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Abstract: The growing interest in magnetic materials as a universal tool has been shown by
an increasing number of scientific publications regarding magnetic materials and its various
applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide
particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of
polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target
molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic
applications, such as sample preparations and biosensing platforms, leading to the selectivity and
sensitivity against target molecules and the ease of use in the sensing systems. For the process of
sample preparations, the magnetic particles do assist in target isolation from biological environments,
having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily
applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic
phenomena-based methods, and also any methods combined with microfluidic systems. Here we
review the utilization of magnetic materials in the isolation/preconcentration of various molecules
and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to
future innovation in point-of-care and high-throughput automation systems.
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1. Introduction

Magnetic particles typically refer to the materials consisting of magnetite (Fe3O4) or maghemite
(gamma-Fe2O3) ranging from sub-nano to micro-meters in size which respond to an external magnetic
field [1]. Due to their unique magnetic property, they have great potentials in a variety of biological
applications in their bare form or coated with surface coating materials and functional groups chosen
for specific uses [2–7]. Isolation and separation of specific target molecules, including small drugs,
deoxyribonucleic acid (DNA), proteins, and cells from biological media are necessary for bioscience
and biomedical applications. However, biological environments known as highly complex matrixes
(i.e., serum, urine, saliva, etc.) and also typical separation processes, e.g., the silica-based column method,
are required to have a time-consuming procedure, and even traditional ones, e.g., the phenol/alcohol
precipitation method, require toxic reagents for the extraction of DNA/(ribonucleic acid)RNA, proteins,
etc. [8]. In recent developments, magnetic particles can improve the efficiency of target molecule
separations without harmful reagents. Due to different compositions, sizes and magnetic properties,
magnetic nanoparticles (MNPs) can be used in a variety of instruments and formats for biosensing
with an enhancement of sensitivity and the stability [9–11]. Thus, many types of biosensors have
been using surface-functionalized magnetic particles to recognize specific molecular targets with
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high sensitivity and selectivity. In the field of biomedical applications, a wide spectrum of advanced
materials, including micro and nanoparticles, have been developed for sample preparation and
biosensing platforms [12–14]. The use of magnetic particles has allowed the biomedical processes to be
quick, simple, robust, and high-throughput systems. In this review, a number of cases of magnetic
materials applied in isolation/pre-concentration of various target molecules and their use in recent
biosensing platforms for biomedical applications will be given. It has been highly anticipated that
these current developments in magnetic particle may contribute to future innovation in point-of-care
and high-throughput systems to increase the chance of successful diagnostics and clinical treatments.

2. Sample Preparations Using Magnetic Particles

Magnetic particles are considered interesting materials that are widely used in many applications,
such as separation, diagnostics, and therapeutics. Magnetic nanoparticles can easily be separated from
complex matrices such as biological samples by using an external magnetic field. Thus, traditional
separation processes are not required, such as filtration or centrifugation. Magnetic solid-phase
extraction (MSPE) was proposed for the facile and fast sample preparation processes. The magnetic
materials are generally directly dispersed in the sample solutions for the rapid extraction process
because they can be readily recovered by a magnet. Typically, the MSPE material is composed of
a magnetic core and the functionalized outer surface of the same particle to be collected by using
a magnet and for the extraction of various target compounds from biological samples (i.e., serum,
urine, saliva, etc.), respectively.

2.1. MP-Based Drug Extraction from Biological Samples

MSPE for drug molecule extraction from biological samples (blood plasma, urine, etc.) is one of the
crucial application areas of magnetic nanoparticles. Carbon coated magnetic Fe3O4 nanoparticles were
used for extracting pharmaceutical compounds, including carvedilol, losartan, and amlodipine besylate,
from plasma samples [15]. Magnetic nanocomposites composed of Fe3O4 nanoparticles and polyaniline
were developed and successfully separated benxodiazepine drugs, including nitrazepam and lorazepam,
from human plasma and urine samples [16]. Multiwalled carbon nanotube coated Fe3O4 nanoparticles
used for the efficient extraction of brucine (a neurotoxic alkaloid existing in the Nux-vomica tree) from
human urine samples were also reported [17]. For the selective extraction of seven estrogens from human
urine samples, magnetic Fe3O4 nanoparticles having a layer composed of 1,3,5-triformylbenzene (Tb) and
benzidine (Bd) (Fe3O4@TbBd) were prepared and successfully applied [18]. Organic dendrimer-modified
magnetic Fe3O4 nanoparticles for the extraction of rosuvastatin from human urine and blood plasma
were reported [19]. The magnetic Fe3O4 nanoparticles were first synthesized by using FeCl2 and FeCl3.
The surface of the synthesized magnetic Fe3O4 nanoparticles was conjugated with organic dendrimers
containing ethylene diamine and methyl methacrylate, and then applied for efficient separation, achieving
61 mg g-1. In addition, magnetic nanoparticles having a molecularly imprinted polymeric (MIP) layer were
successfully developed and utilized for the selective separation of 9-hydroxyrisperidone and risperidone
from human urine samples [20]. Polydopamine(pDA)-coated magnetic Fe3O4 nanoparticles modified
with multi-walled carbon nanotubes (MWCNTs) were prepared. Owing to the pDA, it results in the
formation of a continuous coating layer on the substrate magnetic material via strong binding affinity
of catechol functional groups. The prepared magnetic nanoparticles were successfully used for the
extraction of antiepileptic drugs, including phenytoin, oxcarbazepine, and carbamazepine from human
urine, plasma, and cerebrospinal fluid samples [21].

