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Recently, the realization of artificial sen-
sory systems mimicking the biological per-
ception has been intensively pursued for 
the next generation neuromorphic elec-
tronics and humanoid robots. Particularly, 
an artificial somatosensory system which 
can emulate the functions of the biological 
skin and body sensation is considered to 
have a great potential in achieving highly 
integrated and neuromorphic sensory 
network. The biological somatosensory 
system is a complex sensory network, 
which is composed of sensory neurons 
(receptors), neural pathways, and a part 
of the brain for the perception process. By 
the sensory receptors such as mechano-
receptors, thermoreceptors, and nocicep-
tors,[1–10] which are located on or beneath 
the skin, various environmental stimuli 
are detected and transmitted to the brain 
through the neural pathways. This enables 
the specific sensations such as strain, pres-
sure, temperature, and distortion (flexion/
bending) of the body. In realizing an arti-

ficial somatosensory system, however, the integration of a large 
amount of sensory networks for the individual sensation still 
remains as a significant challenge, especially in the case of large-
area electronic skin (e-skin) devices. For example, it is reported 
that to realize an e-skin for robotics and prosthetic limbs, 
an estimated 45  000 mechanoreceptors are needed in about  
1.5 m2-area devices.[11] Additionally, the number of sensors 
could increase even further, considering the e-skins to have 
equivalent numbers of thermoreceptors and nociceptors in 
the system. Therefore, to fully mimic the biological skin per-
ception over a large-area, a large number of sensory systems 
with complicated multi-layer architectures would be required as 
well as a large amount of data associated with their perception 
processing.

In recent research, a new strategy to achieve artificially intel-
ligent perception has been introduced in chemical and gas 
detection systems by analyzing the different responses recog-
nized from many cross interferences.[12–18] These cross-reactive 
sensory systems, inspired by mammalian olfactory and gusta-
tory systems, can simultaneously detect and identify specific 
responses from a variety of non-specific vapor, liquid elements, 
and their combinations by analyzing the difference in sensing 
responses with pattern recognition and machine learning algo-
rithms.[19–27] Although these previous advances are noteworthy, 

Mimicking human skin sensation such as spontaneous multimodal per-
ception and identification/discrimination of intermixed stimuli is severely 
hindered by the difficulty of efficient integration of complex cutaneous 
receptor-emulating circuitry and the lack of an appropriate protocol to dis-
cern the intermixed signals. Here, a highly stretchable cross-reactive sensor 
matrix is demonstrated, which can detect, classify, and discriminate various 
intermixed tactile and thermal stimuli using a machine-learning approach. 
Particularly, the multimodal perception ability is achieved by utilizing a 
learning algorithm based on the bag-of-words (BoW) model, where, by 
learning and recognizing the stimulus-dependent 2D output image patterns, 
the discrimination of each stimulus in various multimodal stimuli environ-
ments is possible. In addition, the single sensor device integrated in the 
cross-reactive sensor matrix exhibits multimodal detection of strain, flexion, 
pressure, and temperature. It is hoped that his proof-of-concept device with 
machine-learning-based approach will provide a versatile route to simplify 
the electronic skin systems with reduced architecture complexity and adapt-
ability to various environments beyond the limitation of conventional “lock 
and key” approaches.
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it is still rather problematic to fully translate the cross-reactive 
system into artificially perceptive electronics at this initial 
stage, possibly due to the lack of facile device architectures 
and appropriate protocols. More importantly, since most of 
the current e-skin technologies are essentially based on “lock 
and key” approaches, the numeric data signals measured from 
the superposed stimuli could not be cross-operated with each 
other, leaving the difficulty of decoupling interference of inter-
mixed signals and of integrating cross interferences for rec-
ognizing the behavior of each stimulus.[28–32] To address these 
issues, in a previous work, a field-effect transistor composed 
of a piezo-pyroelectric gate dielectric and a piezo-thermoresis-
tive organic semiconductor channel was utilized, showing the 
simultaneous response to two stimuli of pressure (or strain) 
and temperature. However, this approach is only available for 
a limited range of deformability, resulting in a restricted range 
for practical applications.[33] Consequently, a new strategy 
capable of providing substantial advances for the state-of-the-
art e-skin technology is required for discriminating and clas-
sifying intermixed signals composed of known and unknown 
stimuli.

