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Abstract: This study aimed to examine the protective effect of Artemisia iwayomogi extract (AI) against
hypertriglyceridemia induced by a high-fat diet (HFD) in mice and to uncover the underlying
molecular mechanisms. C57BL/6N mice were fed chow, HFD, HFD + 0.1% AI, HFD + 0.25% AI,
or HFD + 0.5% AI for 10 weeks. The addition of 0.25% and 0.5% AI resulted in dose-dependent
improvements in the major parameters of hypertriglyceridemia, including plasma triglyceride, free
fatty acids, apolipoprotein B, and lipoprotein lipase, with parallel reductions in body weight gain,
hepatic lipid accumulation, and insulin resistance. These beneficial effects were accompanied by
the activation of adiponectin-adenosine monophosphate-activated protein kinase (AMPK) mediated
signaling cascades in the liver, which downregulated molecules involved in lipogenesis and
concurrently upregulated molecules related to fatty acid oxidation. The downregulation of molecules
involved in very low density lipoprotein assembly, which was associated with improved hepatic
insulin signaling, also appeared to contribute to the AI-induced attenuation of hypertriglyceridemia.

Keywords: Artemisia iwayomogi; hypertriglyceridemia; adiponectin; lipogenesis; fatty acid oxidation;
very low density lipoprotein synthesis

1. Introduction

Hypertriglyceridemia refers to a fasting plasma triglyceride (TG) concentration that typically
increased above the 95th percentile for age and sex in the population, along with the presence
of additional quantitative or qualitative lipoprotein abnormalities [1,2]. The elevated plasma TG
concentrations are predominantly seen in disorders characterized by insulin resistance, central obesity,
and metabolic syndrome [3] and are considered as an independent risk factor for atherosclerotic
cardiovascular disease [4]. Plasma TGs can be obtained from exogenous sources such as dietary
fat and are carried in chylomicrons or they can be obtained from endogenous sources such as the
liver and are carried in very low density lipoprotein (VLDL) particles. In capillaries within adipose
and muscle tissues, these lipoproteins and chylomicrons are hydrolyzed by lipoprotein lipase (LPL)
into free fatty acids (FFAs). Experimental animals have been subjected to a high-fat diet (HFD)
to induce hypertriglyceridemia with concomitant visceral adiposity, hepatic steatosis, and insulin
resistance. The abnormal concentration of TG-rich lipoproteins in the fasting plasma of HFD-fed
rodents resulted from upregulated lipogenic and secretory pathways and/or decreased peripheral

Int. J. Mol. Sci. 2017, 18, 1762; doi:10.3390/ijms18081762 www.mdpi.com/journal/ijms



Int. J. Mol. Sci. 2017, 18, 1762 2 of 17

catabolism, which occurred mainly through reduced LPL activity. Additionally, the insulin resistance
observed in HFD-fed animals drove the increased flux of FFAs into hepatocytes and stimulated VLDL
synthesis and secretion by the liver [5], which contributed to hypertriglyceridemia.

The general treatment regimen for hypertriglyceridemia includes lifestyle changes and dietary
modifications. When these have not been successful, drug treatments, including fibrates, omega-3 fatty
acids, and nicotinic acid, alone or in combination with statins, are also used [6]. The potential of natural
products to treat hypertriglyceridemia is still largely unexplored and might offer alternative remedies.
Artemisia iwayomogi is a perennial aromatic plant with yellow flowers, distributed throughout Korea.
The aerial parts of A. iwayomogi have been used in oriental medicine for centuries to cure various
infectious diseases such as carbuncles, cholecystitis, hepatitis, and jaundice [7,8]. A hepatoprotective
effect of A. iwayomogi extract was reported in rodent models with different types of liver diseases, such
as alcoholic fatty liver [9], carbon tetrachloride-induced chronic hepatic fibrosis [10,11], and cholestatic
liver fibrosis [12]. We previously reported that A. iwayomogi extract (0.5% w/w diet) reduced visceral fat
accumulation and obesity-related biomarkers in mice fed a HFD by modulating the expression of genes
associated with adipogenesis and inflammation in adipose tissues [13]. Concurrently in this extract-fed
mice, we also observed a decrease in plasma TG levels, however the underlying mechanism responsible
was not elucidated. A more recent study reported that a mixture (0.1% w/w diet) of A. iwayomogi and
Curcuma longa extracts provoked a synergistic effect in attenuation of hyperlipidemia in HFD-fed mice,
but A. iwayomogi extract (0.1% w/w diet) itself did not affect serum TG levels [12]. In addition to an
appropriate dose necessary to reduce plasma TG levels, the differences in extract solvent and methods
used in these two studies may also account for the reported variation in A. iwayomogi extract activity.
Therefore, our study aimed to examine the protective effects of different doses of A. iwayomogi extract
against hypertriglyceridemia induced by a HFD in mice and to uncover the molecular mechanisms
involved in TG-rich lipoprotein metabolism in the liver.