2.2. MP-Based DNA/RNA Extraction from Biological Samples

Magnetic particles have significant advantages in both ease of use and high purity when isolating
nucleated cells and nucleotides directly from biological samples. Although the extracted genomic
DNA (gDNA) are easily contaminated by various known enzyme inhibitors (phenol, urea, and salts)
originating from the traditional organic extraction and/or biological samples, this approach concentrates
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and extracts gDNA and eliminates the influence of physiological metabolites from the biological samples
that would otherwise inhibit enzyme activities for polymerase chain reaction (PCR). Shan et al. used
carboxylated magnetic nanoparticles (CMNPs) to develop a PCR-ready gDNA extraction from urine
and blood samples. CMNPs were first used for cell extractions and then absorbed gDNA from the
lysates. Relative to traditional methods, the present procedure required less handling, no hazardous
reagents (e.g., chloroform), and could be carried out in single microcentrifuge tube within 30 min.
These methods, while simple, rapid, sensitive, and environmentally friendly, are suitable for routine
laboratory use, but also hold promise for the construction of automated urine extraction systems for
various diagnostic purposes [22–24].

2.3. MP-Based Protein/Peptide Isolation from Biological Samples

The use of magnetic particles is highly convenient and rapid for separations of proteins and
peptide. Magnetic beads exhibit low non-specific binding of non-target molecules included in different
samples. For certain samples, preclearing may be required to remove molecules having highly
non-specific binding affinity. First, the sample can be mixed with magnetic nanoparticles not coated
with the affinity ligand. For the case of immunomagnetic separation, magnetic nanoparticles have been
coated with secondary antibody or with irrelevant antibodies. In addition, the non-specific binding
can also be reduced by adding a non-ionic detergent either in the sample or in the washing buffers
during the isolation of the target. In general, magnetic particles for protein/peptide separation can
be used in two different methods. In the direct method, an appropriate affinity ligand is directly
coupled to the magnetic particles exhibiting the affinity towards target compounds. These particles
are added to the sample and target compounds then bind to them. In the indirect method, the free
affinity ligand (in most cases an appropriate antibody) is added to the solution to enable the interaction
with the target compound. The resulting complex is then captured by appropriate magnetic particles.
In both methods, magnetic particles with isolated target compounds are magnetically separated,
and then several washing steps are performed to the remove majority of contaminating compounds
and particles. The target compounds are then usually eluted. In most cases, bound protein/peptide can
be added to standard elution methods, such as the change of pH, change of ionic strength, and use of
polarity reducing agent (e.g., dioxane or ethyleneglycol). Affinity elution (e.g., elution of glycoproteins
from lectin coated magnetic beads by the addition of free sugar) may be both efficient and gentle.
The following examples are for the protein/peptide magnetic separations (Table 1).

Table 1. Examples of proteins/peptides purified by magnetic techniques.

Purified
Protein/Peptide Source Magnetic Carrier Affinity Ligand Further Details Ref.

Anti-DNA antibody
Systemic lupus

erythematosus patient
plasma

Magnetic poly(2-hydroxyethyl-
methacrylate) beads DNA

Desorption with 1
M NBaSCN

solution
[25]

Immunoglobulin G Blood serum Carboxyl-terminated
magnetic particles

MproteinAG
(fused-Fc-binding

protein staphylococcal A
and G )

- [26]

IgE antibodies Allergic patients sera Magnetoliposomes Antigenic proteins - [27]
CUG binding
proteins (RNA

binding protein1)

Human myoblasts or
fibroblasts Dynabeads M-280 streptavidin Biotinylated(CUG)10

Elution with 1 M
NaCl [28]

DNA-binding
proteins HeLa nuclear extracts Dynabeads M-280 streptavidin Biotin-labelled DNA

fragment
Elution with 2 M

NaCl [29]

Pigpen protein Endothelial cells Magnetic streptavidin beads Biotinylated aptamer Elution with 1 M
NaCl [30]

Transcription
proteins Human myeloid cells Dynabeads M-280 streptavidin Biotinylated serum

inducible element
Elution with high

salt buffer [31]

Glycated
heamoglobin Human blood Magnetic poly(vinyl alcohol)

beads
m-Aminophenyl-boronic

acid
Elution with

sorbitol [32]

