
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
1911

LETTER

Optimal Spot-Checking Ratio for Probabilistic Attacks in Remote
Data Checking

Younsoo PARK†, Jungwoo CHOI†, Young-Bin KWON†, Jaehwa PARK†, Nonmembers,
and Ho-Hyun PARK†a), Member

SUMMARY Remote data checking (RDC) is a scheme that allows
clients to efficiently check the integrity of data stored at an untrusted server
using spot-checking. Efforts have been consistently devoted toward im-
proving the efficiency of such RDC schemes because they involve some
overhead. In this letter, it is assumed that a probabilistic attack model is
adopted, in which an adversary corrupts exposed blocks in the network
with a certain probability. An optimal spot-checking ratio that simultane-
ously guarantees the robustness of the scheme and minimizes the overhead
is obtained.
key words: RDC, PDP, spot-checking, probabilistic attack, δ-robustness

1. Introduction

Remote storage provided by a storage service provider
(SSP) allows clients to store large amounts of data at afford-
able prices. Because clients might store private data that is
not supposed to be revealed to others, the data stored at the
server should be securely maintained. However, clients may
not fully trust SSPs. Therefore, the importance of an audit-
ing scheme for remote storage servers has been emphasized.

Under these circumstances, the provable data posses-
sion (PDP) scheme has been proposed [1], [2]. This scheme
is capable of checking the integrity of data without down-
loading the original data from the perspective of the client
and without retrieving the entire data from the perspective of
the server. These requirements can be fulfilled by adopting
spot-checking [3]. In spot-checking, the integrity of data is
checked by randomly sampling a set of blocks rather than
accessing the entire data set. Although spot-checking is
suitable for detecting large corruptions, it is vulnerable to
small corruptions against the entire data size. This problem
has been resolved by introducing the notion of δ-robustness,
which adopts forward error correction (FEC) codes such as
the Reed-Solomon (RS) code [4]–[6] (δ-robustness will be
defined in Sect. 2.1.)

Although many studies have investigated the efficiency
of PDP schemes, some overhead is still incurred during
spot-checking. For example, the auditing scheme intro-
duced in [5] has a drawback in that even though a client re-
quests for a download of only a small part of the data, whole
parity blocks are redundantly downloaded together with the
requested data in order to conceal the association between

Manuscript received June 7, 2016.
Manuscript revised March 16, 2017.
Manuscript publicized April 26, 2017.
†The authors are with Chung-Ang University, Seoul, Korea.

a) E-mail: hohyun@cau.ac.kr
DOI: 10.1587/transinf.2016EDL8120

the data blocks and the parity blocks.
To overcome this problem, Dong et al. proposed a

scheme that efficiently ensures δ-robustness by minimizing
the parity redundancy in the downloaded data [7]. Although
this scheme provides an optimal value for the number of par-
ity blocks to be downloaded during one spot-check, it can-
not suggest an optimal value for the number of spot-checked
blocks to efficiently ensure δ-robustness for a file stored at a
server.

According to the PDP scheme, if the number of spot-
checked blocks is sufficient compared to the number of total
blocks in a file, the δ-robustness of the file is ensured. How-
ever, if spot-checking is performed for too many blocks, the
large number of samplings will lead to excessive overhead.
On the other hand, if the number of spot-checked blocks is
too small, δ-robustness cannot be ensured. In this sense, the
present study aims to propose a technique for selecting the
optimal number of spot-checked blocks that minimizes the
overhead and ensures δ-robustness simultaneously.

2. System Model

2.1 Robust RDC Scheme

In the PDP scheme [4], a file F is represented as a finite
ordered collection of f blocks: F = b1, . . . , b f . To store
F in the server, a client must transform F into an encoded
F̃. An encoding algorithm such as [3], [4] and [5] divides
F into k-block chunks. Then the (n,k) RS code is applied
to each chunk which is called a constraint group. The re-
dundancy (d) and error correcting capacity (t) for each con-
straint group are computed as d = n − k and t = d/2 respec-
tively [6].

