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ABSTRACT Image inhomogeneity often occurs in real-world images and may present considerable
difficulties during image segmentation. Therefore, this paper presents a new approach for the segmentation of
inhomogeneous images. The proposed hybrid active contour model is formulated by combining the statistical
information of both the local and global region-based energy fitting models. The inclusion of the local
region-based energy fitting model assists in extracting the inhomogeneous intensity regions, whereas the
curve evolution over the homogeneous regions is accelerated by including the global region-based model in
the proposed method. Both the local and global region-based energy functions in the proposed model drag
contours toward the accurate object boundaries with precision. Each of the local and global region-based
parts are parameterized with weight coefficients, based on image complexity, to modulate two parts. The
proposed hybrid model is strongly capable of detecting region of interests (ROIs) in the presence of complex
object boundaries and noise, as its local region-based part comprises bias field. Moreover, the proposed
method includes a new bias field (NBF) initialization and eliminates the dependence over the initial contour
position. Experimental results on synthetic and real-world images, produced by the proposed model, and
comparative analysis with previous state-of-the-art methods confirm its superior performance in terms of
both time efficiency and segmentation accuracy.

INDEX TERMS Active contours, bias field, image segmentation, intensity inhomogeneity, level set.

I. INTRODUCTION
Image segmentation continues to be one of the basic and cru-
cial problems in image processing and computer vision [1].
Object detection, object recognition, and image analysis are
among the applications of image segmentation [2]–[4]. The
purpose of image segmentation is to distinguish between
the objects of interest and the background in an image. The
object or region of interest is classified based on certain
characteristics such as intensity, texture, or color [5]. There
are certain factors that may affect the segmentation process,
e.g., noise, low contrast, and sudden intensity variations. This
sudden intensity variation is termed as image inhomogeneity

The associate editor coordinating the review of this manuscript and
approving it for publication was Jun Wang.

and is most likely to occur in real-world images. Image
inhomogeneity mostly occurs due to the spatial variations
caused by the defects in the imaging devices or modalities.
Fig. 1 represents examples of homogeneous, and inhomoge-
neous images.

Different algorithms have been proposed based on the seg-
mentation applications and image types [3]. There are three
different types of image segmentationmethods: thresholding-
based, supervised-based, and unsupervised-based methods.
Deep learning-based image segmentation methods belong to
the supervised method category, and require large resources
and datasets as compared to other methods [47]. Active con-
tour model (ACM) is one of the most popularly used unsu-
pervised segmentation methods over the last two decades.
It was originally proposed by Kass et al. as an effective
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FIGURE 1. Example images: a. Homogeneous image, b. Inhomogeneous
image.

method to obtain smooth closed boundaries around the object
of interest [6]. Since then, active contours are being used
in the area of image segmentation. The working principle
of ACM is to evolve a planar curve, defined by the level
set function termed as snake, under two main constraints:
external and internal energies. Both the external and inter-
nal energies evolve under partial differential equations and
become zero at the object boundaries [7]. The ACM energy
formulation depends on the image type and, therefore, can
be classified into two different types: Edge-based ACMs
[8]–[13] and Region-based ACMs [14]–[30].

Edge-based ACMs adopt image gradient data which are
used to form a balloon force. This balloon force pulls the
internal and external energies to the object boundaries, pro-
ducing segmentation results. Though the edge-based mod-
els are very strong in terms of detecting distinct objects,
they are exceptionally delicate to noise interference and
fail to capture weak or blurred edges in images. On the
contrary, region-based ACMs adopt statistical information
from inside and outside the contour and perform accu-
rate segmentation over fuzzy regions as well. In classic
region-based methods, it is assumed that the region-of-
interest (ROI) comprises only homogeneous intensities,
which renders them incapable of capturing obscure image
boundaries.

Region-based methods are further classified into two cat-
egories: local region-based (LR) [16]–[20], [39]–[40] and
global region-based (GR) methods [14], [15], [25]. The most
classic global region-based method, which is based on the
Mumford-Shah (M-S)model [31], was proposed by Chan and
Vese by transforming the minimization problem into a mean-
curvature-flow problem [25]. It can segment homogeneous
images; however, it fails to effectively capture the ROIs in
inhomogeneous images. To resolve this poor performance
problem over inhomogeneous images, Li et al. proposed the
Local Binary Fitting (LBF) model [14], [43], which uti-
lizes the local image information. Though this method yields
satisfactory results for the segmentation of inhomogeneous
images, it heavily depends on the initial contour position.
Carrying on this local image information idea, Zhang et al.
proposed the Local Image Fitting (LIF) model to map the
input image domain, by using a sliding window method,
to another domain [20]. In the LIF method, Gaussian kernel
is used to keep the level set regularized during evolutions.