Here, we explore a highly stretchable cross-reactive sensor 
matrix with artificial perception technology to detect, classify, 
and discriminate various intermixed tactile and thermal stimuli 
based on machine learning. The 10 × 10 stretchable cross-
reactive sensor matrix is composed of cross-aligned highly 
stretchable electrodes and multimodal hybrid sensing elements 
sandwiched between the electrodes, exhibiting high sensitivi-
ties and fast responses to diverse stimuli such as strain, pres-
sure, flexion, and temperature with a cross-operated manner. 
Moreover, the multimodal perception is achieved by utilizing a 
machine learning algorithm, based on the bag-of-words (BoW) 
model, discriminating each stimulus by recognizing distinct 
2D image patterns generated by the intermixed tactile and 
thermal stimuli. This design strategy of cross-reactive sensor 
matrix allows the construction of distinctive areal pattern data, 
providing the basis for BoW-based machine learning process to 
identify each stimulus. Accordingly, with using such strategy, 
the discrimination of a specific or even unknown stimulus is 
possible by decoupling the intermingled tactile and thermal 
stimuli. The results reported here imply that the cross-reactive 
sensor matrix operated with machine learning algorithm would 
offer a facile route to realize high-performance and reliable arti-
ficial e-skin with marginal complexity and compatibility with 
large-scaled applications such as wearable health monitoring 
systems, electronic prosthetics, and smart robotics.
Figure 1a schematically illustrates the structure of cross-reac-

tive sensor device and a 10 × 10 array (see Experimental Section 
and Figure S1, Supporting Information, for detailed fabrication 
procedures). Cross-aligned highly stretchable silver nanowire-
coated polyurethane (AgNW/PU) fibers (electrical conductivity 
of ≈56.87 S cm−1) are placed with carbon black (CB)-dispersed 
poly(dimethylsiloxane) (C-PDMS) sandwiched between them as 
a multimodal sensing element. To maintain the device struc-
ture from the external stimuli such as strain, PDMS molding 
was carried out over the entire sensor matrix. The electrical con-
ductance of C-PDMS is designed to easily respond to various 
tactile and thermal stimuli, while that of the stretchable elec-
trodes (AgNW/PU) with pre-strained coating is almost insensi-

tive to these stimuli (Figure S2, Supporting Information). In 
the C-PDMS, CB nanoparticles are uniformly distributed in the 
PDMS matrix (Figure S3, Supporting Information). At initial 
state, without any stimulus applied, the sensor delivers a cur-
rent of ≈0.2 µA at 0.1  V (an average contact resistance of 100 
pixels is 51.43 kΩ ± 0.34, Figure S4, Supporting Information), and 
the conductivity tends to vary with the intensity of stimulus 
applied to the sensor (Figure  1b). As shown in Figure  1c, two 
main physical changes of CB nanoparticles are expected to 
occur in the C-PDMS matrix by the external stimuli. At first, 
when the sensor is deformed by stretching or bending, the 
transverse compressive force leads to the displacement of CB 
nanoparticles in the PDMS matrix, resulting in more intimate 
contacts between the CB nanoparticles and an increase of con-
ductive pathways within the matrix. When the intensity of the 
applied stimulus is increased, the thickness of C-PDMS is fur-
ther reduced, creating additional conductive pathways resulting 
in a large decrease in resistance. The cross-reactive sensor is 
also sensitive to temperature variation. Due to a large differ-
ence in the thermal expansion coefficients (CTEs) of CB nano-
particles (3–4 × 10−6 K−1) and the PDMS matrix (9 × 10−4 K−1), 
the distances between the CB nanoparticles are extended when 
the temperature is increased, causing an increase of resistance 
(Figure S5, Supporting Information). Since the cross-reactive 
sensor device is composed of all elastic substances, the vice 
versa characteristics are well reproduced in all cases.