2. Results

2.1. Chromatographic Analysis of A. iwayomogi Extract (AI)

The high performance liquid chromatography (HPLC) chromatogram revealed that scopolin
(I, 0.97 ± 0.12% w/w), 5-O-caffeoylquinic acid (II, 3.39 ± 0.34% w/w), patuletin-3-O-glucoside
(III, 0.50 ± 0.11% w/w), scopoletin (IV, 0.84 ± 0.01% w/w), 3,5-dicaffeoylquinic acid (V, 5.20 ± 0.4%
w/w) and 3,4-dicaffeoylquinic acid (VI, 0.79 ± 0.02% w/w) were the major organic components of
A. iwayomogi extract (AI) (Figure 1).
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Figure 1. The contents of the individual bioactives identified in Artemisia iwayomogi extract (AI).
(A) A representative high performance liquid chromatography (HPLC) chromatogram of the compound
present in the extract is shown. The sample was run three times at 330 nm; (B) the molecular structures
and concentrations (% w/w) of compounds identified in AI.

2.2. AI Attenuates Hypertriglyceridemia in Mice Fed a High-Fat Diet

The metabolic actions of AI were evaluated following the administration of the extract by
food admixture to C57BL/6N male mice challenged with a HFD. AI administration significantly
reduced the body weight of HFD-fed mice in a dose- and time-dependent manners. After 10 weeks
of treatment, 0.25% and 0.5% AI reduced the HFD-induced weight gain in mice by 24% and 36%,
respectively. Importantly, this effect on body weight gain was not a result of altered feeding behavior
(Figure 2A). HFD-induced hypertriglyceridemia was significantly improved in the mice that received
0.25% and 0.5% AI; the plasma levels of both TG and total apolipoprotein B (ApoB), the components
of VLDL, were reduced. The decreased cholesterol concentration in the plasma of 0.5% AI-fed mice
resulted mainly from a decrease in VLDL + low density lipoprotein (LDL) cholesterol. The plasma
levels of free fatty acids and LPL, as determined by enzyme-linked immunosorbent assay (ELISA),
were reduced by AI treatment in HFD-fed mice. The AI-induced improvements in lipid profiles
appeared dose-dependent and were most significant at the highest dosage tested, 0.5% (Figure 2B,C).
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Figure 2. AI attenuates hypertriglyceridemia in high-fat diet (HFD)-fed mice. (A) Changes in body
weight and food intake; (B) plasma levels of triglyceride, total apolipoprotein B, total cholesterol, very
low density lipoprotein (VLDL) + LDL cholesterol, and high density lipoprotein (HDL) cholesterol;
(C) plasma free fatty acid and lipoprotein lipase concentrations. Data are the mean ± standard error of
the mean (SEM) of n = 8 mice. Statistical analysis was performed using one-way analysis of variance
(ANOVA) and analyzed further by Duncan’s multiple range test. Different letters above the bars
indicate significant differences among experimental groups (p < 0.05).