Although GR methods are generally preferred over
LR methods for their robustness, they cannot extract
accurate local statistical information from inhomogeneous
images [14]–[20], [25]. Therefore, ACMs consisting of mul-
tiple object features provide a better segmentation accuracy
than either LR or GR alone in images with intensity varia-
tions [32]. Intensity inhomogeneity in images is assumed by
the estimation of bias field. Bias field is the region responsible
for intensity inhomogeneities in images; various techniques
have been proposed to estimate the bias field [33]–[38].
Zhang et al. in [34], [35] presented their LR models to seg-
ment the inhomogeneous images by estimating the bias field.
In [34] a variational level set bias correction (VLSBC) model
was presented for the simultaneous segmentation and bias
field estimation of inhomogeneous images. The limitation
of this model is its dependence on the position of the initial
contour.

Fig. 2 shows the segmentation result of awhite-background
image with an inhomogeneous object. It can be deduced
from this figure that the LR methods are capable of handling
inhomogeneous images more effectively as compared to the
GR methods.

This research aims to contribute to the unsupervised meth-
ods literature in the ACMs category. of the image segmen-
tation methods. The main contributions of our research are
summarized as:

• Based on the LR and GR model analysis, this study
presents a hybrid active contour model comprising both
the LR and GR features to confine the contours to the
exact object boundaries.

• The inclusion of LR ACM features assists the contour to
capture the inhomogeneous ROIs, while the GR ACM
features accelerate the robust contour evolution over the
homogeneous regions.

• The LR method, in the proposed model, is incorporated
with the bias field to enhance the segmentation accuracy
over the inhomogeneous regions making it robust to
noise.

• Each of the LR and GR parts are parametrized with
weights, based on the image complexity, to modulate the
two parts. This modulation contributes to parametrize
the statistical information of both the LR and GR parts.

• The proposed method, includes a new bias field (NBF)
initializationmaking the proposedmodel independent of
the initial contour position.

After the implementation of the proposed hybrid active
contour model, we performed contour evolution over syn-
thetic and real images. Experimental results and analysis
confirm the efficiency of the proposed method over state-of-
the-art methods in comparison.

The remaining sections of this paper are categorized as
follows. Section II covers the related works, and Section III
describes the proposed methodology. Section IV presents the
results of the proposed method in comparison to previous
methods. Section V describes the segmentation accuracy
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FIGURE 2. Segmentation of images with white background and intensity of an inhomogeneous object: a. C-V method, b. LBF method, and
c. LIF method.

using the Noise Sensitivity Evaluation method and quanti-
tative comparison. Section VI presents Discussion. Finally,
the concluding statements are summarized in Section VII.

II. RELATED WORKS
A. MUMFORD-SHAH (M-S) MODEL
TheMumford-Shah (M-S) model [31] is the most famous and
basic region-based image segmentation method; it restricts
the energy function to an optimal approximation function u(x)
which changes smoothly within a sub region of the given
image I (x).
Let I (x) : � → R be a given gray level image with a

domain of definition � and u(x) the image’s model: the M-S
functional is defined as

FMS (I ,C) = λ
∫
�

(I (x)− u(x))2dx

+ v
∫
�\C

(∇u(x))2dx + µ
∫
�

Length(C), (1)

where µ and v are related coefficients with positive values; C
is a closed set made up of singular points joined by smooth
arcs meeting only at end points. Length(C) is the total length
of the curve making contour C . The M-S functional was
proposed to establish an optimal criterion for segmenting an
image into sub-regions.

The M-S model shows non-regularity of the edge term and
non-convex performance, creating trouble through energy
minimization process.

B. CHAN-VESE (CV) MODEL
The C-V model [25] is based on the Mumford-Shah func-
tional [31] and was proposed by Chan and Vese to detect
objects in a given image. The C-V model is based on the
curve evolution technique of ACMs. This model assumes
that the image consists of homogeneous intensity regions. Let
� ⊂ R2 be the image domain, and I (x) : �→ R2 is the given
gray level image with pixel x, given that C : [0, 1] → R2

be a closed, arbitrary curve. This curve C divides the image
into two non-overlapping regions: the inside region Cin and
the outside region Cout . The external energy function of C-V

model is proposed as:

FCV (C, a1, a2)