Prior to the investigation on the cross-reactive sensing 
behavior in an array platform, the static and dynamic responses 
to various stimuli such as strain, pressure, flexion, and temper-
ature were evaluated as shown in Figure 2. Here, the sensing 
performance is characterized by measuring the relative change 
of current under different stimulus (Note S1, Supporting Infor-
mation). For the strain stimulus ranging from 0 to 40%, the 
sensor exhibits relatively high sensitivity (gauge factors (GFs) of 
81.2 and 28.5 in the strain ranges of 0–5% and 5–40%, respec-
tively) and good repeatability with a fast response time of less 
than 50 ms in all ranges. The different GFs in the two regions 
are attributed to the transition in the main conductive paths 
of CB nanoparticles corresponding to the stimulus intensity 
as described above, relating to Figure 1c (see also Figure S6,  
Supporting Information). In addition, the response of the 
sensor was reasonably stable without any noticeable degra-
dation during 4000 cyclic stretching and releasing test and 
dynamic cyclic test in diagonal direction indicating that the 
sensor has good durability (Figure S7, Supporting Informa-
tion). Figure  2c,d shows the static and dynamic responses to 
the  pressure with fast response and short relaxation times. 
The average response and relaxation time are around 100 and 
110 ms with minimum values of around 80 and 60 ms, respec-
tively (Figure S8, Supporting Information), which are compa-
rable to those of recent tactile sensors (Table S1, Supporting 
Information). We also evaluated the sensing behavior to flexion 
by varying the bending angle from 0° to 150° (Note S2, Sup-
porting Information). As shown in Figure 2e,f, the cross-reac-
tive sensor showed a significant change in current at angles 
between 60° to 90°.

Meanwhile, in smaller angle ranges, the devices show a 
small amount of current changes. It indicates that the change 
of small angle below 60° is still not enough to be precisely 
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detected. It is speculated that to improve the sensitivity to 
small angle flexion, more strain-sensitive materials along with 
the modification of sensor structure may be required for more 
diverse applications. Further to expand the scope of cross-reac-
tivity of the sensor, the response characteristics for thermal 
stimulus were also investigated. As shown in Figure  2g, the 
current decreases with the temperature, attributing to the 
large difference in the CTEs of PDMS and CB nanoparticles. 
The change of resistance with temperature exhibits a linear-
like relationship in the temperature range of 25–150 °C, corre-
sponding to a temperature coefficient resistance of 0.515 ppm 
K−1. Furthermore, to evaluate the dynamic response character-
istics for temperature, a temperature cycling test was carried 
out as shown in Figure 2h. The sensor showed a response time 
of ≈8.4 s which is relatively longer than those of carbon-based 
temperature sensors.[26,34] However, although the sensing 
response is relatively slow, the wider range of temperature 
sensing may extend its utilization in practical applications 
(Table S1, Supporting Information).

Due to the multimodal sensing capability of the cross-
reactive sensor device, the output signal typically contains 

information from various stimuli when exposed to a complex 
environment. For example, as shown in Figure S9, Supporting 
Information, the response to strain and pressure may change 
according to the ambient temperature. This conversely states 
that when an appropriate perception method is applied, it can 
be possible to determine both the temperature and strain (or 
pressure) simultaneously. Prior to applying a machine learning 
model for the artificial skin perception, we examined the spe-
cific response behavior to each stimulus to evaluate the fidelity 
of such model. To pose the stringencies on the quality of the 
information produced by the device, monolithically arrayed 2D 
architecture is implemented, and thereby, every node reacts 
to a specific stimulus, exhibiting corresponding areal-pattern 
and areal-gradation of output signals. Such a geometry and/or 
strength profile of output signals would thus provide unique 
opportunities to discriminate various stimuli applied to the 
device.

To characterize specific response behaviors, the ΔI/I0 values 
at each node of the cross-reactive sensor matrix were analyzed 
and spatially recorded across 100 node points (10 × 10 matrix). 
The cross-reactive sensor arrays exhibited different physical 
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Figure 1. The structure of cross-reactive sensor device/array and the sensing mechanism. a) The structure of a cross-reactive sensor unit and a  
10 × 10 sensor matrix. The sensor comprises of two cross-aligned stretchable silver nanowire (AgNW)-coated polyurethane (PU) fibers as top and 
bottom electrodes, carbon black (CB)-dispersed poly(dimethysiloxane) (C-PDMS) as a multimodal sensing element, and PDMS molding. b) A sche-
matic diagram of cross-reactive sensor unit and the array. c) The sensing mechanism of cross-reactive sensor unit. The thickness of C-PDMS and the 
displacement of CB nanoparticles in the PDMS matrix are varied according to the intensity of the stimuli.
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and structural sensing resolutions for the recognition of each 
stimulus in an array platform (Table S2, Supporting Informa-
tion). The physical resolution of the sensor array is supposed 

to be further enhanced by adopting more sensitive materials 
and increasing the density of sensors in the array. The sensor 
matrix is fully addressable and readable from external com-

