrete action space, we propose a
hierarchical DRL in a continuous action space with the following two scheduling steps: (i) the
controllable appliances including WM and AC are scheduled at the first level according to the
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consumer’s preferred appliance scheduling and comfort level; (ii) ESS and EV are scheduled at
the second level, thereby resulting in optimal cost of electricity for a household.

Deep RL-Based HEMS
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Figure 1. Conceptual architecture of the proposed deep reinforcement learning (DRL)-based home
energy management system (HEMS) algorithm.

The simulation results confirmed that the proposed HEMS algorithm can successfully schedule
the energy consumptions of multiple home appliances and DERs using a single DRL structure under
various consumer preferences. In addition, through various case studies and comparative analysis, we
evaluated the impact of different weather and driving patterns of the EV with different initial SOEs on
the proposed algorithm. Furthermore, we verified that charging and discharging of the ESS and EV
significantly contribute to the reduction of the cost of electricity.

The remainder of this paper is organized as follows. Section 2 introduces the various types of
smart home appliances and the traditional HEMS optimization approach; it also provides an overview
of the RL methodology. Section 3 presents the formulation of the proposed DRL-based HEMS algorithm
based on the actor–critic method. The numerical examples for the proposed HEMS algorithm are
reported in Section 4, and the conclusions are given in Section 5.

2. Background

2.1. Types of Smart Home Appliances

We consider the following types of smart home appliances in a single household where an HEMS
automatically schedules their energy consumption under the time-of-use (TOU) pricing:

1. Uncontrollable appliance (Auc): An HEMS cannot manage the energy consumption scheduling
of uncontrollable appliances such as televisions, personal computers, and lighting. Thus,
an uncontrollable appliance is assumed to follow fixed energy consumption scheduling.

2. Controllable appliance (Ac): It is an appliance for which the energy consumption scheduling is
calculated by the HEMS. According to its operation characteristics, the controllable appliance
is categorized into a reducible appliance (Ac

r) and shiftable appliance (Ac
s). A representative

example of a reducible appliance is an air conditioner whose energy consumption can be curtailed
to reduce the cost of electricity. By the contrast, under TOU pricing, the energy consumption
scheduling of a shiftable appliance can be moved from one time slot to another to minimize
the cost of electricity. A shiftable appliance has two types of load: (i) a non-interruptible load
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(Ac,NI
s ), and (ii) an interruptible load (Ac,I

s ). A shiftable appliance with an interruptible load can
be interrupted at any time. For example, the HEMS must stop the discharging process and start
the charging process of the ESS instantly when the PV power generation is greater than the load
demand. However, the operation period of a shiftable appliance with a non-interruptible load
must not be terminated by the HEMS. For example, a washing machine must finish a washing
cycle prior to drying.

2.2. Traditional HEMS Optimization Approach

A conventional HEMS method that calculates the optimal operating scheduling of home
appliances and DERs is formulated in terms of the following constrained multi-objective optimization
problem described in the following section.

2.2.1. Objective Function

The objective function (1) for the HEMS optimization problem comprises two terms, each of
which includes different decision variables (Enet

t , Tin
t ) [25]:

min
Enet

t ,Tin
t

∑
t∈T

πtEnet
t︸ ︷︷ ︸

J1(Enet
t )

+ ε ∑
t∈T

∣∣∣Tin
t − Tset

∣∣∣︸ ︷︷ ︸
J2(Tin

t )

. (1)

The first term J1 (Enet
t ) represents the total cost of electricity that is calculated under TOU pricing

πt and Enet
t , which is the net energy consumption accounting for the energy consumption of the

controllable/uncontrollable appliances and the predicted PV generation output. The second term
J2
(
Tin

t
)

represents the total penalty related to the cost of the consumer’s discomfort. Here, discomfort
is defined as a deviation of the consumer’s preferred temperature Tset from the indoor temperature Tin

t .
ε is a penalty for the cost of the consumer’s discomfort. A larger ε yields a smaller J2

(
Tin

t
)
, thereby

offering decreasing discomfort to the consumer at the expense of less energy saving. The value of ε

can be tuned by the HEMS operator to maintain the consumer’s preferred comfort level at the cost of a
higher electricity bill. The equality and inequality constraints for the HEMS optimization problem are
illustrated in the following subsections.

2.2.2. Net Energy Consumption

Equation (2) expresses the constraint on the net energy consumption that represents the difference
between the total consumption of all home appliances (A = Ac

r
⋃Ac,NI

s
⋃Ac,I

s
⋃Auc) and the predicted

PV generation output EPV
t at time t. In Equation (3), the total energy consumption of all appliances

in Equation (2) is decomposed into four different types of consumptions corresponding to (i) reducible
appliances (a ∈ Ac

r), (ii) shiftable appliances with a non-interruptible load (a ∈ Ac,NI
s ), (iii) shiftable

appliances with an interruptible load (a ∈ Ac,I
s ), and (iv) uncontrollable appliances (a ∈ Auc) [25]:

Enet
t = ∑

a∈A
Ea,t − ÊPV

t (2)

∑
a∈A

Ea,t = ∑
a∈Ac

r

Ea,t + ∑
a∈Ac,NI

s

Ea,t + ∑
a∈Ac,I

s

(
Ech

a,t − Edch
a,t

)
+ ∑

a∈Auc
Ea,t. (3)