= λ1

∫
outside(C)

|I (x)− a1|2Hε(φ(x))dx

+ λ2

∫
inside(C)

|I (x)− a2|2(1− Hε(φ(x)))dx

+µ

∫
�

|∇Hε(φ(x))|2dx + v
∫
�

Hε(φ(x))dx, (2)

where outside(C) and inside(C) are the regions outside and
inside the contour C, respectively. a1 and a2 are two constants
to approximate the average of the inner and outer region
intensities, respectively. λ1, λ2, andµ are three constants with
values≥ 0, whereas ε represents a correspondent coefficient.
Hε stands for the Heaviside function, defined as

Hε(φ(x)) =
1
2

(
1+

2
π
arctan

(
φ

ε

))
. (3)

a1 and a2 are equal to

a1=

∫
�
I (x)Hε(φ(x))dx∫
�
Hε(φ(x))

, a2 =

∫
�
I (x)(1−Hε(φ(x)))dx∫
�
(1− Hε(φ(x)))

.

(4)

Keeping a1 and a2 fixed, (2) is minimized using the gradient
descent algorithm [42] as
∂φ

∂t
= −λ1δε(φ)(I − a1)2 + λ2δε(φ)(I − a2)2

+µδε(φ)div
(
∇φ

|∇φ|

)
− vδε(φ), (5)

where δε(x) is the Dirac delta function, defined as

δε(φ) =
ε

π (φ2 + ε2)
(6)

The width of the δε(x) function is controlled by the parameter
ε in (2). The C-V model is a powerful method to segment
many types of images which are quite difficult to seg-
ment using gradient based or thresholding techniques. This
model works under the assumption that the input image has
homogeneous intensities, therefore, the model works well on
homogeneous images. However, for inhomogeneous images,
it leads to a poor performance.
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C. LOCAL BINARY FITTING (LBF) MODEL
Huang and Zeng [14], [43] presented their Local Binary Fit-
ting (LBF) model by embedding local image information to
deal with intensity inhomogeneous images. The core idea of
LBF is to define its energy function by introducing aGaussian
kernel function.

Kσ (x − y) =
1

(2π )

n
2 σ n

exp
−

|x − y|2

2σ 2 (7)

stands for a Gaussian kernel (window function); its standard
deviation, to balance localization, is represented by σ . The
LBF energy function is defined as

FLBF (C, f1, f2)

= λ1

∫
�

Kσ (x − y)|I (y)− f1(x)|2Hε(φ(y))dy

+ λ2

∫
�

Kσ (x − y)|I (y)− f2(x)|2(1− Hε(φ(y)))dy

+µ

∫
�

1
2
(∇φ(x)− 1)2dx + v

∫
�

δε(φ(x)|∇φ(x)|dx,

(8)

where λ1 and λ2 are the scaling coefficients with values ≥ 0.
Hε(φ) and δε(φ(x) are the Heaviside function and Dirac delta
function as defined by (3) and (6). The inclusion of Kσ scans
an image’s local intensity statistical information within both
sides of the curve C ; it assists the LBF model to capture the
inhomogeneous ROIs.

f1(x) =
Kσ ∗ [Hε(φ)I (x)]
Kσ ∗ Hε(φ)

(9)

and

f2(x) =
Kσ ∗ [(1− Hε(φ))I (x)]
Kσ ∗ (1− Hε(φ))

(10)

represent the local intensity means inside and outside the
curve C , respectively, and are computed as local neighbor-
hood. A stable outcome is guaranteed with the incorporation
of the distance regularization term from [44] into (8). The
LBF energy function from (8) is minimized as

∂φ

∂t
= −λ1δε(φ)

∫
�

Kσ (x − y)|I (x)− f1(y)|2dx

+ λ2δε(φ)
∫
�

Kσ (x − y)|I (x)− f2(y)|2dx

+ vδεdiv
(
∇φ

|∇φ|

)
+ µ

(
∇φ − div

(
∇φ

|∇φ|

))
, (11)

where µ is a constant coefficient that serves to initiate the
curve movement towards the object boundaries. The draw-
back of this method is its potential vulnerability to stuck
in a local minima. Therefore, this dependence on the initial
contour position sometimes degrades the efficiency of the
LBF model.