Adv. Mater. 2020, 32, 2000969

Figure 2. Analysis of static and dynamic responses to individual stimulus. a) The relative change in current (ΔI/I0) as a function of strain in the range of 
0–40%. In the strain range of 0–5% and 5–40%, the corresponding gauge factors were 81.2 and 28.5, respectively. b) A dynamic response to strain cycles 
ranging from 0 to 30%. c) The relative change in current as a function of pressure in the range of 0–20 kPa. d) A dynamic response to pressure cycles 
ranging from 2.0 to 10 kPa. The inset shows the response time (≈100 ms) and the relaxation time (≈110 ms) from 0 to 4.5 and 10 kPa. e) The relative change 
in current as a function of flexion in the range of 0–150°. f) A dynamic response to flexion cycles ranging from 0 to 90°. g) The relative change in current as 
a function of temperature in the range of 0–150 °C (temperature coefficient of resistance of 0.515 ppm K−1). h) A dynamic response to temperature cycles 
ranging from 25 to 125 °C. The inset shows the rising time (≈8.4 s) from 25 to 125 °C.
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ponents, allowing the acquisition of the position-dependent 
data at a high rate. At first, single strain, pressure, flexion, or 
temperature stimulus was applied to the sensor matrix and its 
specific response was examined by 2D areal mapping, which 
is verified by comparing the experimental data with the theo-
retical data obtained from finite-element analyses (FEA) simu-
lation. The details for the numerical modeling are described 
in the Experimental Section and Note S3, Supporting Infor-
mation. As shown in Figure  3a, when a strain is applied 
along one axis, a gradual and wide-range increase of current 
was observed in the node points along the strained direction. 
Here, the gradation weight value (Wx,y), which is defined as 
the ratio of current increase between the adjacent nodes is 
defined by Equation (1):

/, [ 1, ] [ , ] [ , ]W I I Ix y n y n y n y)(= −+  (1)

where x and y are the row and the column number in the 
matrix, respectively. In the case of strain applied to the upper 
part of the matrix, the gradation values were observed 3%, 
5%, and 7% for regions I, II, and III (Figure  3c), respectively 
in overall device (Figure  3b–d; Figure S10, Supporting Infor-
mation). On the other hand, when applying a flexion force, 
an abrupt increase of ΔI/I0 and gradation value were observed 
(0%, 0.65%, and >104% for angles of 30°, 60°, and 90°, respec-
tively), exhibiting a narrow and large gradation region only near 
the flexion axis (Figure 3e–h). Similarly, for a pressure, a sharp 
increase of ΔI/I0 was exhibited on the pressed area as well as 
their corresponding pressure gradation distributions, as like an 
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Figure 3. Analysis of specific response behaviors to tactile and thermal stimuli. a) A photograph of 30% stretched cross-reactive sensor matrix. b,c) Cor-
responding 2D strain distribution data from simulation by finite-element analysis (FEA) (b) and experimental measurement (c). The gradation values 
were 3%, 5%, and 7% for regions I, II, and III, respectively. e) A photograph of 150°-bent cross-reactive sensor matrix (flexion). f,g) Corresponding 
2D flexion distribution data from simulation by FEA (f) and experimental measurement (g). The gradation values were 0%, 0.65%, and >104% for 
angles of 30°, 60° and 90°, respectively. i) A cross-reactive sensor matrix with two objects having weights (3 and 4 kPa). j,k) Corresponding pressure 
distribution data from simulation by FEA (j) and experimental measurement (k). The gradation values were 2 × 103% and 4 × 104% for 3 and 4 kPa, 
respectively. m) A photograph of cross-reactive sensor matrix with a heat stick. n,o) Corresponding temperature distribution data from simulation by 
FEA (n) and experimental measurement (o). The gradation values −2.71%. d,h,l,p) Schematic diagrams of corresponding 2D spatial data for strain, 
flexion, pressure, and temperature, respectively.
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island-like geometry, which corresponds to the weight and the 
pressed area (Figure 3i–l). In addition, the gradation values of 
2 × 103% and 4 × 104% were exhibited for 3 and 4 kPa respec-
tively. In addition to the tactile deformations, for the tempera-
ture sensing, the spatial and gradient distributions of ΔI/I0 are 
measured with a heating stick placed ≈5 mm above the sensor 
surface (Figure 3m), to avoid any intermixing with other stimuli 
such as pressure. As shown in Figure 3n–p, the sensor matrix 
showed a radial-shaped gradation distribution which increased 
outward from the central point contrary to those of the pres-
sure stimulus. The gradation value at the heated area depends 
on the temperature such that 0%, −1.92%, and −2.71% for 25, 
100, and 125  °C, respectively. Consequently, the experimental 
and simulation results indicate that the strain affects the whole 
array region with rather low gradation values, while the pres-
sure and flexion affect only localized regions with high grada-
tion values. Especially, it might be discriminated from the two 
stimuli of pressure and flexion because the gradation produced 
by flexion is higher than that by the pressure. Moreover, the 
response behavior of thermal stimulus shows a negative radial 
gradation conversely compared to the other tactile stimuli. 
Therefore, the discrimination of temperature stimulus from 