2.2.3. Operation Characteristics of Controllable Appliances

For a reducible appliance a ∈ Ac
r , (4) expresses the constraint for the indoor temperature

dynamics of a reducible appliance (e.g., an AC) at time t (Tin
t ), which is expressed in terms of Tin

t−1
at time t − 1, the predicted outdoor temperature at time t − 1 (T̂out

t−1), the energy consumption of
the reducible appliances (Ea,t), and the environmental parameters (α, β) characterizing the indoor
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thermal condition [7]. Equation (5) illustrates the range of consumer’s preferred indoor temperatures.
The energy consumption capacity for the reducible appliances is limited according to (6):

Tin
t = Tin

t−1 + α(T̂out
t−1 − Tin

t−1) + βEa,t (4)

Tmin ≤ Tin
t ≤ Tmax (5)

Emin
a ≤ Ea,t ≤ Emax

a . (6)

Equations (7), (8), and (9) guarantee the consumer’s preferred operation of shiftable appliances
with a non-interruptible load a ∈ Ac,NI

s (e.g., a WM) with the binary decision variable bc,NI
a,t in different

situations: (i) for a stopping period in which ω
pref
s and ω

pref
f are the consumer’s preferred starting and

finishing time (7), respectively; (ii) for an operation period of La hours during a day in (8); and (iii) for
a consecutive operation period of La hours in (9). The energy consumption capacity for the shiftable
appliances with a non-interruptible load is calculated using (10):

bc,NI
a,t = 0, t ∈ [1, ω

pref
s ) ∪ (ω

pref
f , T] (7)

ω
pref
f

∑
t=ω

pref
s

bc,NI
a,t = La (8)

p+La−1

∑
t=p

bc,NI
a,t ≥ (bc,NI

p − bc,NI
p−1 )La, ∀p ∈ (ω

pref
s , ω

pref
f − La + 1) (9)

Ea,t = bc,NI
a,t Emax

a . (10)

Equation (11) presents the operational dynamics of the SOE for the ESS and EV (a ∈ Ac,I
s ) at current

time instant t in terms of the SOE at previous time instant t-1, the charging and discharging efficiency,
i.e., ηch

a and ηdch
a , and the charging and discharging energy, i.e., Ech

a,t and Edch
a,t , respectively [11].

Equation (12) represents the SOE capacity constraint for the ESS and EV. Equations (13) and (14)
present the limits of the charging (Ech

a,t) and discharging (Edch
a,t ) energies of the ESS and EV, respectively,

where bc,I
a,t represents the binary decision variable that determines the charging and discharging status

of the ESS and EV:

SOEa,t = SOEa,t−1 + ηch
a Ech

a,t −
Edch

a,t

ηdch
a

(11)

SOEmin
a ≤SOEa,t ≤ SOEmax

a (12)

Ech,min
a bc,I

a,t ≤Ech
a,t ≤ Ech,max

a bc,I
a,t (13)

Edch,min
a (1− bc,I

a,t) ≤Edch
a,t ≤ Edch,max

a (1− bc,I
a,t). (14)

Notably, the constraints (11)–(14) for the EV remain true in t ∈ [ωarr, ωdep], whereas Ech
a,t and Edch

a,t
become zero in t /∈ [ωarr, ωdep]. In addition, when the EV departs from home at t = ωdep, the SOE of
the EV must be larger than the consumer preferred SOE SOEpref

a

SOEa,t ≥ SOEpref
a . (15)
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2.3. Reinforcement Learning Methodology

2.3.1. Reinforcement Learning

RL is an ML method that addresses a problem in a specific environment with the objective of
maximizing a numerical reward. This learning process is applied to various types of general and
special engineering problems. In the RL framework, while an agent interacts with an environment,
it learns a particular type of action depending on the state of the environment and conveys the learned
action to the environment. The environment then returns a reward along with its new state to the
agent. This learning process continues until the agent maximizes the total cumulative rewards received
from the environment.

A policy is defined in terms of the procedure through which the agent acts from a specific state.
The main objective of the agent is to find an optimal policy that maximizes the agent’s cumulative
reward in the environment. In our study, we consider that the environment is characterized by a
Markov decision process, in which the change of the agent’s next state depends only on the current
state, along with the action chosen in the current state ignoring all previous states and actions.

In this study, the value function is selected as Q(st, at), namely the Q-value, which is written in
terms of a pair of state st and action at at a discrete time t. By using the Q-value, the agent’s main
objective is to achieve the maximum Q-value at every time step t. Q-learning is one of the basic RL
methods to find the optimal policy ν∗ in decision-making problems. The general Q-learning process
computes and updates the Q-value Q(st, at) to achieve the maximum total rewards using the following
Bellman equation:

Q∗ν∗(st, at) = r(st, at) + γ max Q(st+1, at+1) (16)

where, based on the optimal policy ν∗, the optimal Q-value Q∗ν∗(st, at) is obtained by the summation
of the present reward r(st, at) and the maximum discounted future reward γ max Q(st+1, at+1).

In general, a discounting factor γ ∈ [0, 1] is used to explain the relative importance of the current
and future rewards. As the discounting factor γ decreases, the agent becomes short-sighted because it
increasingly focuses on the current reward. However, a larger γ enables the agent to focus increasingly
on the future reward and thus becomes far-sighted. The value of γ can be tuned by the system operator
to balance the current and future rewards.