D. LOCAL IMAGE FITTING (LIF) MODEL
Zhang et al. proposed the Local Image Fitting (LIF) model by
introducing LIF energy for the segmentation of images that
were affected by inhomogeneity [20]. The working principle
of this model is the calculation and minimization of the
distance between the fitted and original images as

FLIF =
1
2

∫
�

|I (x)− ILIF (x)|2dx (12)

ILIF in (12) is the local fitted image, defined as

ILIF (x) = f1(x)Hε(φ)+ f2(x)(1− Hε(φ)), (13)

where f1(x) and f2(x) are the local intensity means in the
given image defined in (9) and (10), respectively. Utilizing
the gradient descent algorithm from [42], (12) minimizes to

∂φ

∂t
= (I (x)− ILIF (x)) (f1(x)+ f2(x)) δε(φ), (14)

where f1(x) and f2(x) represent local intensity means defined
in (9) and (10), respectively. δε is the Dirac delta function
defined in (6). Although the LIF model is computationally
less complex than the LBF model, it produces almost the
similar segmentation results.

E. VARIATIONAL LEVEL SET WITH BIAS
CORRECTION (VLSBC) MODEL
Zhang et al. [34] proposed a variational level set with bias
correction (VLSBC) model for the detection and segmenta-
tion of corrupted imageswith inhomogeneous intensities. The
VLSBC model computes the bias field, which is responsi-
ble for the intensity inhomogeneity in an image, and keeps
the contour evolution smooth over the data term. A local
clustering criterion function, first, drives the local clustering
to capture the neighboring intensities around each point.
The VLSBC model depends on the retinex image model to
demonstrate images as I (x) = b(x)J (x)+n(x), where I (x) and
b(x) represent the original image and bias field, respectively.
J (x) is the true image, independent of intensity inhomogene-
ity, whereas n(x) is the additive noise in original image. The
true image, J (x), concept is mathematically visualized as

J (x) ≈ 6N
i=1miMi(φ), (15)

where mi represents the intensity means for distinct regions
ωi, and i = 1, 2, 3, . . . , i. The local clustering criterion func-
tion is based on the iterative k-means algorithm to minimize
the energy function,

E ≈
∫ (

6i=1

∫ N

�i
Kσ (x − y)|I (y)− b(x)mi|2dy

)
dx. (16)

The energy function is further minimized as

E=
∫ (

6i=1

∫ N

�i
Kσ (x−y)|I (y)−b(x)mi|2Mi(φ)dy

)
dx,

(17)
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where Mi is the membership function of the associated
regions with x ∈ {�i}

N
i=1. In (17), b(x) and the intensity

means, mi are defined as

b(x) = 6N
i=1

Kσ ∗ (I (x)miMi(φ))

Kσ ∗
(
m2
iMi(φ)

) (18)

mi =
∫

Kσ ∗ (I (x)b(x)Mi(φ))

Kσ ∗
(
b(x)2Mi(φ)

) (19)

VLSBC is a robust method for the segmentation of inhomo-
geneous images. However, it has limitation in terms of initial
contour dependence.

F. NEW BIAS FIELD (NBF) INITIALIZATION
The VLSBC model initializes the bias field from b(x) = 1
for x ∈ � in the first iteration. This initialization may cause
the zero-level set to be far away from the object boundaries
for next iterations, leading to false bias field estimation.
This incorrect bias field estimation may result in inaccurate
segmentation results. To overcome this shortcoming, Huang,
Ji, and Zhang formulated a new bias field initialization and
assumed that the bias field varies slowly within the image
domain, � [41]. The initialization of the new bias field is

b0 = Kσ

(
I
N0

)
.

N0 is the average of image intensities and Kσ is a Gaussian
kernel, responsible for the smooth contour evolution. The
restored image, J0, is expressed as

J0 =
I
b0
= N0(

I
Kσ ∗ I

) (20)

The new bias field initialization ensures the independence of
the following relation from the initial contour position

N0 ≈
1
2
(c1 + c2) (21)

Therefore, the new bias field initialization, b0, allows this
model to be independent of the contour initialization.

III. PROPOSED METHODOLOGY
For the segmentation of intensity inhomogeneous images,
the following energy function is proposed:

Fproposed = Fhybrid + vA(φ), (22)

where Fhybrid is a hybrid energy function that comprises
the global-based and local-based energy fitting models; this
function is defined later in the paper. A(φ) represents the area
term used to speed up the contour evolution process; v is a
positive coefficient to penalize the area term. The following
relation defines the area term:

A(φ) =
∫
Hε(φ) (23)

In (22), Fhybrid is an externally proposed incremental energy
function; it contributes to an accurate contour fitting in inho-
mogeneous images and reduces the time complexity of con-
tour evolution. Fhybrid is defined as:

Fhybrid (φ) =
∫
�

w
(1− w)

(I − IbLFI )dx

+

∫
�

w
(1− w)

((I − IGFI ))dx (24)