A file F is encoded into F̃ : b1, . . . , b f , c1, . . . , c f
k d. In

the file F̃, k data blocks are constrained by d check blocks.
The check blocks contain error correcting codes as redun-
dancy information for data recovery. Next, it permutes the
check blocks to hide the structure of the file. The output of
the permutation is represented as R : r1, . . . , r f

k d which is

an ordered collection of f
k d blocks. As the result, the file F̃

forms a concatenation of the F and the redundancy informa-
tion R. Let f̃ = f + f

k d. At the end of this encoding, the file
F̃ is encrypted by the RSA encryption.

After encoding, the client sends F̃ to the server and
stores metadata in its local storage. The server receives F̃

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

1912
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

and saves it in the server-side storage. After that, the server
computes a proof of data possession and sends it back to the
client. Finally, the client checks validity of the proof.

In the challenge phase, an auditor (or client) generates
some challenge block’s index which is a collection of ran-
domly sampled c blocks i1, . . . , ic where 1 ≤ c ≤ f̃ and
requests a proof of possession for the challenged blocks
bi1 , . . . , bic to the server. In this sampling scheme named
as spot-checking [4], the value c/ f̃ is referred to as spot-
checking ratio. The server sends the proof of the challenged
blocks to the auditor. Then the auditor checks the validity of
the proof.

If an adversary corrupts xF̃ blocks among f̃ blocks, the
probability that an auditor can detect the corruption, denoted
as P(detectF̃), can be computed as shown in Eq. (1) [4]. The
detection is considered as successful in case the auditor finds
one or more corrupted blocks through the spot-checking.
Equation (1) depends on the number of challenged blocks
c and corrupted block ratio xF̃/ f̃ .

1 −
(
1 − xF̃

f̃

)c

= P(detectF̃) (1)

Adversarial model. Since the SSP’s server is not fully
trusted, an adversary dominating the server may try to cheat
the auditor. For example, the adversary can corrupt part of
stored data in the server after the server sends a proof to the
auditor. If part of data is corrupted, the auditor can detect
the corrupted blocks by the spot-checking at the next chal-
lenge phase. Since the challenging uses a sampling scheme,
the auditor might fail to detect very small part of corruption.

Since the small size corruption can be recovered by the
RS code, the adversary must destroy data of which size is
large enough not to be recovered by the RS code. But the
size should be small not to be detected by the spot-checking.
In this situation, an RDC scheme must ensure δ-robustness
to protect the adversary’s attack and securely store the
client’s data. The δ-robustness is defined as follows [4]
Definition 1: When an original file F is encoded as F̃ and
stored at a server, an RDC scheme provides δ-robustness
when i) the auditor will detect corruption with high proba-
bility (more than 1 − ε) if an adversary corrupts more than
a δ-fraction of F̃; or ii) the auditor will recover the data in
F with high probability (more than 1 − ε) if an adversary
corrupts at most a δ-fraction of F̃.

Definition 1 states that δ-robustness requires that the
probability of failure to detect the data corruption by the
spot-checking, i.e., 1 − P(detectF̃) or the probability of fail-
ure to recover the file by the RS code, i.e., 1 − P(recoverF̃)
should be less than ε. Therefore, ε must be a very small
value. For example, ε was set to 10−10 in [4], [5], and [7].

2.2 Probabilistic Attack Model

If part of a file is corrupted, the probability that an auditor
detects the corruption increases as the portion of corrupted
data grows. Contrarily the probability that the file is recov-
ered using the RS codes increases as the portion of corrupted

Fig. 1 δ-robustness is guaranteed at c/ f̃ = 4%

Fig. 2 δ-robustness is not guaranteed at c/ f̃ = 2%

data lessens. As a consequence, an adversary who is eager
to achieve his/her malicious objective needs to determine a
suitable ratio of corruption preventing detection by the spot-
checking and recovery by the RS codes simultaneously.

The πR scheme [4] disallows an adversary to identify
that some blocks are original data F or redundancy infor-
mation R. Therefore, the adversary is forced to corrupt only
part of encoded file blocks randomly and such a behavior
can be explained by a probabilistic attack model. Under
this model, we assume that an adversary corrupts each block
with a certain probability β which is large enough and small
enough. The adversary’s attack is considered as successful
if the auditor fails to detect and recover the file corruption in
the challenge phase.
Example 1 There is a file F̃ which has f̃ block at a server
encoded by a (140, 130) RS code. The size of the encoded
file F̃ is 4TB where a block size is 4KB. While a client was
challenging c blocks of f̃ blocks, the file was exposed to a
probabilistic attack attempted by an adversary. In the chal-
lenge phase, if an auditor extracts 4% of the file for spot-
checking, the error detection probability and recovery prob-
ability according to the corruption probability can be pre-
sented as graphs, as shown in Fig. 1.