2.3.2. Actor–Critic Method

The actor–critic method is an extension of the policy gradient method that can improve the stability
and reduce the variance of the gradient when the optimal solution of the algorithm converges [33].
If the value of a certain state of the agent is known, the corresponding Q-value can be calculated
and applied to the REINFORCE method (Algorithm 1) to calculate the gradient of policy network
parameters and renew the agent’s policy network, thereby leading to a better cumulative result by
increasing the probability for the agent’s action. In the actor–critic method, the agent can use an
additional network to judge the goodness of the action the agent selects in a certain state. The policy
network that returns the probability of the agent’s action is called actor network, whereas the network
that returns the evaluation value of the agent’s action is called a critic network. The policy gradient
method is suitable for handling the problem with a continuous action space; however, this method
may have a poor convergence performance. An additional critic network in the actor–critic method
can resolve the convergence issue in the policy gradient method. In our study, the actor and critic
networks share a common body network owing to an effective convergence consideration.

The actor network returns the probability of the action that the agent selects in a particular state
and the critic network returns the numerical future value that the agent would obtain in the terminal
state. The critic network updates the function that distinguishes between the action and value, whereas
the policy network updates its parameters in the direction suggested by the critic network. In this
study, the parameters in the actor network are updated by the REINFORCE method (Algorithm 1) and
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the parameters in the critic network are updated by a linear temporal difference (TD) method [34].
The TD method directly learns from episodes of experience, and the present and guessed values.
This is known to be a useful method to solve the Markov decision process (MDP) problem. In our
study, we select the linear value function approximation for applying the TD method to the critic
network. The actor–critic method updates the parameters of the actor and critic networks to minimize
the TD error, which encodes the difference between the value function of the present state and target
value function. Algorithm 2 illustrates the actor–critic approach with the TD method. In Algorithm 2,
∂, θ, and ω represent the TD error from the Q-value, the parameter of the actor network, and the
parameter of the critic network, respectively. ξθ and ξω are the learning rates of the actor network and
critic networks in the algorithm, respectively.

Algorithm 1: REINFORCE method
1 Initialize the weights of network θ randonmly
2 for t = 1, N do
3 . Store each episode {s1, a1, r2, . . . , sN , aN , rN+1} ∼ πθ

4 for t = 1, N do
5 . Apply the stochastic gradient (SG) method for updating the weights
6 θ← θ + α∇θ log πθ(st, at)Q(st, at)

7 end
8 end
9 Return θ

Algorithm 2: Actor-critic method
1 Initialize the state s of an agent and the weights of the actor and critic networks θ and ω, respectively, randomly
2 Sample action a ∼ πθ

3 Linear value function approximation Qw(s, a) = φ(s, a)
4 for t = 1, N do
5 . Sample reward r = Ra

s and next state ŝ
6 . Select action â
7 . ∂ = r + γQw(ŝ, â)−Qw(s, a)
8 . θ = θ + ξθ∇θ log πθ(s, a)Qs,a

9 . w← w + ξω∂φ(s, a)
10 . a← â, s← ŝ
11 end

3. Proposed Method for DRL-Based Home Energy Management

In this section, we propose a hierarchical two-level DRL framework that employs the actor–critic
method to schedule the day-ahead optimal energy consumption of a single household with smart home
appliances and DERs within the consumer’s preferred appliance scheduling and comfort range. In the
proposed framework, the energy consumption scheduling problem is decomposed into a two-level
DRL problem corresponding to the energy consumption scheduling of i) WM and AC at the first level
and ii) ESS and EV at the second level. A detailed illustration of the state, action, and reward for each
level of the proposed actor–critic method is provided in the following two subsections. In addition,
the superscript of the variables for the state/action spaces and the reward function represents the first
and second level, respectively.
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3.1. Energy Management Model for WM and AC: Level 1

3.1.1. State Space

We consider the situation in which the proposed DRL-based HEMS algorithm performs optimal
day-ahead scheduling of appliances with a 1-h scheduling resolution. For ∀t = 1, . . . , 24, the state
space of the agent for WM and AC at the first level is defined as follows:

S (1) = {t, πt, T̂out
t , Tin

t−1} (17)

where the states t, πt, T̂out
t , and Tin

t−1 denote the scheduling time of the WM and AC, TOU price, and
outdoor and indoor temperatures, respectively, at time t.

3.1.2. Action Space

The optimal action for the first level relies on the environment of the agent including the present
state, as defined in Section 3.1.1. The action space at the first level is defined as follows:

A(1) = {EWM
t , EAC

t } (18)

where EWM
t and EAC

t represent the energy consumption of the WM and AC at time t, respectively. In
this study, EAC

t has a continuous value, whereas EWM
t has a discrete value; EWM

t = EWM,max when the
WM turns on, otherwise, EWM

t = 0.

3.1.3. Reward

The reward function for the first level is formulated as the sum of the negative cost of electricity
and dissatisfaction of WM and AC related to the consumer’s preferred comfort and appliance’s
operation characteristics. The total reward at the first level is expressed as:

R(1)
t = −(cWM

t + cAC
t ) (19)

where cWM
t and cAC

t are the cost functions for the WM and AC, respectively. Each cost function includes
the cost of electricity for the appliance along with the cost of the consumer’s dissatisfaction for the
undesired operation of the WM and the indoor thermal discomfort.