(His)6-Ala-Tyr-Gly Synthetic peptide Dynabeads M-280 tosylactivated
Aminocaproic

nitrilotriacetic acid
charged with Ni+

Elution with
imidazole solution [33]
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3. Biosensing Devices Using Magnetic Particles

In this section, we summarized recent studies of biosensing devices that apply magnetic materials.
They have advantageous functional capabilities, such as their magnetic property, low background noise,
good dispersions, and highly biocompatible surfaces with regard to the immobilized recognizable
bioreceptors [34–37]. With the continuing multidisciplinary development of magnetic-particle-based
biosensing techniques, these efforts have found the way for modern biological devices for on-site or
high-throughput purposes by replacing sophisticated monitoring biomedical devices. Of the varied
biosensing devices available, we have paid attention to two main biosensing devices; i.e., optical
sensing devices and electrochemical sensing devices with the integration of magnetic material for
sensing biological targets. As illustrated in Figure 1, we have paid much attention to smartphones
and other mobile devices integrated with detection in paper-based analytical devices or lateral-flow
immunochromatographic assays (LFIA)—and the interdigitated array microelectrode, screen-printed
electrode, and microfluidic devices too—providing useful insights on point-of-care healthcare devices.

Figure 1. Schematic representation of the detection method based on either optical or electrochemical
techniques combined with magnetic materials for biosensing.

3.1. Optical Biosensing Devices

Optical biosensing devices have been developed to offer a simple and rapid approach for sensing
biological analytes. This method has been classified into, mainly, four techniques: colorimetric, fluorescent,
surface plasmon resonance (SPR), and surface-enhanced Raman scattering methods, which are combined
with magnetic particles in integrated devices; these were reported in proof-of-concept studies. Here,
we discuss how the magnetic particles can be adapted to the optical sensing systems.

3.1.1. Colorimetric Biosensing Devices

Colorimetric biosensing techniques are to transform the detection of biological elements into
measurable color changes. Additionally, they are inexpensive and only require simple detection
equipment [36,37]. For various colorimetric devices for analysis, lateral flow tests (LFA) and paper
devices are the main methods which are commonly associated with enzyme-linked immunosorbent
assay (ELISA) to identify targets [38]. As mentioned earlier, these devices combined with MNPs have
benefits such as sensitivity, specificity, speed, and inexpensive platforms [39]. Moreover, due to the
small testing sample volume, vulnerable individuals being exposed to dangerous chemicals is not
an issue. Lastly, colorimetric tests are primarily tested with digital images, leading to an objective
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automated analysis by smartphone or camera [40,41]. Table 2 summarizes magnetic-materials-based
colorimetric devices developed and employed for the quantification of biological targets.

Table 2. Summary of the strategies used for magnetic-biomaterials-based colorimetric devices.

Types of
Detection
Platform

Target Magnetic
Biomaterial Linear Range

Limit of
Detection

(LOD)
Advantageousness Detection

Time Ref.

Paper-based
analytical device

(PAD)

Bacteria
(S. typhimurium) Magnetic beads

102 to 108 colony
forming unit (CFU)

mL−1
102 CFU mL−1

Simple, rapid and
sensitive without
pre-enrichment

sample

90 min [42]

Lateral-flow
immunochro-
matographic
assays (LFIA)

Antigen (hCG)
Fe3O4−Pt/
core−shell

nanoparticles
0 to 1 ng mL−1 0.039

ng mL−1

Sensitive more than
conventional

Au-LFIA
- [43]

Lateral-flow
immunochro-
matographic
assays (LFIA)

Bacteria
(B. anthracis)

Super-paramagnetic
particles

2.0× 103 to 1.0 × 106

CFU mL−1
7.0 × 103

CFU mL−1

Sensitive, specificity,
cost and ease of

operation
20 min [44]

Paper-based
MNP-gold

sensing assays

Bacteria
(Escherichia coli

O157:H7)

Magnetic
nanoparticles

1.21× 101 to 1.21 ×
106 CFU mL−1 12 CFU mL−1

Simple to perform,
low cost, rapid

without
pre-enrichment

sample

Less than
30s [45]

Paper-based
analytical
devices

Antigen (PCT) Janus particles 1 to 20 ng mL−1 2 ng mL−1
Not required any
pre-enrichment

sample
13 min [46]

Lateral-flow
immunochro-
matographic
assays (LFIA)

Antigen (CFB) Magnetized Carbon
Nanotube 5 to 100 ng mL−1 5 ng mL−1 Rapid and

low-cost tool 30 min [47]

Peroxide strip
based assay
analyzed by
Smartphone

Bacteria
(S. typhimurium)

Immunomagnetic
nanoparticles

101 to 105

CFU mL−1
1.6 × 101

CFU mL−1

Simple, portable and
low-cost method for

rapid detection
45 min [48]

Nucleic acid
lateral flow

(NALF) assay

Nucleic acid
(L. monocytogenes)