The blue solid line and red solid line denote the er-
ror detection probability and error recovery probability, re-
spectively (The calculation of these probabilities will be
explained in Sects. 3.1 and 3.2). In Fig. 1, either the er-
ror detection probability or the error recovery probability is
greater than or equal to the threshold 1−ε in the entire range
of β. Thus, δ-robustness is guaranteed.

Figure 2 plots the error detection probability versus the

LETTER
1913

Table 1 Some probabilities in normal distribution

m P(xF̃ < E[xF̃] − mσ[xF̃]) or P(xF̃ > E[xF̃] + mσ[xF̃])

5 2.8665 × 10−7

6 9.8660 × 10−10

7 1.2971 × 10−12

error recovery probability when all the conditions are the
same as in Fig. 1 except that the percentage of sampled data
for spot-checking decreases to 2%. Figure 2 indicates that
there exists a range of βwhere both the error detection prob-
ability and the error recovery probability are lower than 1−ε.
Thus, δ-robustness is not guaranteed in this range. In Figs. 1
and 2, the error recovery probability is predetermined at the
time of RS encoding because it only depends on the RS en-
coding parameters n and t as shown in Eqs. (11) and (12),
whereas the error detection probability varies with the spot-
checking ratio, c/ f̃ . Hence, we can achieve δ-robustness by
adjusting the spot-checking ratio appropriately.

Assume that a block in the file F̃ is corrupted by a con-
stant probability β and the events where each block is cor-
rupted are mutually independent. Then, the event that xF̃
blocks among the c spot-checked blocks are corrupted fol-
lows the binomial distribution B(c,β). When c becomes suf-
ficiently large, the binomial distribution can be mapped to a
normal distribution N(cβ, cβ(1 − β)). In the normal distribu-
tion, P(xF̃ < E[xF̃] − mσ[xF̃]) or P(xF̃ > E[xF̃] + mσ[xF̃]),
the probabilities that xF̃ is m times the standard deviation
away from the mean are calculated for some m as shown in
Table 1. (In the above formula, E[xF̃] and σ[xF̃] indicate the
expected value of the random variable xF̃ and the standard
deviation of xF̃ , respectively.)

3. Proposed Approach

3.1 Minimum Threshold to Detect Errors

According to Definition 1, to guarantee δ-robustness from
the perspective of error detection, the probability that the
adversary successfully performs an attack, denoted as 1 −
P(detectF̃), should be less than ε. It can be written as Eq. (2).

1 − P(detectF̃) ≤ ε (2)

Equation (1) can be transformed into Eq. (3).

1 − P(detectF̃) =
(
1 − xF̃

f̃

)c

(3)

Since xF̃/ f̃ means the ratio of the damaged blocks to the
whole file blocks, it is expressed as DamageF̃ .

1 − P(detectF̃) = (1 − DamageF̃)c (4)

By combining Eqs. (2) and (4),

(1 − DamageF̃)c ≤ ε (5)

If we rewrite Eq. (5) for DamageF̃ ,

1 − ε 1
c ≤ DamageF̃ (6)

Equations (2)∼(6) state that the ratio of damaged
blocks should be larger than or equal to 1 − ε 1

c in order
to detect adversary’s attacks with a probability of 1 − ε or
higher. Therefore, the minimum damaged block ratio nec-
essary for detecting data corruption, Damagedetect−min, can
be expressed as

Damagedetect−min = 1 − ε 1
c (7)

If we multiply Eq. (7) by f̃ , we can obtain a threshold
Thdetect that represents the minimum number of damaged
blocks (i.e., the minimum value of xF̃). We can express this
threshold as

Thdetect = Damagedetect−min × f̃ =
(
1 − ε 1

c
) × f̃ (8)

As mentioned in Sect. 2.2, the distribution of xF̃ is a
normal distribution N(cβ, cβ(1 − β)) for a large c. In this
distribution, spot-checking will be failed if xF̃ is less than
Thdetect. If we set Thdetect to be E[xF̃] − mσ[xF̃], the proba-
bility that the spot-checking will fail to detect the damaged
blocks becomes P(xF̃ < E[xF̃] − mσ[xF̃]). Since the prob-
ability of failure must satisfy Eq. (2), we can express this
relationship by Eq. (9).