First, the cost function of the WM is defined as

cWM
t =


πtEWM

t + δ(ω
pref
s − t), if t < ω

pref
s

πtEWM
t + δ(t−ω

pref
f ), if t > ω

pref
f

πtEWM
t , otherwise

(20)

where ω
pref
s and ω

pref
f are the consumer’s preferred starting and finishing times of the WM, respectively,

while δ and δ are the penalties for early and late operations, respectively, compared to the consumer’s
preferred operation interval. The cost of dissatisfaction is added to the cost function if the WM
schedules the WM energy consumption earlier than ω

pref
s or later than ω

pref
f ; otherwise, the cost

function includes only the cost of electricity.
The cost function of the AC is expressed as:

cAC
t =


πtEAC

t + κ(Tmin − Tin
t ), if Tin

t < Tmin

πtEAC
t + κ(Tin

t − Tmax), if Tin
t > Tmax

πtEAC
t , otherwise

(21)
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where κ and κ are the penalties for the consumer’s thermal discomfort. The cost of dissatisfaction is
defined as the deviation of the consumer’s preferred temperature Tin

t from Tmin and Tmax.
It is noted that two terms in (20) and (21) have a trade-off relationship between the saving of

the electricity cost and the reduction of the consumer’s dissatisfaction cost in terms of the penalties
{δ, δ} and {κ, κ}, respectively. On the trade-off relationship, HEMS operators using our proposed DRL
algorithm can adaptively adjust and tune the penalty to the situations where the consumer aims to
save the electricity cost more or maintain the consumer’s desired comfort and preference. The selection
of the values of these penalties would become different depending on the consumer’s desired comfort
level and environment.

3.2. Energy Management Model for ESS and EV: Level 2

The optimal schedules of the energy consumption of the WM and AC from the first level along
with the fixed load of the uncontrollable appliances are embedded into the actor–critic module at
the second level. In the second level, the agent for the ESS and EV initiates the learning process to
determine the optimal charging and discharging schedules of the ESS and EV to minimize the cost of
electricity. During the learning process in this second level, the energy generated by the PV system is
assumed to be charged first to the ESS; then, the ESS will select an appropriate action.

3.2.1. State Space

The state space of the agent at the second level, which manages the operations of the ESS and EV,
is defined as

S (2) = {t, πt, SOEESS
t , SOEEV

t , ÊPV
t , E(1)

t } (22)

where the states t, πt, SOEESS
t , SOEEV

t , ÊPV
t , and E(1)

t are the scheduling time of the ESS and EV, the
TOU price, SOE of the ESS and EV, the predicted PV generation output, and the aggregated energy
consumption schedule calculated at the first level, respectively, at time t.

3.2.2. Action Space

Similar to the action space of the WM and AC in Section 3.1.2, the action space of the ESS and EV
at the second level is expressed as

A(2) = {EESS
t , EEV

t } (23)

where EESS
t and EEV

t represent the continuous energy charging and discharging of the ESS and EV,
respectively, at time t.

Note that, in the proposed two-level DRL architecture, the agent for the ESS and EV selects
their optimal charging and discharging action using E(1)

t (22) that includes the action of the agent for
the WM and AC along with the fixed load of the uncontrollable appliances at the first level. If the
DRL-based HEMS algorithm is modelled as a single-level framework (i.e., the state spaces (17), (22)
and the action spaces (18), (23) at the first and second levels are combined, respectively), the agent for
the ESS and EV may not find its optimal policy because the ESS and EV have no consumption data of
other appliances in their state space. This is verified in Section 4.2.

3.2.3. Reward

The reward for the second level is formulated as the sum of the negative cost of electricity and
dissatisfaction of ESS and EV associated with the consumer’s preferred comfort and appliance’s
operation characteristics. The total reward at the second level is defined as

R(2)
t = −(cESS

t + cEV
t ). (24)

In (24), cESS
t and cEV

t represent the cost functions for the ESS and EV, respectively. Each cost
function includes the cost of electricity of the appliance along with the cost of dissatisfaction for
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underdischarging and overcharging of the ESS and EV. Notably, these cost functions include the
discharging energy from the ESS and EV, which supports the uncovered energy consumption of
aggregated load for WM, AC, and uncontrollable appliances.

First, the cost function of the ESS is expressed as follows:

cESS
t =



πtEESS
t + τ(SOEESS

t − SOEESS,max),

if SOEESS
t > SOEESS,max

πtEESS
t + τ(SOEESS,min − SOEESS

t ),

if SOEESS
t < SOEESS,min

πtEESS
t , otherwise,

(25)

where τ and τ are the penalties for ESS overcharging and undercharging, respectively. In this case,
energy underutilization and dissipation of the ESS occur if the SOE becomes lower than SOEmin

(undercharging) or greater than SOEmax (overcharging).
Next, the cost function of the EV is expressed as

cEV
t =



πtEEV
t + ν(SOEEV

t − SOEEV,max),

if SOEEV
t > SOEEV,max, t ∈ [ωarr, ωdep]

πtEEV
t + ν(SOEEV,min − SOEEV

t ),

if SOEEV
t < SOEEV,min, t ∈ [ωarr, ωdep]

πtEEV
t + η(SOEpref − SOEEV

t ),

if t = ωdep and SOEEV
t < SOEpref

πtEEV
t , otherwise,

(26)

where ν and ν are the penalties for overcharging and undercharging of the EV, respectively. Similar to
the operation of the ESS, energy underutilization and dissipation occur if the SOE of the EV becomes
lower than SOEEV,min or higher than SOEEV,max. Unlike the reward function of the ESS, the reward
function of the EV includes the parameter η, which denote the consumer’s preference penalty of the
EV, corresponding to the deviation of the SOE of the EV from the consumer’s preferred SOE when the
EV departs. If SOEEV

t is lower than SOEpref at departure time ωdep, the cost of dissatisfaction increases
owing to insufficient SOE.