Immunomagnetic
nanoparticles

100 to 107

CFU mL−1
3.5 × 103

CFU mL−1

Excellent viable
capability for viable

L. monocytogenes
6 h [49]

Recently, Russell et al. depicted a sensitive colorimetric assay for the detection sepsis biomarkers
in whole blood on filter papers [50]. Biotinylated capture antibodies and avidin-labeled particles
were used to remove non-specific interactions with target PCT. It was followed by the motion-to-color
transduction process and further amplification via Janus nanoparticles. Finally, these color changes
are then read and quantified by customized smartphone apps. The assay depicted high sensitivity
(limit of detection (LOD) = 2 ng·mL−1) in the dynamic linear range of 1–20 ng mL−1 within 13 min
and potential application in whole blood without preparation. And another example is from Li’s
group, who published a rapid and effective method for a L. monocytogenes gene; it is a major infectious
pathogen that threatens public health worldwide [51]. In this study, in the strong interaction between
streptavidin and biotin, the immunomagnetic-streptavidin is effectively attached to L. monocytogenes
cells for high molecular identification and catalytic activity. The genomic DNA of L. monocytogenes was
extracted, and PCR was performed to create single-strand DNA amplifiers (ssDNA). Finally, through
the nucleic acid lateral flow (NALF) biosensor, ssDNA amplifiers were detected by the naked eye.
The LOD and the linear range for L. monocytogenes were 3.5 × 103 colony forming unit (CFU) mL−1 and
100 to 107 CFU mL−1, respectively.

3.1.2. Fluorescent Biosensing Devices

Fluorescent biosensing devices are based on changes caused by analytes in the chemical
and physical properties of fluorophores, including fluorescence intensity, lifetime, and anisotropy,
in connection with the process of charge transfer or power transmission process [52,53]. In addition,
it has been known as an effective method for multiple and highly sensitive detections of biological
targets in molecular and clinical diagnosis to monitor disease progression and drug/therapy method
response to diagnose images and image-guided surgery [54–57]. The use of magnetic particles enables
the high washing efficiency of the target separation step to rapidly remove the unwanted components,
resulting in the enhancement of the limit of detection. Based on those advantages, widely used
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fluorescence-based technologies for multiple/highly sensitive detections using the magnetic beads,
such as Luminex xMAP [58–61], magnetic modulation biosensing (MMB) [62], Quanterix Simoa [63,64]
and magnetically-modulated optical nanoprobes (MagMOONs) [65,66], have emerged. A recent study
by Wang et al. pointed out a microfluidic biosensing device modification platform for Salmonella
typhimurium measurement using fluorescent labeling and video processing on smartphones. Magnetic
nanoparticles (MNPs) were modified with monoclonal antibodies against Salmonella typhimurium
and then reacted with modified fluorescence microscopy (FMS) with polyclonal antibodies against
Salmonella typhimurium to form a FMS-Salmonella complex. The structure of a smartphone-based
fluorescent microscope system has been used with LED light sources to excite fluorescence to track the
fluorescence points and the number of fluorescent bacteria calculated via real-time video processing
within 2 h. The detection limit (LOD) and linear range of Salmonella typhimurium were 58 CFU
mL−1 and 1.4 × 102 to 1.4 × 106 CFU mL−1, respectively. The existence of Listeri monocytogenes,
Escherichia coli O157: H7, and Vibrio parahaemolyticus in samples did not interfere with the detection of
Salmonella typhimurium [67].

Other fluorescence methods to detect biological targets include the use of composite materials
in which magnetic nanoparticles serve as the main material to facilitate higher detection capacity.
To perform this method, several studies have tried to incorporate magnetic nanoparticles known to
be capable of separating samples into a specific target of interest. In 2019, Zhang et al. developed
fluorescent, magnetic, spore-based (spore@Fe3O4@CDs) microrobots (FMSMs) for detecting toxins
secreted by Clostridium difficile bacteria. Based on fluorescence property, the detection limit of this
platform for Clostridium difficile was 2.13 ng mL−1 and the linear range was 0.38–17.80 ng mL−1 [68].
Therefore, owing to the selectivity of magnetic materials, this technique could be an effective method for
various biological targets. Burg et al. also reported a cluster of magnetic particles based on fluorescence.
Since the fluorescence is based on a cluster of magnetic beads with an active conic tip, a cluster of
magnetic beads provides far greater fluorescent signals than single-particles. Human interleukin-8
was detected by fluorescent devices with a CMOS camera. The detection limit was 0.1 ng L−1 [69].