P(xF̃ ≤ E[xF̃] − mσ[xF̃]) ≤ ε (9)

Equation (9) indicates that ε is affected by E[xF̃] −mσ[xF̃].
If we set m to 6, ε will be 9.8660×10−10 as shown in Table 1.
This value is greater than ε of [4], [5], and [7]. However, if
we set m to 7, ε will be 1.2971×10−12. Notice that this value
is smaller than ε of [4], [5], and [7]; hence, our proposed
method guarantees δ-robustness of which level is stronger
than [4], [5], and [7]. Equation (10) represents the minimum
threshold value of xF̃ when m = 7.

Thdetect = E[xF̃] − 7σ[xF̃] = cβ − 7
√

cβ(1 − β) (10)

Let the solution of Eq. (10) be βdetect. If β is less than
βdetect, an auditor cannot detect the corruption with high
probability 1 − ε. In this case, the δ−robustness is not en-
sured from the perspective of error detection.

Given the parameters of f̃ , c, and ε, we can obtain
the value of βdetect by computing Thdetect in Eq. (8) and
substituting it into Eq. (10). Figure 1 and Fig. 2 show the
values for βdetect = 2.0836 × 10−5 and 7.6980 × 10−5,
which are calculated in this way when c=46,253,494 and
c=23,126,747, respectively, provided that ε = 1.2971 ×
10−12, f̃ = 1, 156, 337, 354. The blue lines in both figures
represent the values of P(xF̃ ≥ Thdetect) on varying β at the
same condition of f̃ and c as above under the normal distri-
bution N(cβ, cβ(1 − β)). Note that Thdetect is obtained from
Eq. (8).

3.2 Maximum Threshold to Recover Errors

As explained in Sect. 2.1, a single constraint group that is

1914
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

encoded by an (n,k) RS code consists of n blocks and its
error recovery capacity is t(t = d/2). Let c blocks among f̃
blocks in a file be exposed to probabilistic attacks after the
challenge phase. Further let recoverF̃ denote the event that
all these blocks are recovered by the RS codes and recoveri

denote the event that the i-th constraint group is recovered.
The number of constraint groups of the exposed blocks, g,
can be written as �c/n�.

The (n, k) RS coding can recover the constraint group
as long as up to t blocks among n blocks in one constraint
group are damaged. Therefore, the probability of a success-
ful recovery of the i-th constraint group can be written as

P(recoveri) =
t∑

l=0

(
n
l

)
(β)l(1 − β)n−l (11)

where the attack probability is β and
(

n
l

)
denotes the bino-

mial coefficient which represents a combination of l objects
from n objects. If the events recoveri for 1 ≤ i ≤ g are in-
dependent, the probability of success to recover the attacked
file can be written as

P(recoverF̃) = [P(recoveri)]
g

=

[t∑
l=0

(
n
l

)
(β)l(1 − β)n−l

]g (12)

To guarantee δ-robustness from the perspective of er-
ror recovery, the probability that the adversary successfully
performs an attack, denoted as 1 − P(recoverF̃), should be
less than ε. This can be expressed as

1 − P(recoverF̃) ≤ ε (13)

In Eq. (12), P(recoverF̃) decreases as β increases. There-
fore, Eq. (13) does not hold if β increases above a certain
value. In the range below a certain value of β, Eq. (13) is
satisfied and δ-robustness is thus guaranteed. This value of
β is denoted as βrecover. It is the maximum value of β that
guarantees δ-robustness. It can be calculated by

1 −
[t∑

l=0

(
n
l

)
(βrecover)

l(1 − βrecover)
n−l

]g
= ε (14)