In (24), IbLFI and IGFI are the local and global fitted models,
respectively; both the models are defined as:

IbLFI = b(x)(m1M1 + m2M2), (25)

IGFI = a1M1 + a2M2, (26)

where m1 and m2 are the local intensity means whereas a1
and a2 are the global intensity means defined in VLSBC and,
CV respectively. M1 and M2 are the membership functions
with values

M1 = Hε(φ) (27)

and

M2 = (1− Hε(φ)), (28)

respectively.
The component b(x) represents the bias field, responsible

for the intensity variations in images. b(x) is incorporated
with the local fitted model to increase its performance while
segmenting the inhomogeneous regions.
w is a scaling parameter inspired from [47], w =

average(CN ).(1 − CN ); CN reflects how rapidly intensity
changes within the local window of size N , defined as CN =
Imax − Imin

Ig
. Both w and (1 − w) have values between 0

and 1. Imin, Imax are the minimum and the maximum of
intensity within that local window, respectively. Ig represents
the intensity level of image that is usually 255. The value of
w is based on the degree of image inhomogeneity, where a
higher value implies a higher degree of inhomogeneity and
vice versa.

Global energy fitting models are designed under a general
assumption that the images contain homogeneous intensities
only and, therefore, they are insufficient to capture the objects
of interest in inhomogeneous images. On the other hand,
though local energy fitting models can handle inhomoge-
neous images, they are complex in terms of time efficiency.
Therefore, both the models have their tradeoffs.

It is a general assumption that the intensity inhomogeneity
itself is a smoothly varying function that affects the image
intensities. The VLSBC [34] model assumes inhomogeneity
as multiplicative or additive in nature. Suppose I : � → R2

is an input image that is affected by intensity inhomogeneity;
J (x) is the true image, independent of inhomogeneity. For a
partition of the image domain, {�i}

N
i=1, J (x) takes N distinct

constant values c1, . . . , cN in disjoint regions �1, . . . , �N ,
respectively. The bias field, b(x), varies slowly and can be
approximated with a Gaussian distribution and additive noise,
n(x). This multiplicative estimation model is defined as:

I = b(x)J (x)+ n(x). (29)

If the additive noise is set to be 0, then the true image J (x)
can be obtained as:

J (x) =
I

b(x)
. (30)
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FIGURE 3. Graphical representation of the proposed model: a. original input image, b. bias field estimation, c: level set evolution, d. segmentation
result.

The image inhomogeneity degree can be modeled from (29)
as:

I = b6N
i=1miMi, (31)

where Mi represents the membership function associated to
each of the regions from {�i}

N
i=1. The bias field is dependent

on the initial position of the contour. Therefore, to make it
independent of the initial position, the new bias field initial-
ization is used from [41] as:

b0 = Kσ

(
I
N0

)
, (32)

where b0 represents the new bias field initialization, Kσ rep-
resents the Gaussian kernel, and N0 accounts for the average
of image intensities.

A curve C , defined as level set function φ, which is zero
phi = o at the object boundary divides image into two region:
inside and outside. According to the calculus of variation,
the gradient descent algorithm [42] parameterizes (1) as:(

w
1− w

)
b(x)δ(φ) (m1 + m2) (I (x)− ILIF )− vδ(φ)

+

(
w

1− w

)
δ(φ)(I (x)− IGFI ) (a1 + a2) , (33)

where a1, a2 and m1, m2 are acquired from (4) and (19),
respectively.

The visual representation of the proposed model is shown
in Fig. 3, which represents the local and global statistical
information utilization in the proposed model. The derived
near-optimal parameter settings are represented in Table 1.

The level set function of the proposed model is initialized
as

φt=0 =


−p, x ∈ �0 − ∂�0

0, x ∈ ∂�0

p, x ∈ �−�0.

(34)

In (34), p is a constant parameter,�0 is a subset of the image
domain �, and ∂�0 is the boundary of �0.

TABLE 1. Parameter settings.

Algorithm 1 Iterative Algorithm for the Proposed Model
Input: The original image I (x), and parameters from
Table 1.

1) Set the new bias field initialization with (32).
2) Initialize the level set function, φ from t = 0, with (34)
3) Iteration count from m = 0.
4) while contour evolution does not converge do
5) Compute mi, from (19).
5) Compute ai, from (4).
6) Update bias field b(x) using (18).
7) Solve the PDE (33) in φ to obtain φ(t+1).
8) m = m+ 1.
9) End while

Output: Final segmentation, final φ

A. ALGORITHM
The description of the proposed algorithm is summarized as
follows:

IV. RESULTS
This section presents the performance of the proposed
method against previous state-of-the-art methods. The exper-
iment was carried out on multiple synthetic and real images.
MATLAB 2018a, installed in a 64-bit OS (Windows 10) with
a 3.40 GHz Intel Core i7 microprocessor and an 8 GB RAM,
was used for both implementation and testing.