other tactile stimuli can obviously be available. According to 
the results above, it is supposed that the multimodal perception 
of the cross-reactive sensor matrix would be achieved by recog-
nizing distinct responsive behaviors based on the areal distribu-
tions of ΔI/I0 or the gradation values acquired from different 
stimuli.

Aforementioned, the cross-reactive sensor matrix would be 
capable of detecting multiple stimuli, simultaneously. More-
over, since the ΔI/I0 data obtained from the 100 node points can 
be considered as a 10 × 10 pixel image, containing the informa-
tion of intermixed stimuli, it is possible to use the conventional 
image analysis methods in analyzing the data. For discrimi-
native detection of superposed stimuli, we first evaluated the 
feasibility of using the edge-detection algorithm (EDA) method 
as shown in Figure 4. The EDA process has been often used 
to find spatial behaviors such as boundary (edge) detection of 
data array in neural network and image processing fields.[35] 
Thus, we suggested that since the cross-reactive sensor matrix 
exhibits unique spatial behaviors for each stimulus, the EDA 
could be utilized to distinguish and isolate the specific signals 
by using the boundary recognition (edge detection). Here, the 
Sobel EDA with two 3 × 3 convolution masks was used, which 
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Figure 4. The edge-detection algorithm (EDA) process for multimodal and discriminable skin perception. Schematics showing the discrimination 
procedure using the EDA method for intermixed stimuli. For the discrimination of intermixed stimuli, a Sobel mask, gradient, binary, singularity, and 
discrimination for large and small stimuli were carried out.
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are superposed with the sensing data array to calculate approxi-
mations of the derivatives; one mask (X filter) identifies the 
horizontal gradation and the other mask (Y filter) identifies 
the vertical gradation. To calculate a gradation value for a spe-
cific pixel with its vicinity 8 pixels (G, gradient magnitude), the 
convolution operation mask M is convolved with a matrix A, 
where M and A are defined as a 3 × 3 convolution mask and 
as an original source data (intermixed data of stimuli α and β),  
respectively. As a result, Gx and Gy are two reproduced data 
which contain the horizontally and vertically orientated gra-
dation, respectively. Here, G denotes the criterion value for 
defining the specific stimulus, which has been obtained from 
the experimental data for individual stimulus. Moreover, binary 
matrix B (8 × 8) made by G values is combined with original 
source data A. The detailed procedures for obtaining the G 
values and the Sobel masking process are described in Note S4, 
Supporting Information.

To validate the simultaneous detection of various intermixed 
stimuli using the cross-reactive sensor matrix and the EDA pro-
cess, we examined the response behaviors to several intermixed 
stimuli such as strain/pressure, pressure/flexion, flexion/
strain, temperature/pressure, and strain/pressure/flexion com-
binations (Figure  5; Figure S11, Supporting Information). For 
the criterion of our results, the G values are 8–10 for the strain 
range from 0% to 40%, 7.5 for the temperature (RT ≈  120 °C), 
>4000 for the flexion (>90°), and >250 for the pressure 
(0–15  kPa). Figure  5 shows that the discrimination and isola-
tion of each tactile stimulus from the intermixed stimuli could 
be achieved by comparing both the G values and their specific 
distribution patterns as well as the gradient polarity (negative 
for temperature stimulus). To verify the method, we performed 
the decoupling process and then extracted the specific stim-
ulus signal from various superposed stimuli signals (Figure 5; 
Figures S12 and S13, Supporting Information). As shown in 
Figure  5a, the superposed stimuli including strain (20%) and 
pressure (3 and 4 kPa) were applied to the sensor matrix and the 
discrimination process of each stimulus was carried out. First, 
the pressure data were isolated by extracting the large gradient 
data in the pressed areas and then the strain data were discrimi-
nated which have similar gradation values with adjacent nodes. 
The result indicates that discrete strain and pressure informa-
tion can be clearly isolated using the EDA method (Figure 5a). 
In addition, in order to verify the result, the discriminated 
data were compared with the simulation data, as shown in 
Figures S12 and S13, Supporting Information showing the com-
parison for strain/pressure and pressure/temperature intermixed  
stimuli, respectively. For both cases, the accuracy has been 
tested for five times in ten devices by comparing all same posi-
tion pixels of measured data with simulated data, showing that 
the accuracies were >95% and >94% with the every standard 
average deviation of 11.76 for the experiment and the simulated 
data respectively. The accuracy described here is calculated as  
the average of difference in all same coordinate pixels by com-
paring the data from the discriminated strain mapping and 
the single strain mapping data. Also, an intermixed signal of 
pressure (3  kPa) and flexion (>150°) was also examined using 
the identical procedure. The flexion was first discriminated by 
extracting the abruptly changed linear data and subsequently 
the remaining data was extracted which represents the pres-