Now, we can define another threshold Threcover, the
maximum number of damaged blocks (i.e., the maximum
value of xF̃) such that the file is recovered with a proba-
bility of 1 − ε or greater. As with Eq. (10), if we make
E[xF̃] + mσ[xF̃] equal to Threcover, the probability that the
(n,k) RS coding fails to recover the file F̃ becomes P(xF̃ ≥
E[xF̃] + mσ[xF̃]). It can be written as

Threcover = E[xF̃] + mσ[xF̃]

= cβrecover + 7
√

cβrecover(1 − βrecover)
(15)

If β > βrecover, an auditor cannot recover the corrup-
tion with high probability 1 − ε, and the δ−robustness is not
ensured from the perspective of error recovery. Given the
parameters of n, t, c and ε, we can calculate βrecover from

Fig. 3 Relationship between Thdetect and P(detectF̃)

Fig. 4 Relationship between Threcover and P(recoverF̃)

Eq. (14) and substitute it into Eq. (15) to obtain Threcover.
Figure 1 and 2 show the values for βrecover = 2.7704 × 10−5

and 3.1099 × 10−5, which are calculated in this way when
c=46,253,494 and c=23,126,747 respectively, provided that
ε = 1.2971 × 10−12, n = 140, and t = 5. The red lines in
both figures were calculated by Eq. (12) on varying β at the
same condition of n, t and c as above.

3.3 Interval to Ensure δ-robustness

Figures 3 and 4 show the probabilities related to Thdetect and
Threcover on a horizontal line.

On the left-hand side of Thdetect in Fig. 3, δ-robustness
cannot be guaranteed because the error detection probabil-
ity is lower than the threshold. On the right-hand side of
Threcover in Fig. 4, δ-robustness cannot be guaranteed be-
cause the error recovery probability is lower than the thresh-
old. When we combine the two figures on a single hori-
zontal line, Thdetect < Threcover should hold for guaran-
teeing δ-robustness for any β. Equation (8) indicates that
Thdetect (hence, βdetect by Eq. (10)) is significantly affected
by c, whereas Eq. (14) indicates that βrecover (hence, Threcover

by Eq. (15)) is significantly affected by t and g (hence, c be-
cause g = �c/n�).

However, Threcover < Thdetect may hold if we choose
a small c† for spot-checking or use a low value of t for file
encoding. In this case, δ-robustness cannot be guaranteed
because both the error detection probability and the error
recovery probability are lower than the threshold, as seen
in Fig. 2. This might allow an adversary to have a chance
to attack without being detected and also prevent recovery
simultaneously.

4. Analysis

In order to identify the conditions under which δ-robustness
is guaranteed, it is necessary to consider the parameters c/ f̃ ,
n, t, and ε, which might influence Thdetect and Threcover. Note
that ε was already set to P(xF̃ > E[xF̃]+7σ[xF̃]) = 1.2971×

†Hereinafter we will use c/ f̃ instead of c because c varies with
file size.

LETTER
1915

Table 2 Values of Thdetect and Threcover with varying t and c/ f̃

c/ f̃ 1% 2% 3% 10% 20%
Thdetect 2,737 1,368 912 273 136

t=1 0.4193 0.4988 0.5520 0.7463 0.8878
t=2 12.24 15.54 17.89 27.27 34.91
t=3 76.68 103.6 124.2 217.6 306.0
t=4 277.1 403.4 506.8 1,036 1,606

Threcover t=5 758.1 1,179 1,542 3,553 5,884
t=6 1,712 2,801 3,768 9,404 16,227
t=7 3,345 5,670 7,780 20,471 36,269
t=8 5,837 10,153 14,129 38,561 69,571

10−12 in Sect. 2, and n was also fixed at the time of encoding
files. Consequently, Thdetect and Threcover are determined by
the remaining two parameters, c/ f̃ and t. Table 2 lists the
values of Thdetect and Threcover with varying c/ f̃ and t while
n is set to 140 and ε is set to 1.2971 × 10−12 for a 4TB file.

Among the values in Table 2, the bold-type values rep-
resent the cases in which Threcover is less than Thdetect. In
these cases, δ-robustness is not guaranteed, as seen in Fig. 2.
By contrast, the values in regular font represent the cases in
which Threcover is larger than Thdetect, i.e., the cases in which
δ-robustness is guaranteed, as seen in Fig. 1.