3.1.3. Surface Plasmon Resonance Biosensing Devices

Surface plasmon resonance (SPR) sensing techniques are based on photonic technology, electronics,
and nanotechnology for label-free optical sensing technology, which allows for direct refractive index
changes and real-time sensor surfaces, providing excellent sensitivity due to magnified electric fields.
The rapid and widespread advancement of SPR technology has been done by using magnetic materials
for the intensity of the sensitivity of reflected light at a specific angle called the resonant angle [70].
The changing color of the solution can be observed due to the change in reflectance angle or wavelength
against time in SPR system [71,72]. Immunoassays with SPR devices have been successfully developed
to detect the extracellular vesicles by using antibodies against CD81 [73]. Meanwhile, Reiner’s group
has utilized magnetic nanoparticles to develop the novel method of SPR combined with fluorescence,
which resulted in 2.4-fold higher fluorescence than just an SPR detection channel only. In addition,
a smartphone integrated compact system has been developed to detect different concentrations of
antibodies under the nM range sensitivity, and the device has a resolution of 7.4 × 10−5 refractive index
unit (RIU) and weight of 40 g [74].

3.1.4. Surface-Enhanced Raman Scattering Biosensing Devices

Surface-enhanced Raman scattering (SERS) was founded in the 1970s by M. Fleischmannand et al.
and can generate the spectral signatures of various biological analytes with its high sensitivity, specificity,
and speed. Especially, SERS has intense penetration in complex biological sample matrices, such as in
blood, and in pork samples [75–77]. For example, Xiong et al. reported the magnetic particle integrated
microfluidic chip applied in SPR for a simple, rapid, and highly sensitive detection of multi cancer
biomarkers (prostate specific antigen (PSA), alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA),
cancer antigen (CA) 125, and CA19-9) with the detection limit of PSA down to 0.2 pg mL−1 and bacterial
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species (E. coli O157: H7 and S. aureus) in 1 µL of body fluids within 8 min (Figures 2 and 3) [78]. Zhang’s
group also demonstrated that S. typhimurium and S. aureus were detected by using aptamer probes and
magnetic gold nanoparticles with enhanced Raman intensity under the SERS intensity at 1582 cm−1 in the
range of 102–107 CFU mL−1. The limits of detection are 35 CFU mL−1 for S. aureus and 15 CFU mL−1 for
S. typhimurium, respectively [79].

Figure 2. (A) Schematic illustration of the Magchain-integrated microchip (MiChip) assay platform:
with (B) a single-channel unit and (C) multiple-channel arrays. Reproduced with permission
from Xiong et al. [78].

Figure 3. (A) Schematic, surface-enhanced Raman scattering (SERS) performance, and corresponding
calibration curve with a mixture biomarkers (PSA, AFP, and CEA) at different concentrations from 0 to
100 ng mL−1; (B) schematic illustration of in-situ screening of detection of Escherichia coli O157:H7 and
Staphylococcus aureus based on an MiChip assay with various concentrations (ranging from 0 to 104 CFU µL−1)
and the results of saliva spiked samples in MiChip assay. Reproduced with permission from Xiong et al. [78].
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3.2. Electrochemical Biosensing Devices

Electrochemical biosensing techniques require the understanding of the electrical properties of the
detection method, such as its potential, current, capacitance, and impedance, to measure the electric
current generated by the oxidation and reduction reactions of analytical targets. They are directly
proportional to the concentrations of analyte in complex biological samples [80–82]. We can categorize
the system of the electrochemical detection in biological samples into four techniques: potentiometric,
conductometric, amperometric, and impedance biosensing devices (see Table 3). The development of
electrochemical equipment, when combined with magnetic materials, has led to great potential for
commercialization of biosensing devices.

3.2.1. Potentiometric Biosensing Devices

Potentiometry is an engaging instrument for many practical applications, because it allows the
measurement of a wide spectrum of ions, and it applies mobile and reasonable price devices in
numerous medical, industrial, and environmental tests [36,83,84]. The potentiometric transduction
was first reported in 1969, in which an enzyme based sensor was used to detect urea [85]. It involves
measuring the potential difference between the working and reference electrodes in order to generate
different potentials from analysis when providing a constant voltage. In addition, there is no significant
current flow between them [86]. Potentiometry usually has a large dynamic range due to the signal
proportional to the logarithm of the ionic activity. In addition, they have a short response time, in the
order of seconds, making them suitable for process control and enabling high sample throughput
in flow analysis. Moreover, their small size, reasonably economical production values, low power
expenditure, and portability, make them more proper for diverse purposes [87,88]. Liu et al. presented
a specific single-cell detection device that is based on target cells that are conjugated with magnetic
beads for the magnetic bead assay and two micro Coulter counters for potentiometric detection of
human umbilical vein endothelial cells (HUVECs) [89]. The HUVECs’ obviously have a much longer
transit time distribution than the non-target rat adipose-derived stem cells (rASCs). They also reported
that the various cell ratios (2%, 5%, 10%, 30%, and 50%) of HUVECs which can be detected in situ were
accurately identified.