3.3. Proposed Actor–Critic-Based HEMS Algorithm

In this subsection, we illustrate the proposed DRL method based on the actor–critic method that
determines the optimal policy to minimize the electricity bill within the consumer’s preferred comfort
level and the appliance operation characteristics. Compared to value-based RL methods, the policy
gradient approach is appropriate for engineering problems with continuous action spaces. In general,
the continuous policy gradient network obtains state information from the agent and returns the
appropriate action using a normal distribution. The network yields the mean and variance to achieve
a normal distribution, and the agent samples the action randomly based on the resulting distribution.
In the actor–critic approach, the additory method of criticizing the Q-value for its efficiency and
convergence is added. Therefore, the network provides the mean, variance, and Q-values to find the
optimal actions. As shown in Figure 2, the proposed actor–critic network model for each level consists
of one input layer for state elements, four hidden layers for a common body network with 512 neurons,
one hidden layer for each actor and critic networks with 256 neurons, and one output layer with
means and variances of the operation schedules of appliances and Q-values. In this study, a hyperbolic
tangent function was used as a transfer function. In addition, the adaptive moment estimation (ADAM)
optimization algorithm [35] was used for training the proposed DRL model with a learning rate of
0.00004. Finally, Algorithm 3 illustrates the procedure of the actor–critic-based HEMS algorithm that
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learns the energy management policies, which optimize the cost of electricity and consumer’s comfort
level for level 1 (WM and AC) and level 2 (ESS and EV).

Input Layer
(State of Appliances)

Hidden Layer1
(512 Neurons)

Hidden Layer4
(512 Neurons)

Hidden Layer
(Actor Network, 256 Neurons)

Hidden Layer
(Critic Network, 256 Neurons)

Output Layer
(Actions of Appliances)

Figure 2. Architecture of the neural network model for the proposed actor–critic method.

Algorithm 3: Proposed actor–critic-based energy management of smart home at level 1 (or
level 2).

1 Initialize each appliance’s energy demand, dissatisfaction parameters, and actor critic method parameters
2 %%Learning the optimal energy demand scheduling of the agent for level 1 (or level 2)
3 Initialize the policy gradient and Q-value of the agent for level 1 (or level 2)
4 for episode = 1, MaxEpisode do
5 . Initialize state, action and time period
6 for time step = 1, 24 do
7 . With probability of action in state, select a set of actions for each state
8 . Execute the action chosen from the set of actions and calculate the Q-value of present state and next state
9 . Calculate the loss function of each actor network and critic network

10 . Store each loss of actor and critic network in buffer
11 . Update the parameters of the full network by applying the SG descent method to the loss in the buffer
12 end
13 . Find the optimal policy with the largest Q-value
14 end

4. Numerical Examples

4.1. Simulation Setup

Under the TOU pricing shown in Figure 3a, we considered a household where the proposed
DRL algorithm schedules the operation of two tasks: (i) two major controllable home appliances (WM
and AC) at the first level and (ii) controllable DERs (PV-integrated ESS and EV) at the second level.
The simulations were executed for 24 h with a 1-h scheduling resolution.
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Figure 3. Profiles of electricity price and weather. (a) time-of-use (TOU) price; (b) photovoltaic (PV)
generation; (c) outdoor temperature.

We assumed that the predicted PV generation energy ÊPV
t in Figure 3b and predicted outdoor

temperature T̂out
t in Figure 3c could be calculated accurately. The maximum energy consumptions

of the WM and AC were set to 300 and 1000 Wh, respectively. For the ESS, the battery capacity is
4000 Wh, and the minimum (SOEESS,min), maximum (SOEESS,max) and initial SOE (SOEESS

ini ) of the ESS
were set to 400 Wh (10% SOEESS,max), 4000 Wh (100% SOEESS,max), and 2000 Wh (50% SOEESS,max),
respectively. The maximum charging and discharging energy of the ESS were both 1200 Wh. For the
EV, the battery capacity was 17,000 Wh, and the minimum (SOEEV,min), maximum (SOEEV,max) and
initial SOE (SOEEV

ini ) of the EV were set to 1700 Wh (10% SOEEV,max), 17,000 Wh (100% SOEEV,max),
and 9350 Wh (55% SOEEV,max), respectively. The maximum charging and discharging energy of
the EV were both 10,000 Wh. For the reward function, the consumer’s preferred operating period
[ω

pref
s , ω

pref
f ] for the WM was set to [9:00 a.m., 10:00 p.m.] along with 2 h of consecutive operation

time. The range of consumer’s comfortable indoor temperature [Tmin, Tmax] controlled by the AC
was set to [22.5◦C, 25.5◦C]. For the EV, the preferred SOE (SOEpref) and the departure time (ωdep) of
the EV were set to 12,750 Wh (75% SOEEV,max) and 8:00 a.m., respectively. The pairs of penalties for
the cost of dissatisfaction of the WM, AC, ESS, and EV were {(δ = 50, δ = 50), (κ = 200, κ = 200),
(τ = 100, τ = 100), (ν = 100, ν = 100), and (η = 50)}, respectively.