Table 2 shows that δ-robustness might be guaranteed
or not depending on c/ f̃ in spite of the same t value. For
example, δ-robustness is guaranteed when t is 5 and spot-
checking is performed using 3% extraction, whereas δ-
robustness is not guaranteed when c/ f̃ is as low as 2%. As
c/ f̃ decreases from 3% to 2%, 1/c increases and Thdetect in
Eq. (8) also increases. Then, Thdetect switches sides with re-
spect to Threcover in Fig. 1, as shown in Fig. 2. Now, we can
define the cross point of Thdetect and Threcover. In order to
determine this cross point, we need to identify a suitable c
for satisfying both Eqs. (16) and (17).

Thdetect = Threcover (16)

cβdetect − 7
√

cβdetect(1 − βdetect)

= cβrecover + 7
√

cβrecover(1 − βrecover)
(17)

If we find the c value satisfying Eq. (17) in the case of
t = 5 and then calculate c/ f̃ , the cross point appears around
2.90%. This implies that δ-robustness can be guaranteed if
we set c/ f̃ to 2.9% or higher. This finding demonstrates
that the 10% ratio taken in [4] and [7] is a sufficiently high
spot-checking ratio to guarantee δ-robustness. According to
Table 2, we ensure that for each t value, a minimum value
of c exists such that δ-robustness is guaranteed. Because
t is usually predetermined at the time of encoding, we can
control only c after a file is loaded at a server. In this study,
we denote this minimum value as cmin.

In summary, the case of Thdetect < Threcover leads to
inefficiency because c > cmin, whereas when Threcover <

Thdetect, δ-robustness is not ensured because c < cmin.
Therefore, cmin/ f̃ is the best spot-checking ratio in the range
where δ-robustness is ensured.

5. Conclusion

We proposed a mechanism for determining the optimal spot-
checking ratio by applying a probabilistic attack model to
existing RDC schemes. During this process, we defined the
probabilities βdetect and βrecover that are necessary for guar-
anteeing δ-robustness in terms of error detection and error
recovery depending on the user’s circumstances. We also
described the steps for calculating the thresholds Thdetect and
Threcover, which are related to βdetect and βrecover. Based on
the analysis of these thresholds, we described the steps for
calculating cmin/ f̃ , i.e., the minimum spot-checking ratio.
Thus, cmin/ f̃ can be considered as the core parameter in this
study. It is expected that this core parameter will minimize
the spot-checking overhead, thereby providing an opportu-
nity to efficiently use the limited resources in cloud systems.

Acknowledgements

This research was supported by the Chung-Ang Univer-
sity Research Scholarship Grants in 2015 and the National
Research Foundation of Korea (NRF-2014R1A1A2056266
and NRF-2016R1D1A1B03933895).

References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted
Stores,” Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS ’07), pp.598–609, ACM, 2007.

[2] D. Xiao, L. Yang, C. Liu, B. Sun, and S. Zheng, “Efficient Data
Possession Auditing for Real-World Cloud Storage Environments,”
IEICE Transactions on Information and Systems, vol.E98-D, no.4,
pp.796–806, April 2015.

[3] R. Curtmola, O. Khan, and R. Burns, “Robust Remote Data Check-
ing,” Proceedings of the 4th ACM International Workshop on Storage
Security and Survivability (StorageSS ’08), pp.63–68, ACM, 2008.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song, “Remote Data Checking Using Provable
Data Possession,” ACM Trans. Inf. Syst. Secur., vol.14, no.1, pp.1–34,
June 2011.

[5] B. Chen and R. Curtmola, “Robust Dynamic Provable Data Posses-
sion,” 32nd International Conference on Distributed Computing Sys-
tems Workshops (ICDCSW), pp.515–525, IEEE, June 2012.

[6] J.S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon codes for
fault-tolerant network storage applications,” Fifth IEEE International
Symposium on Network Computing and Applications (NCA ’06),
pp.173–180, IEEE, 2006.

[7] L. Dong, J. Park, J. Hur, and H.-H. Park, “An Enhanced Remote Data
Checking Scheme for Dynamic Updates,” KSII Transactions on Inter-
net and Information Systems (TIIS), vol.8, no.5, pp.1744–1765, 2014.