sure applied to the sensor matrix, as shown in Figure  5b. 
For the flexion (>150°) and strain (20%) intermixed stimuli 
(Figure 5c), the flexion data not only can be extracted but also 
the distribution of strain can be identified using the identical 
process. In addition, to investigate the discriminability about 
the temperature (≈100  °C) and pressure (3  kPa) intermixed 
stimuli, two vials filled with hot and cold water were placed 
on the sensor matrix and then the pressure and temperature 
stimuli and their corresponding distributions were discrimi-
nated and identified, respectively, as shown in Figure  5d. The 
EDA method can be also applied for more complex intermixed 
stimuli comprising strain (20%), pressure (3 kPa), and flexion 
(over 150°). As shown in Figure 5e, by extracting the signals in 
the order of pressure, flexion, and strain, a clear mapping and 
identification of each stimulus was achieved, validating that the 
EDA-based process is an effective approach for discriminating 
the intermixed tactile and temperature stimuli using the cross-
reactive sensor matrix. In some special cases, when the posi-
tions and the shapes of the intermixed stimuli are exactly the 
same (cf. pressure/flexion in lines at the same position), the 
discrimination would be difficult. However, we expect that these 
limitations can be resolved by increasing the spatial resolution 
of the sensor array, such as 100 × 100 pixel arrays.

Although the EDA method can carry out the multimodal 
sensation and discrimination of the intermixed stimuli, there 
still remain limitations such as identifying unknown stimuli 
and intentionally setting the thresholds for the gradient values. 
Therefore, in this perspective, more reliable and self-adaptable 
learning-based method for discrimination and identification 
of intermixed stimuli is definitely required. Among various 
machine learning algorithms developed for the categoriza-
tion and pattern recognition of image data, we adopted the 
BoW model which is typically used in image categorization 
process.[36] Figure 6 shows the process flow of discriminating 
the intermixed stimuli using the BoW-based machine learning 
algorithm. In the case of typical machine learning, the training 
is implemented by the data based on 1D matrix. However, in 
this study, we converted the ΔI/I0 data into an image of 8-bit 
grayscale (in the range of values from 0 to 255) using the data 
trained in the 10 × 10 matrix of cross-reactive sensor. For this 
process, the maximum values of the strain, pressure, flexion, 
temperature, and the intermixed data were normalized to 255, 
while the minimum values were set to 0 (the minimum current 
without the stimulation). As shown in Figure S14, Supporting 
Information, the results indicated that the stimuli applied to the 
cross-reactive sensor matrix could be converted into grayscale 
images.[37] For the training process, a total of 360 converted 
data sets are used and 240 data sets are used for the verifica-
tion of the algorithm. For the single stimulus, 50 data sets were 
prepared for each. In detail, the setting data are 0% to 40%, 0 
to 15  kPa with two square shapes, with randomly distributed 
horizontal or vertical line over a threshold angle, RT to 150 °C 
with an interval of 2 or 3  °C for strain, pressure, flexion, and 
temperature, respectively. Also, for the intermixed stimuli, 100 
different data sets were prepared for strain/pressure,  pressure/
temperature, strain/temperature, and strain/pressure/tempera-
ture combinations.