The performance of the proposed approach was tested for the following four cases according to
different weather, weekday/weekend, and initial SOE SOEEV

ini of the EV:

• Case 1: Sunny, weekday, SOEEV
ini = 0.55× SOEEV,max,

• Case 2: Rainy, weekday, SOEEV
ini = 0.55× SOEEV,max,

• Case 3: Sunny, weekend, SOEEV
ini = 0.55× SOEEV,max,

• Case 4: Sunny, weekday, SOEEV
ini = 0.15× SOEEV,max.

On a sunny day, the predicted PV generation output at time t (ÊPV
t ) follows the profile in Figure 3b,

and on a rainy day, it is set to zero. On a weekday, the EV is assumed to arrive at the household at 6:00
p.m. and then the charging and discharging processes are conducted until the EV departs from the
household at 8:00 a.m. During the weekend, the EV charges or discharges energy during 24 h. SOEEV

ini
denotes the SOE when the EV arrives at home, and different values of SOEEV

ini represent different
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driving distances of the EV. All the cases were tested using Python 3.7.0 with the machine learning
package pytorch 1.1.0.

4.2. Simulation Results at Level 1

In this subsection, we report the simulation results of the proposed approach associated with
level 1 and verify the optimal energy consumption schedule of the WM and AC along with the
consumer’s comfort level. Figure 4a shows the energy consumption schedule of the WM. We observe
from Figure 4a that the operation period is selected as [7:00 p.m., 8:00 p.m.] with two consecutive
operation hours. This scheduling policy is optimal because the WM operates at the lowest TOU pricing
during the consumer’s preferred operation period [9:00 a.m., 10:00 p.m.], which in turn reduces the
electricity bill while satisfying the consumer’s preference and operation characteristics of the WM.
Figure 4b illustrates the energy consumption schedule of the AC. Unlike the observation in Figure 4a,
the AC energy consumption is scheduled at an even higher TOU pricing during the period [12:00 p.m.,
4:00 p.m.]. This was expected because the agent at the first level considers the consumer’s thermal
comfort as well as saving on electricity bills in the reward function. As shown in Figure 4b, the AC
turns off at midnight when the outdoor temperature is within the range of consumer’s preferred
temperatures. When an indoor temperature violation occurs at 7:00 a.m. owing to a sharp increase
of the outdoor temperature, the AC turns on and its energy consumption increases to maintain the
consumer’s preferred indoor temperature. The maximum energy consumption schedule is verified
during the interval [12:00 p.m., 4:00 p.m.], which presents the highest TOU pricing. In this interval, the
AC aims to satisfy the consumer’s comfort at the expense of increased electricity bills. Figure 4c shows
the total energy consumption schedule of the WM, AC, and uncontrollable appliances with fixed
loads at level 1. Note that the sum of energy consumption schedules of WM, AC, and uncontrollable
appliances at each period is used by the actor–critic module at the second level, which in turn
determines the optimal policy of charging and discharging for the ESS and EV.
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Figure 4. DRL-based energy consumption schedule. (a) washing machine (WM); (b) air conditioner
(AC); (c) WM+AC+Uncontrollable appliances at Level 1.

4.3. Simulation Results at Level 2

In this subsection, we present the simulation results of the proposed approach at Level 2. These
results are divided into three comparison tests using four cases described in Section 4.1: {Case 1,
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Case 2}, {Case 1, Case 3}, and {Case 1, Case 4}. The discharging ratio of the EV and ESS to cover the
energy consumption at the first level simultaneously was set to 0.8 and 0.2, respectively. This ratio was
determined as the battery capacity of the EV divided by the battery capacity of the ESS.

4.3.1. Case 1 vs. Case 2

In this simulation, we investigate and compare the performance between Case 1 (with the
PV generation output) and Case 2 (without the PV generation output). Figure 5a,b show the
charging/discharging and SOE schedules of the ESS for Case 1 and Case 2, respectively. We observe
from Figure 5a that, in general, more discharging (negative energy consumption) of the ESS for
both cases occurs at high TOU pricing to support the household energy demand, thereby leading to
consumer’s energy savings. In addition, it can be observed through the comparison of Figure 5a,b that
the SOE of the ESS increases (or decreases) as the ESS charges (or discharges) energy. However, Case 1
shows an unexpected phenomenon where the SOE of the ESS in the scheduling period between 10:00
a.m and 4:00 p.m is higher than in other periods even though the ESS conducts a significant energy
discharging in this period. This phenomenon occurs because the PV generation energy is injected into
the ESS further than the ESS discharging energy in this period.
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Figure 5. Performance comparison between Case 1 and Case 2. (a) energy consumption of the energy
storage system (ESS); (b) state of energy (SOE) of the ESS; (c) energy consumption of the electric vehicle
(EV); (d) SOE of the EV; (e) net consumption of household.
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However, we observe from Figure 5a,b that the ESS charges more power at high TOU pricing for
Case 2 than for Case 1. This observation justifies that the different weather conditions influence the
charing and discharging schedules of the ESS significantly.