3.2.2. Conductometric Biosensing Devices

In this type of device, analytical information is obtained by measuring the electrical conductivity,
due to the charge transmission of cations and anions under the action of an external electric field.
In other words, the measurement is based on an electroanalytical method that involves measuring
conductivity separated by a specific distance or environment, such as nanowires. Conductivity
measurement is based on the alternating current (AC) power supply to apply across the electrode using
an Ohmmeter. The main advantages of the instrumentation are that they do not require a reference
electrode, are inexpensive, have the ability to minimize the direct electrical response, are fast, and are
single-use biological devices [90–92]. In this study, urease based magnetic beads were modified with
graphene oxide and nickel oxide to have conduction of interfacial electrons and high enzyme binding
activity [93]. Upon the target outline in urea samples, the wireless measurement system and the
microfluidic measurement system proceeded to separate testing assays. While using a microfluidic
device, the developed biosensing device could measure urea at the sensitivity 5.582 mV (mg/dl)−1 with
a linearity of 0.959 and high reliability.

3.2.3. Amperometric Biosensing Devices

Amperometry is the one of the most sensitive techniques to obtain high sensitivity in biosensor
devices. This technique is based on the measurement of electric current as a function of the time
due to the oxidation and reduction of an electrolyte in the biochemical reaction, largely depending
on the concentration of the analyte of constant potential. Because most analytes (proteins) cannot
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essentially act as redox partners in the electrochemical reaction, electrons are also not transferred from
the analyte to the working electrode or to the analyte from the electrode. To overcome that problem,
a labeling electrochemical test is required for the electrochemical reaction of the analyte at the electrode
surfaces. Horseradish peroxidase (HRP) and alkaline phosphatase (ALP) are the most commonly used
as labels to catalyze the reaction of substrates to form electroactive products [94,95]. Bandodkar’s
group recently represented a rapid, sensitive, and reasonable price in printed electrochemical devices
for the detection of H2O2 at self-healing electrodes [96]. As illustrated in Figure 4, a Nd2Fe14B
microparticle (NMP)–loaded graphitic inks were used to improve the self-healing ability with highly
repeats recovery. It was followed by amperometric quantification of H2O2, with repeat five times for
each H2O2 concentration at the same location. This assay produced a new self-healing notion, and the
inherent application can also be applied in the wearable device based electrical circuits.

Figure 4. (A) Schematic diagram to illustrate the fabrication of self-healing principle and the
manufacturing process; (B) Nyquist plot for self-healing printed electrodes; (C) cyclic voltammetry
(CV) plots recorded for a self-healing trace; (D) real-time recovery of triple damage 3 mm wide;
(E) amperometric response of the fabricated self-healing H2O2 in different concentrations from 0 to
20mM and under 1-mm-wide damage repetition. Reproduced with permission from [60].

3.2.4. Impedimetric Biosensing Devices

In electrochemical impedance spectroscopy (EIS), there are interference characteristics of
surface-changing electrodes and mechanisms of charge transfer and ion transport in the electrolytic
interface, which have recently become widespread tools for bioreceptors. This method is known as
an oscilloscope scan with a frequency of electrical sweep of the immunoassay system, within 10 kHz
and 10 mHz, with these parameters being resistance (R), resistance transfer charge (Rct) between
solution and electrode surface, Warburg element (Zw), and double-layer capacitance (Cdl) [97,98].
The sample impedance is calculated as the ratio of voltage to current with both amplitude and phase:
a complex number. EIS may have the strongest advantage of lower concentration detection (nano unit
and pico unit) and is capable of testing for unlabeled detection [99,100]. In one of the studies by Wang et
al., thrombin was electrochemically tracked in biological samples in serum using a microfluidic system
and magnetic separation functionalized with the detection of protein. The probe thrombin-aptamer
was coated magnetic beads to capture and separate thrombin target. After the target was injected into
the microfluidic flow cell, the values of impedance changed, owing to the fact that the concentration of
thrombin is proportional to the charges on the thrombin surface. This microfluidic device submitted
a notable, rapid, specific, and sensitive method, with a detection limit of 0.01 nM and a linear range from
0.1 nM to 10 nM [101]. Another study was conducted by Kongsuphol’s team to detect tumor necrosis
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factor (TNF-α) by using a magnetic antibody biosensor-based biosensor platform [102]. Abundant
protein sources are drained from the serum by using magnetic particles in combination with albumin
and IgG antibodies. TNF-α is then captured by TNF-α antibodies conjugated with magnetic particles.
The conjugated TNF-α was eluted from magnetic particles and measured using EIS technique which
combined a structured gold microelectrode array (CSGM) to detect ultrasensitive 1 pg mL−1 with
undiluted human serum and linearity from 1 to 1000 pg mL−1. Both published methods are designed
to be sensitive, simple, and label-free platforms. As shown in Table 3, we summarized the strategies
for electrochemical biosensor using magnetic particles.

Table 3. Summary of the strategies used for magnetic biomaterials based electrochemical biosensing devices.

Device
Concepts Target Magnetic

Biomaterial
Detection

Range LOD Advantageousness Detection
Time

Detection
Method Ref.