As shown in Figure S15, Supporting Information, to clas-
sify the images, key-points are extracted from the image using 
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the speeded-up robust features (SURF) algorithm.[38] Then, 
through the K-mean clustering, any duplicated or weak key-
points are removed. Afterward, based on the representative key-
points, a codebook is created. Finally, using the codebook and 
the support-vector-machine (SVM) model, the encoded training 
images are fitted to feature vectors. After the training is com-
pleted, when a new input data set is inserted, the key features 
of the image are extracted and identified which stimulus cat-

egory vector is similar to the extracted key-features as shown in 
Figure S16, Supporting Information. Finally, an answer is given 
for the input data set. Figure S17, Supporting Information, 
shows the accuracy of identifying single and intermixed stimuli 
for the training and verification data sets. For the training data 
sets, the accuracies for identifying strain, pressure, flexion, and 
temperature were 98%, 96%, 90%, and 100%, respectively. For 
the verification data sets, the accuracies for identifying strain, 
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Figure 5. Discrimination of intermixed stimuli using the EDA method. Discrimination of various intermixed stimuli using the EDA method. a) Strain 
(20%)/pressure (3 and 4 kPa), b) pressure (3 and 4 kPa)/flexion (>150°), c) flexion (>150°)/strain (20%), d) temperature (100 °C)/pressure (3 and 
4 kPa), and e) strain (20%)/pressure (3 and 4 kPa)/flexion (>150°) combinations. Using the gradient values and their specific distribution patterns and 
the gradient polarity, each tactile or thermal stimulus was discriminated from the intermixed stimuli.
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pressure, flexion, and temperature were 97%, 98%, 90%, and 
95%, respectively. In addition, for the cases of unknown inter-
mixed stimuli of strain/temperature, pressure/temperature, 
and strain/pressure/temperature, the accuracies of identifica-
tion were 93%, 94%, and 92% which is similar to that for the 
known single and intermixed stimuli (Note S5, Supporting 
Information). Overall, we first mimicked the multimodal skin 
perception that simultaneously detects and discriminates var-
ious stimuli using the cross-reactive sensor matrix and the 
machine learning algorithm. By adopting the BoW model-
based learning algorithm to discriminate and identify the single 
and intermixed stimuli, accuracies over 90% were successfully 
achieved even with relatively small number of training process 
(360 sets). We believe that the machine learning-based algo-
rithm can be extended to other superposed stimuli and also 
one-shot learning of unidentified stimuli, replicating the func-
tions of biological skin perception.

The results reported here argue that the combination of a 
stretchable cross-reactive sensor matrix with machine learning 
algorithm can be a general route to realize high-performance 
and multimodal perception e-skin with marginal complexity, 
offering the compatibility with large-scaled applications such 
as smart health monitoring systems, perceptive electronic pros-
thetics, and smart robotics. Furthermore, by implementing a 
more delicate device architecture and design for various sen-
sations, the strategy might allow the accuracy and sensing 
properties to be fine-tuned and become particularly vital when 
meeting application-specific needs such as biologically mim-
icking perceptive electronics.

Experimental Section
Fabrication of AgNW-Coated PU Fiber Electrodes and C-PDMS 

Composites: For the fabrication of fiber-type electrode, a PU fiber with 
an average diameter of 400  µm was treated with UV/ozone for 5  min 
to form hydrophilic surface. On the PU fiber, AgNWs (average length of 
15 µm, average diameter of 30 nm, 1% isopropyl alcohol dispersion, Ditto 
Technology Co.) were coated by using the dip-coating method. Prior to 
the dip coating process, the PU fiber was first pre-strained for 30% to 
enhance the mechanical stability (Figures S18 and S19, Supporting 
Information). Then, the AgNW-coated PU fiber was annealed at 100 °C 
for 10 min in an oven. This process was repeated for five times, giving 
an optimized thickness and conductivity with an electrical conductivity 
of 56.87 S cm−1. The C-PDMS composite was prepared by mixing 
CB nanoparticles (particle size <  500  nm, Sigma Aldrich) and PDMS 
(Sylgard 184, Dow Corning). For PDMS, the ratio of base to curing agent 
was 10:1 in weight. To uniformly disperse the CB nanoparticles in PDMS 
matrix, the CB was first diluted in toluene, followed by a sonication for 
1 h. The PDMS base materials were also diluted in toluene (a weight 
ratio of 1:1) and stirred for 2 h. Subsequently, both solutions were 
mixed together and the curing agent for PDMS was added and stirred 
at 80 °C for 12 h to fully evaporate the toluene. As shown in Figure S20, 
Supporting Information, the sensing characteristics were dependent on 
the CB content. 30 wt% of CB, which showed the highest sensitivity and 
stability against strain and pressure was used in this work. The electric 
conductivity of C-PDMS was 7.54 S m−1 which is comparable with 
previously reported PDMS-based conductive composites.[39,40]