Figure 5c,d show the charging/discharging and SOE schedules for the EV. We observe from these
figures that the EVs for Cases 1 and 2 does not perform neither charging nor discharging processes
after 7:00 a.m. and that the SOE level remains unchanged, respectively. This observation is consistent
with the EVs departure time setting (ωdep=8:00 a.m.). We also observe from Figure 5c that the EVs
charge significantly large amounts of energy from the grid at 10:00 p.m. and 5:00 a.m., whereas it
discharges energy to support the household energy demand in the other time periods. This charging
process derives from the fact that the EVs charge sufficient energy in advance to satisfy the consumer’s
preferred SOE condition (SOEpref=12,750 Wh). It can be verified from Figure 5d that the SOE at 8:00
a.m. exceeds 12,750 Wh for both cases. However, no unexpected phenomenon observed in Figure 5a,b
is identified in Figure 5c,d. This is because the PV generation output affects only the ESS charging and
discharging.

Figure 5e shows the net energy consumptions of the household for Cases 1 and 2, which is the
difference between the energy consumption of the controllable/uncontrollable appliances and the
predicted PV generation output. As shown in this figure, the values of the net energy consumption of
both cases are much larger at 10:00 p.m. and 5:00 a.m. than at the other time slots owing to the large
EV charging at these two time slots. However, in the period between 8:00 a.m. and 5:00 p.m., we can
identify the large amount of energy consumption in Case 2. This is because the ESS needs to charge
more power in Case 2 owing to no PV generation than in Case 1.

4.3.2. Case 1 vs. Case 3

In this case study, we investigate and compare the performance between Case 1 (on a weekday)
and Case 3 (on a weekend). We considered that the EV stays at home during 24 h in the weekend.
Given that the EV does not depart, the consumer’s preferred SOE of the EV is not considered in the
proposed algorithm. First, we can observe from Figure 6a that the SOE of the ESS in Case 3 is generally
lower than that in Case1 even if the weather is sunny. We can interpret this observation as follows.
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Figure 6. Performance comparison between Case 1 and Case 3. (a) SOE of the ESS; (b) SOE of the EV;
(c) net consumption of household.
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In Case 3, the ESS does not need to allocate much stored energy to satisfy the consumer’s preferred
SOE of the EV because the EV stays at home all day. Thus, the ESS increasingly supports the household
energy demand through its charging process along with the EV charging. Unlike the results for Cases
1 and 2, we can verify from Case 3 in Figure 6b that the consumer’s preferred SOE of EV condition is
ignored during the scheduling process of EV energy consumption, in which the SOE of the EV at 8:00
a.m. is much lower than SOEpref = 12,750 Wh. After 8:00 a.m., the EV keeps charging and discharging
the energy in the same way as the ESS. We also observe from Figure 6c that in Case 3 a high net energy
consumption occurs at 10:00 p.m. and 1:00 p.m. owing to EV charging for discharging plan in future
scheduling. Moreover, the net energy consumption at 5:00 a.m. in Case 3 is much smaller than in
Case 1 because the consumer’s preferred SOE of EV is ignored. Note from Case 3 in Figure 6c that
zero-energy consumption is verified in the period between 8:00 a.m. and 5:00 p.m. except 10:00 a.m.
and 1:00p.m. This result shows that more energy saving can be obtained during the EV charging
and/or discharging during the whole day.

4.3.3. Case 1 vs. Case 4

In this simulation, we investigate and compare the performance between Case 1 (with a high
initial SOE) and Case 4 (with a low initial SOE). Figure 7a,b illustrate the SOE schedules of the ESS and
EV for Case 1 and Case 4, respectively. First, we observe from Figure 7b that the SOE of the EV at 6:00
p.m. is larger in Case 4 than in Case 1. This is because the low initial SOE of the EV enable the EV to
require more charging power to support the upcoming household load demands. This observation
is also verified for the ESS as shown Figure 7a where the ESS charges more power in Case 4 than in
Case 1 at 6:00 p.m. with the same reason. We also observe from Case 4 in Figure 7c that the highest
net energy consumption occurs at 6:00 p.m., owing to a significant charging of the ESS and EV. It is
noted that this large amount of the net energy consumption is not observed in previous cases. This is
because in these cases the EV has a high initial SOE so that it does not have to charge energy from grid
in advance. Except the time slot at 6:00 p.m., the schedules of the net energy consumption at other
time slots are similar to the schedules in Case 1.
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Figure 7. Performance comparison between Case 1 and Case 4. (a) SOE of the ESS; (b) SOE of the EV;
(c) net consumption of household.
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Figure 8 shows a relative increase of the total electricity bill for the aforementioned Cases 1, 2,
and 4 with respect to Case 3 with the minimum total electricity bill using the following metric:

Xbill
n − Xbill

3

Xbill
3

× 100(%), (27)

where Xbill
3 is the total electricity bill for Case 3 and Xbill

n is the total electricity bill for Case n where
n =1, 2, and 4.
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Figure 8. Comparison of a relative increase of the total electricity bill in Case 3 among the considered
three cases.