The proposed method is independent of the contour ini-
tialization, as shown by Fig. 4. The top row in Fig. 4 shows
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FIGURE 4. Proposed method on a synthetic image. Top row: input image with contours, of different sizes, at different locations; second row:
corresponding results.

TABLE 2. CPU time and number of iterations required for segmentation
results in Fig. 5.

the input image with initial contour at different locations, and
the second row shows corresponding results. Note that the
contour, with different shapes and sizes, is initialized from
four different positions, producing similar type of results.

Fig. 5 is a representation of the comparison between the
proposed method and other state-of-the-art methods for one
object synthetic image with different inhomogeneity levels.
Top row to the eighth row represent the input images and
the results generated by C-V [25], LBF [43], LIF [20],
VLSBS [34], Zhang et al. [35], FRAGL [49] and proposed
method, respectively. The results show that the objects in the
first column are correctly segmented using all the methods,
except for the LBF method [43]. This comparison illustrates
that the proposed method has a better stability and greater
accuracy even for the image with higher inhomogeneity level;
whereas, the accuracy of other models have significantly
decreased with higher inhomogeneity level.

Table 2 presents the CPU time and number of iterations
taken for the segmentation of the synthetic images in Fig. 5.
Although the FRAGL [49] shows near similar time effi-
ciency to the proposed model, it fails to capture object

TABLE 3. CPU time and number of iterations required for segmentation
results in Fig. 6.

boundaries adequately. It is deduced that the proposed
method successfully outclasses the previousmethods in terms
of stability and CPU time (sec).

Fig. 6 shows some synthetic images with multiple objects
having intensity variations in the background and foreground.
Top row contains original (input) images, followed by the
segmentation results of C-V [25], LBF [43], LIF [20],
VLSBC [34], Zhang et al. [35], FRAGL [49] and the pro-
posed model, respectively. The instability of the previous
methods is clearly specified, where it is unable to segment
inhomogeneous regions using C-V [25]. Although, LBF [43]
and LIF [20] could locate the object boundaries, they lack full
accuracy, thereby producing false contours. The VLSBC [34]
and FRAGL [49] models suppressed false contours appear-
ances; however, both still missed the exact object boundaries.
Zhang et al. [35] method failed to work in the case of multiple
object segmentation, whereas the proposed method achieved
superior segmentation accuracy.

Table 3 presents the CPU time and number of iterations
taken for the segmentation of the synthetic images in Fig. 6.
Although LBF [43], LIF [20] and FRAGL [49] consumed
less CPU time following the proposed method, they failed to
produce an accurate segmentation. This table confirms that
the proposed model, so far, outperforms the past methods.
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FIGURE 5. Image segmentation comparison of single-object synthetic
images. Top row: Input image with different inhomogeneity levels; second
row: C-V method [25]; third row: LBF method [43]; forth row: LIF
method [20]; fifth row: VLSBC method [34]; sixth row: Zhang et al.
method [35]; seventh row: FRAGL method [48]; eighth row: proposed
method.

FIGURE 6. Image segmentation comparison of multiple intensity objects
of synthetic images. Top row: Input images; second row: C-V method [25];
third row: LBF method [43]; forth row: LIF method [20]; fifth row: VLSBC
method [34]; sixth row: Zhang et al. method [35]; seventh row: FRAGL
method [48]; eighth row: proposed method.

Fig. 7 shows the comparison of the segmentation results
of real images. Top row to the eighth row represent the
input images, C-V [25], LBF [43], LIF [20], VLSBC [34],
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FIGURE 7. Image segmentation results of real images. Top row: Input images; second row: C-V method [25]; third
row: LBF method [43]; forth row: LIF method [20]; fifth row: VLSBC method [34]; sixth row: Zhang et al.
method [35]; seventh row: FRAGL method [48]; eighth row: proposed method.