Microfluidic
device

Human
umbilical vein

endothelial cells
(HUVECs)

Magnetic beads 13 to 100
cell µL−1 - Simple device and

easy operation - Potentio-metry [89]

Wireless
measurement

system
and microfluidic

measurement
system

Urea Magnetic beads 0 to 50 mV
(mg/dl)

4.780 mV (mg/dl)
−1 for wireless

measurement and
5.582 mV (mg/dl)
−1 for microfluidic

measurement

Reliability
measurement - Conducto-metry [93]

An
immobilization-

free
interdigitated

array
microelectrode

Bacteria (L
monocytogenes)

Immunomagnetic
nanoparticles

3.0 × 101 to
3.0 × 104

CFU mL−1
300 CFU mL−1

Simple, low-cost
and sensitive

method
for rapid screening

- Impedi-metry [103]

Digital
microfluidics -

Nanostructured
microelectrodes

(DMF-NME)
device

Rubella virus
(RV) Magnetic beads 0 to 250 IU

mL−1 0.07 IU mL−1 Sensitive device
with the small size 30 min Ampero-metry [104]

Flexible film
-based devices Viruses (HIV) Magnetic beads

106 to 108

copies
mL−1

106 copies mL−1

Sensitive, robust,
portable,

and inexpensive
device

- Impedi-metry [105]

Screen-printed
car-

bon electrodes
(SPdCEs)

Antigen (IL-8
protein) and
IL-8 mRNA

Magnetic beads -

0.21 nM for IL-8
mRNA and 72.4
pg mL−1 for IL-8

protein

Detectable in
undiluted saliva

samples and
confirm test with

commercial ELISA
Kit

5 h Ampero-metry [106]

Screen-printed
interdigitated

electrode (SPIE)

Bacteria (L
monocytogenes)

Immuno-magnetic
nanoparticles - 1.6 x 103 CFU

mL−1
Simple, low cost and

good specificity 3 h Impedi-metry [107]

Screen Printed
Carbon

Electrodes
(SPCEs)

Antigen (TPM) Magnetic particles 0 to 218.7
ng mL−1 47 pg mL−1 High sensitivity and

specificity Under 3 h Ampero-metry [108]

Screen Printed
Carbon

Electrodes
(SPCEs)

Nucleic acid
(Sola l 7) Magnetic beads - 0.2 pM

Highly sensitive
without

pre-amplification
sample, simple

handling, low cost
and safety

90 min Ampero-metry [109]

Screen Printed
Carbon

Electrodes
(SPCEs)

Nucleic acid
(Ostreopsis cf.

ovata)

Maleimide-coated
magnetic beads - 9 pg µL−1

Sensitivity,
specificity, storage
stability and good
correlation with
other molecular

methods

- Ampero-metry [110]

Paper
microfluidics on
screen-printed

electrodes

Antigen
(MMP-9) Magnetic beads

30 pg
mL−1 and
2 ng mL−1

0.01 ng mL−1

Simplify
manipulation,
providing fast,

simple and sensitive
assay formats

10 min Ampero-metry [111]

4. Magnetic Phenomena-Based Bioassays

In this section, we will discuss magnetic phenomena used in biosensing platforms. Magnetic
materials are basically composed of metals, such as Fe, Co, or Ni, or metal oxides. Since they provide
various advantages, such as larger surface area, specific controllability through a magnetic field,
and functional alterations through surface modifications, they are often used to fulfill requirements
for developing advanced forms of biosensing as ways of separating and pre-treatment of samples
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or used as detection probes for enhancing measured signals. Moreover, magnetic particles have
been employed in various magnetic phenomena-based bioassays. This review will categorize recent
magnetic nanoparticle-based assays into giant magnetoresistance (GMR), magnetic tunnel junction
(MTJ), magnetic particle spectroscopy (MPS), and the nuclear magnetic resonance (NMR)-based assay.

4.1. GMR-Based Bioassay

Giant magnetoresistance (GMR) biosensor employs the basic phenomenon that occurs in magnetic
materials including nanoparticles, multilayered thin films, and permanent magnets combined with
bioreceptors. This appears alteration of magnetization in so called “free-layer” which consists GMR
sensor platform, leading to the change of the resistance of GMR sensors [112] The detection takes
place through measuring the signal intensity, which would be proportional to number of nanoparticles
bound to the unit area [113]. It has been demonstrated that GMR sensors show highly sensitive and
real-time signal readout. Furthermore, they can be produced with low cost which will be advantageous
for mass production. [114–116] Through surface modification of MNPs, this platform can be widely
used for detection of several biological targets as shown in Figure 5A,B. [113,117–122].