Note in this figure that the relative total electricity bills for the three cases are listed in decreasing
order of their bills as follows: Case 2 > Case 4 > Case 1. Note in turn from this list that the relative
increase of the electricity bill in Case 1 (a sunny weekday with high SOEEV

ini ) is smaller than the other
two cases (a sunny or rainy weekday with high or low SOEEV

ini ). Thus, a fraction of the charging and
discharging periods of the EV constitutes the most influential aspect for saving on electricity bills.

Figure 9a,b show training curves that present the convergence of the total cost for the first and
second levels, respectively. Each figure compares the three training curves using policy gradient
method, actor–critic method with separate actor and critic neural networks (NNs), and proposed
actor–critic method with a common NN. We observe from Figure 9a,b that policy gradient and
actor–critic with separate NNs show a poor performance of the convergence. By contrast, the proposed
actor–critic shows that the training curves steadily decrease and then converge to an optimal policy
within a moderate training period.
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Figure 9. Convergence of the total cost. (a) Level 1; (b) Level 2.

Figure 10 compares the training curves for the level 1 and level 2 in the proposed DRL method
and the single-level DRL method. We can observe from this figure that each training curve for the
level 1 and level 2 in the proposed approach steadily decreases and converges to an optimal policy
in the training periods of [1, 1,000] and [1,001, 4,000], respectively. By contrast, the training curve for
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the single-level approach shows a large fluctuation during the training process and a poor value of
the result compared to the proposed two-level DRL method. The poor convergence performance of
the single-level approach derives from the fact that the complexity of the HEMS problem increases
dramatically as the state-action space dimension becomes larger in the single level. Furthermore, since
the agent for the EV and ESS is not able to obtain energy consumption data of other appliances in the
single level, the single-level approach may not calculate optimal charging and discharging actions of
the ESS and EV.
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Figure 10. Comparison of the total cost convergence between the proposed two-level DRL approach
and the single-level DRL approach.

Figure 11 shows a relative increase of the total electricity bill in Cases 1–4 using a Building Energy
Optimization Tool (BEopt) [36] and MILP optimization method with respect to the proposed approach.
BEopt is widely used as an energy simulation program for the residential building. To fairly compare
the performance of the proposed method to that of the MILP method, the MILP method was executed
for 24 h with a 1-h scheduling resolution. We can verify from this figure that our proposed method is
the most economical for all four cases compared to two existing approaches using BEopt and MILP
methods. In particular, it is observed that Case 3 (a sunny weekend with high SOEEV

ini ) shows the
largest cost increase. This observation implies that the proposed DRL approach schedules the charging
and discharging energy of EV in a much more cost-effective way.
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Figure 11. Comparison of a relative increase of the total electricity bill in the proposed DRL method
using building energy optimization tool (BEopt) and mixed-integer linear programming (MILP)
programs for four cases.

The meaningful observations of the proposed HEMS approach in the numerical examples can be
summarized as follows:
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• Through a comparison between {Case 1, Case 3, Case 4} (with PV system) and Case 2 (without PV
system), we conclude that PV generation has a significant impact on the reduction of the total cost
of electricity. For example, the total cost of electricity in Case 2 is 11% higher than in Case 1.

• Given that the battery capacity of the EV is approximately four times larger than that of the ESS,
the EV can discharge more power than the ESS to cover the total cost of electricity. This can be
verified through a comparison between {Case 1, Case 2} (in weekday) and Case 3 on weekends.
In contrast, different driving patterns associated with the initial SOE of the EV significantly
influence the total cost of electricity. We conclude from a comparison between Case 1 (with high
SOE) and Case 4 (with low SOE) that the total cost of electricity in Case 4 is 7% higher than in
Case 1. This is because the EV with low SOE needs to charge more power than with high SOE to
satisfy the consumer’s preferred SOE at departure time.

5. Conclusions

In this study, we propose a two-level distributed deep reinforcement learning algorithm to
minimize the cost of electricity through the energy consumption scheduling of two controllable home
appliances (an air conditioner and a washing machine) and the charging and discharging of an
energy storage system and an electric vehicle while maintaining the consumer’s comfort level and
appliance operation characteristics. In the proposed deep reinforcement learning method, two agents
interact with each other to schedule the optimal home energy consumption efficiently. One agent
for a washing machine and an air conditioner determines their continuous actions in the first level
to schedule optimal energy consumption within the consumer’s preferred indoor temperature and
operation period, respectively. Based on the optimal energy consumption schedules from the first
level, the other agent for an energy storage system and an electric vehicle conducts their continuous
charging and discharging actions in the second level to support the aggregated load for controllable
and uncontrollable appliances. The comparative case studies under different weather and driving
patterns of the electric vehicle with different initial state of energy confirm that the proposed approach
can successfully minimize the cost of electricity within the consumer’s preference.

In future work, we plan to develop a multi-agent reinforcement learning algorithm based on a
continuous action space that schedules the energy consumption of multiple smart homes with home
appliances and distributed energy resources. A key challenge is to design an information exchange
scheme between households to minimize the cost of electricity and maintain each consumer’s comfort
level. This future work can be implemented using advanced deep reinforcement learning methods
such as deep deterministic policy gradient and asynchronous advantage actor–critic methods.
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