Zhang et al. [35], FRAGL [48] and the proposed method,
respectively. The comparison results illustrate that the
LBF [43] model located the object boundaries; however,

it stimulated a false contours evolution, whereas the LIF [20]
and Zhang et al. [35] models stuck in the local min-
ima in this case. The FRAGL [48] showed impressive

57356 VOLUME 8, 2020



A. Niaz et al.: Hybrid Active Contour Based on Local and Global Statistics Parameterized by Weight Coefficients

FIGURE 8. The first (left ) column: Inhomogeneous images with different levels of Salt & Pepper noise:
(0, 0.01, 0.02, 0.03, 0.04); the second column: C-V method [25]; the third column: LBF method [43]; the forth
column: LIF method [20]; the fifth column: VLSBC method [34]; the sixth column: Zhang et al. method [35];
the seventh column: FRAGL [48]; the eighth column: proposed method.

FIGURE 9. The first (left ) column: Inhomogeneous images with different levels of Salt & Pepper noise:
(0, 0.01, 0.02, 0.03, 0.04); the second column: C-V method [25]; the third column: LBF method [43]; the forth
column: LIF method [20]; the fifth column: VLSBC method [34]; the sixth column: Zhang et al. method [35];
the seventh column: FRAGL [48]; the eighth column: proposed method.

performance over the first two images from left, in the seventh
row, but failed to segment region of interest in the third
image. The VLSBC [34] model performed segmentation with
a reasonable accuracy than other previous methods, whereas
the proposed model surpasses all the previous methods for
segmentation results.

Table 4 presents the CPU time and number of iterations
taken for the segmentation of real images in Fig. 7. It is
clear that, on average, the time taken by VLSBC [34], and
FRAGL [48] methods are least among other models in com-
parison, except the proposed model.

V. SEGMENTATION ACCURACY ANALYSIS
To verify the superior performance of the proposed method
over other state-of-the-art methods, a segmentation accu-
racy analysis was performed using two techniques, namely,
the noise sensitivity evaluation and quantitative comparison.

A. NOISE SENSITIVITY EVALUATION
The NBF initialization followed by the inclusion of bias
field with the LR part makes the proposed model robust to
noise. To perform noise sensitivity evaluation, we used the
Jaccard Similarity (JS) method. JS is used to understand the
similarity between the image segmentation results. Two types
of artificial noises were added to the images: Salt & Pepper
and Gaussian.

The mathematical representation of the JS metric is written
as

JS(A,B) =
|A ∩ B|
|A ∪ B|

, (35)

where A and B represent the segmentation result in this exper-
iment and the ground truths, respectively.

Figs. 8, 9 and 10 demonstrate the segmentation results of
three different images with different levels of Salt & Pepper
noise. From the top row to the fifth row of each of the
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FIGURE 10. The first (left ) column: Inhomogeneous images with different levels of Salt & Pepper noise: (0, 0.01,
0.02, 0.03, 0.04); the second column: C-V method [25]; the third column: LBF method [43]; the forth column: LIF
method [20]; the fifth column: VLSBC method [34]; the sixth column: Zhang et al. method [35]; the seventh
column: FRAGL [48]; the eighth column: proposed method.

FIGURE 11. The first (left ) column: Inhomogeneous images with different levels of Gaussian noise: (0.01, 0.02, 0.03,
0.04); the second column: C-V method [25]; the third column: LBF method [43]; the forth column: LIF method [20];
the fifth column: VLSBC method [34]; the sixth column: Zhang et al. method [35]; the seventh column: FRAGL [48];
the eighth column: proposed method.

FIGURE 12. The first (left ) column: Inhomogeneous images with different levels of Gaussian noise: (0.01, 0.02, 0.03,
0.04); the second column: C-V method [25]; the third column: LBF method [43]; the forth column: LIF method [20];
the fifth column: VLSBC method [34]; the sixth column: Zhang et al. method [35]; the seventh column: FRAGL [48];
the eighth column: proposed method.

figures contain the segmentation results of various methods
over different Salt & Pepper noise levels: (0, 0.01, 0.02, 0.03,
0.04). The C-V [25] model performed well in Figs. 8 and 10,

and stuck in the local minima in Fig. 9. LBF [43] located
the object boundaries but showed an inferior segmentation
accuracy. Zhang et al. [35] fell in the local minima for
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FIGURE 13. The first (left ) column: Inhomogeneous images with different levels of Gaussian noise: (0.01, 0.02,
0.03, 0.04); the second column: C-V method [25]; the third column: LBF method [43]; the forth column: LIF
method [20]; the fifth column: VLSBC method [34]; the sixth column: Zhang et al. method [35]; the seventh
column: FRAGL [48]; the eighth column: proposed method.

FIGURE 14. Jaccard Similarity (JS) values for Figs. 7, 8, 9, 10, 11 and 12 are represented by images a, b, c, d, e and f, respectively.

Figs. 8 and 9; however, it located the object boundaries
in Fig. 10. The FRAGL [48] showed almost similar segmen-
tation accuracy to the proposed model.