4.2. MTJ-Based Bioassay

Magnetic tunnel junction (MTJ) sensors, also one of the magneto resistive sensors, often called as
tunnel magnetoresistance (TMR) sensor require low magnetic field while still offering high sensitivity
because they possess higher ratio of magnetoresistance compared with GMR. Furthermore, there are
various important qualities of TMR sensor platform such as convenience, less demand of sample
quantity, wider conditions for choices of working temperature and voltage [123,124]. Furthermore,
this feature can lead to fabrication of power-saving sensors, strengthening the merits of producing
economic and eco-friendly bioassay devices [125]. TMR is caused by spinning coming from electron
tunneling. Several studies have done for detecting bio recognition elements. For instance, Xiao’s team
detected magnetic nanoparticles conjugated with DNA on MgO-based sensor surface [126]. To detect
E. coli O157:H7 while using test strips, capture antibody-conjugated magnetic beads were employed.
Signals were measured based on a potential change caused by difference of magnetic field fluctuation
pattern due to the contrast between existence and absence of target binding to antibody-conjugated
MNPs [127] (see Figure 5C,D). Mu et al. also conducted a study of detecting ricin on a test strip with
magnetic field generating platform constituting of vertical and horizontal coils [128].
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Figure 5. (A) Illustration of giant magnetoresistance (GMR) biosensors for time-domain magnetorelaxometry
with the corresponding resistance signals in response to the external magnetic field; (B) simplified
measurement setup with electromagnet and sensor array and GMR sensor array; (C) the Wheatstone
bridge based on tunnel magnetoresistance (TMR) sensors and the sandwich assay on a test strip; (D) the
results of the system under different magnetic fields, and the real-time response of the system when applying
the magnetic beads. Inset: magnetic field dependence on the resistance of a TMR sensor. Reproduced with
permission from [122,127].

4.3. MPS-Based Bioassay

Magnetic particle spectroscopy (MPS), also known as magnetization response spectroscopy,
is a newly rising technique that applies a sinusoidal magnetic field applied to superparamagnetic
iron oxide nanoparticles and observes their periodical saturation of magnetization in response to
the magnetic field [129,130]. MPS signal is only observed from magnetic nanoparticles, rather than
iron in blood or biological tissue, which makes it more accurate to quantify MNPs unaffected by
other undesired factors [131]. Combined with Brownian relaxation methods, biotin-coated MNPs
captured streptavidin successfully, which also showed sensitivity of detecting streptavidin at as low
a concentration as 75nM. The demonstrated study adopted the changes in MPS patterns that occur
when MNPs are bound to specific target, while diminishing the need of washing process [132].

4.4. NMR-Based Bioassay

Nuclear magnetic resonance is a physical event that occurs when a certain atomic nucleus is
placed in magnetic field to absorb electromagnetic radiation and released again. Through numerous
investigations of this event, one can apply this event to analyze the magnetic characteristics of nuclei
and develop the information to detect bio-molecules as well [133]. Due to the facts that this signal can
pass through samples without destructing them and sample preparation time is not necessary, NMR
methods are adequate to analyze biological samples, and to save up time for analysis. With various
modifications to improve this technique, fast and accurate detection with small sample volume has
been made possible, also enabling mass production of handy-sized, easy-of-use sensor platform with
low cost [134,135]. Addition of magnetic nanoparticles to the platforms can guarantee higher sensitivity
and shorten the testing time. To detect prostate-specific antigen, nitrocellulose membrane-based
test strips were designed and measured by a portable NMR relaxometer [136]. Many other research
groups attempted to adopt this technique to detect several biological components such as food borne
bacteria [137–140] (See Figure 6).
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Figure 6. (A) Illustration of magnetic immunosandwich on 3D fiber filters used as a solid phase:
1— filter surface, 2—capture antibody, 3—antigen, 4—biotinylated tracer antibody, 5—streptavidin,
6—magnetic nanoparticles; (B) detection of superparamagnetic nanolabels by their non-linear response
at combinatorial frequencies from the whole volume of 3D solid phase located inside a pipette tip;
(C) portable nuclear magnetic resonance biosensor; (D) assay for the highly sensitive and rapid detection
of foodborne bacteria in complex matrices. Reproduced with permission from [130,134].

5. Concluding Remarks and Future Perspectives

Recent advances in magnetic particles have been focusing on employing various biomedical
applications to achieve highly sensitive and rapid sensing performance. Magnetic particle-based
target-molecule separation processes for sample preparation have been developed and reported by
multiple research groups. For point-of-care biosensing devices, various magnetic particles were
easily applied for the enhanced performances of biosensors with various techniques, such as the
optical/electrochemical method combined with a microfluidic channel or LFA system, and also various
magnetic phenomena-based bioassays, resulting in greatly simplifying extraction and detection
procedures. In this review, the use of magnetic materials in the efficient isolations of various
molecules and cells, and their successful use in many types of diagnostic biosensors, were summarized.
These simple, rapid, and sensitive approaches may show promising developments in point-of-care
and high-throughput biological devices for precise testing and analysis within a short time, greatly
improving human health in the future.
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