Fabrication of Fiber-Based Sensor Unit and 10 × 10 Matrix: On a carrier 
glass substrate, the PDMS solution was coated by spin coating. For 
PDMS, the ratio of base and curing agent was 10:1. Then, a soft-baking 
at 70  °C for 10  min was followed to form a viscose and sticky film. 
Next, to fabricate the sensor matrix with orthogonally aligned fibers, an 
AgNW-coated PU fiber (bottom electrode) was positioned on the soft-
baked PDMS substrate. Subsequently, ≈1.25 µL of C-PDMS solution was 
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Figure 6. Discrimination of intermixed stimuli using the bag-of-words (BoW) algorithm. 2D current mapping data of single and intermixed stimuli are 
used for the training. The 2D current mapping data were generated by using the FEA. The key features are extracted from the image through the SURF 
algorithm. Afterward, K-mean clustering is performed on all of the key features extracted from the plurality of images to remove duplicate or weak 
key-points. Then, when a new image is input, the feature points of the image are extracted and the closest feature vector corresponding to each of the 
extracted key features in the codebook and the SVM is found and classified by applying the category of the feature vector.
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dropped on the bottom electrode. Finally, another AgNW-coated PU 
fiber (top electrode) was placed on the C-PDMS. Finally, PDMS molding 
was carried out to firmly hold the sensor structure and to prevent the 
delamination of AgNWs from the PU fibers.

Finite Element Analysis: To investigate the sensing characteristics 
of the fiber-based stretchable sensor matrix and their relevant 
mechanisms, a numerical stress/strain analysis using FEA (COMSOL 
Multiphysics 5.3) was carried out. A hexahedron PDMS with PU fiber 
was designed in the actual array size (50 mm [width] × 50 mm [length] ×  
1  mm [height]). The designed model and the material parameters 
used for the simulation are listed in Tables S3 and S4, Supporting 
Information.

Analyses of Strain and Pressure Sensing Characteristics: The electrical 
conductivity of AgNW-coated PU fiber and C-PDMS was measured 
by using a resistance-meter and 4 point-probe measurement system, 
respectively. The relative change in current was measured by 
using a semiconductor parameter analyzer (Agilent 4156C, Agilent 
Technologies). The response and relaxation time to each stimulus 
(strain, pressure, flexion, or temperature) were determined as the 
minimum time from initial state to target stimulus value using the 
cyclic loading measurement data. For the dynamic measurement of  
the sensor matrix, a measuring system comprising a switch mainframe 
(Keithley 3706A), a dual channel sourcemeter (Keithley 2636B), and 
a high-speed reed relay MUX card was used, connected to a data 
acquisition system (DAQ; SnM). Using this measurement system, 
the acquisition of matrix data from the sensor matrix is possible by 
sequentially reading the current from each sensor unit (Figure S21, 
Supporting Information).

Data Preparation and Process for BoW Machine Learning: BoW model 
is one of the methods for automatically classifying documents based 
on text. To apply the BoW image classification for the discrimination 
of intermixed stimuli, image pixel data were generated by normalizing 
the 10 × 10 matrix current data to 8-bit unsigned bits. In order to 
apply the generated image pixel data to the BoW model, key features 
were extracted from the image through the SURF algorithm. After that,  
K-mean clustering was performed on all of the key features extracted 
from the plurality of images to remove duplicate or weak key-points. 
Then, when a new image was input, the feature points of the image 
were extracted, and the closest feature vector corresponding to each 
of the extracted key features in the codebook and the SVM was found 
and classified by applying the category of the feature vector. Experiments 
were conducted using Matlab R2019a (MathWorks). Also, Statistics and 
Machine Learning Toolbox and Computer Vision Toolbox were used to 
carry out the SURF algorithm, K-mean clustering, SVM, and BoW. In 
this case, for the training sets for machine learning, physical simulation 
data were used, and for the verifying sets, both simulation data and 
experimental data were used. The reason to use simulation data for the 
training sets was to emulate a variety of combinations of intermixed 
stimuli with larger numbers. However, since the simulation data were 
obtained using a physical simulation tool, it was expected that the data 
were very close to the real data sets.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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