Figs. 11, 12 and 13 illustrate the segmentation results of
three different images with different levels of Gaussian noise.
From the top row to the forth row of each of the figures con-
tain the segmentation results of various methods over differ-
ent Gaussian noise levels: (0.01, 0.02, 0.03, 0.04). In Fig. 12,
the LBF [43] and VLSBC [34] models illustrated almost sim-
ilar segmentation accuracy. FRAGL [48] attained outstanding
performance, making it very near in segmentation accuracy to
the proposed model. LIF [20] located the object boundaries,
however, showed false contours in Fig. 11. The proposed
method segmented ROIs with precision, irrespective of the
image complexity, making it robust to noise. The respective
accuracy charts of Figs. 8 to 13 are represented by images
a, b, c, d, e and f in Fig. 14.

The proposed model has higher JS values compared to
other state-of-the-art methods because of the proposed hybrid
energy function. This section confirms that our model is
robust to noise and can locate the exact object boundaries with
a greater accuracy as compared to the previous methods.

B. QUANTITATIVE COMPARISON
A quantitative comparison of different models was per-
formed to measure the Accuracy, Dice Index, and Sen-
sitivity over mini-MIAS [45] database of mammograms.
Furthermore, the segmentation results were compared with
the respective ground truths. Fig. 15 presents the images
taken from the mini-MIAS [45] database, their ground
truths, and the result comparison of different methods with
the proposed method, respectively. The obtained results
are considered good if their values are closer to 1. The
Accuracy, Dice Index, and Sensitivity metrices are defined
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FIGURE 15. Proposed method on mammograms. First (left ) column: Input image with different inhomogeneity levels; second column: C-V method [25];
third column: LBF method [43]; forth column: LIF method [20]; fifth column: VLSBC method [34]; sixth column: Zhang et al. method [35]; eighth column:
Proposed method.

TABLE 4. CPU time and number of iterations required for segmentation
results in Fig. 7.

as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (36)

DiceIndex =
2× TP

2× TP+ FP+ FN
, (37)

and

Sensitivity =
TP

TP+ FN
, (38)

where Accuracy defines the closeness of the segmented
regions to the actual regions, DSC is the dice coefficient to
measure how much the detected region overlaps the actual
regions, and Sensitivity defines that the detected region actu-
ally belongs to the actual region.

TP (true positive), TN (true negative), FP (false posi-
tive), and FN (false negative) correspond to the segmented

FIGURE 16. Metric analysis of the mammogram images.

FIGURE 17. Graphical representation of average CPU time (s) for the
segmentation of mammograms of [46].

actual-regions, correctly unsegmented regions, detected
false-regions, and undetected actual-regions, respectively.
The metric analysis of the mammogram images is shown
in Fig. 16. We have also calculated the average CPU time
(s) for the mini-MIAS database, as shown in Fig. 17.

Both techniques for the segmentation accuracy analysis
confirm that the proposed hybrid energy model successfully
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segments inhomogeneous images with greater CPU time
(s) efficiency and accuracy.

VI. DISCUSSION
Previous level set methods are insufficient to segment images
with inhomogeneous objects properly. The proposed ACM
comprises advantageous features of both the previous local
and global region-based methods. The performance of the
proposed model is significantly superior to the other previous
unsupervised ACM models in comparison. Deep learning
image segmentation models efficiency relies on the training
sample data set; with larger and more comprehensive data
sets tending to produce better segmentation accuracy and effi-
ciency. On comparatively small data sets, supervised learning
tends to produce inferior results. However, unsupervised level
set methods perform segmentation using pre-selected param-
eters depending on the ROI, whereas the proposed method
sets the effective parameters in the new hybrid model to
capture obscure regions in images.

VII. CONCLUSION
This paper proposes a hybrid energy function that com-
prises the local and global fitted models for the segmen-
tation of intensity inhomogeneous images. The bias field
is appended to the local fitted energy part in the proposed
hybrid function to increase the effectiveness over inhomo-
geneous regions. Both the local and global energy functions
are combined to strengthen each other’s performance. Fur-
thermore, the hybrid energy function is parametrized with
weight coefficients to drag the contour accurately towards
complex object-boundaries. The Gaussian filter is used to
avoid re-initialization and to regularize the level set, whereas
the new bias field initialization eliminates the contour initial-
ization dependency. Noise sensitivity evaluation and the accu-
racy, dice index, and sensitivity metrics confirm the better
performance of the proposed model over previous segmen-
tation methods.
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