2.3. AI Alleviates High-Fat Diet-Induced Hepatic Lipid Accumulation

The 10-weeks HFD significantly increased the size of the liver and lightened the color of the liver.
AI supplementation clearly reversed the HFD-induced adverse changes in a dose-dependent manner.
The mass of liver tissue from mice fed the HFD supplemented with 0.5% AI was 30% lower than those
fed the HFD only (Figure 3A). In addition, the reduced liver mass observed in mice that received
0.5% AI was associated with a smaller number and size of lipid droplets, a feature that correlated with
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leanness and hepatic steatosis scores (Figure 3B). Although the hepatic inflammation scores followed a
pattern similar to that of the steatosis scores, there were no statistically significant difference among
the groups. The HFD-induced lipid accumulation in the liver was ameliorated by AI administration,
as shown by the dose-dependent reduction of hepatic levels of TG, cholesterol, and FFAs (Figure 3C).
Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities associated
with hepatic injury were markedly increased in HFD-fed mice, but were reduced by AI administration
in a dose-dependent manner (Figure 3D).
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Figure 3. AI alleviates hepatic steatosis in HFD-fed mice. (A) Liver weights and gross morphology;
(B) representative images of H&E-stained sections of liver (scale bar = 100 µm) and scores for hepatic
steatosis and inflammation; (C) hepatic levels of triglyceride, cholesterol, and free fatty acid; (D) plasma
aminotransferase (ALT) and aspartate aminotransferase (AST) activities; Data are the mean ± SEM of
n = 8. Statistical analysis was performed using one-way ANOVA and analyzed further by Duncan’s
multiple range test. Different letters above the bars indicate significant differences among experimental
groups (p < 0.05).

2.4. AI Activates Adiponectin-Adenosine Monophosphate-activated Protein Kinase (AMPK) Mediated
Signaling Pathways in the Liver

As plasma adiponectin level was completely elevated by AI administration (Figure 4A) and
AMPK is one of the key activators of the fatty acid catabolism responsible for sensing low energy
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levels, we tested whether prolonged AI administration could modulate the adiponectin-AMPK
pathways in the liver of HFD-fed mice. Immunoblotting and reverse transcription polymerase chain
reaction (RT-PCR) analysis were conducted on the liver tissues of mice fed chow, HFD, and 0.5%
AI-supplemented HFD. In HFD-mice, the observed changes (the downregulation of adiponectin
receptor 2 ((AdipoR2) and phospho (p)-AMPK protein levels and the upregulation of p-S6 Kinase
1 (S6K1) protein expression) were completely normalized by the administration of AI (Figure 4B).
The expression of lipogenic nuclear transcription factors, such as peroxisome proliferator-activated
receptor γ (PPARγ), sterol regulatory element binding protein 1c (SREBP1c), and liver X receptor α
(LXRα), was robustly downregulated in the liver of AI-treated mice compared with the HFD mice.
The functional relevance of the AI-induced downregulation was confirmed by the decreased expression
of direct target genes, including cluster of differentiation 36 (CD36), liver fatty acid binding protein 1
(FABP), ATP citrate lyase (ACL), acetyl-coenzyme A (CoA) carboxylases (ACC), and fatty acid synthase
(FAS) (Figure 4C). Additionally, the supplementation of AI to the HFD had a strong positive impact
on the expression of the regulators of hepatic lipolysis, such as hepatic triglyceride lipase (HTGL)
and acyl CoA synthetase (ACS), and of the transcription factors involved in fatty acid oxidation
and inflammation, such as peroxisome proliferator-activated receptor α (PPARα) and peroxisome
proliferator-activated receptor-γ coactivator 1α (PGC1α), and their target genes including carnitine
palmitoyltransferase 1 (CPT1), mitochondrial transcription factor A (TFAM), nuclear respiratory
factor 1 (NRF1), tumor necrosis factorα (TNFα), and interlukin-6 (IL-6) (Figure 4D). The expression of
TG synthesis enzymes, such as glycerol-3-phosphate acyltransferase (GPAT), glycerol-3-phosphate
dehydrogenase (GPDH), phosphatidate phosphohydrolase (p), and diacylglycerol acyltransferase
(DGAT), was significantly downregulated in the liver of AI-treated mice compared with the HFD-fed
mice (Figure 4E). 
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Figure 4 Figure 4. AI activates adiponectin-AMPK mediated signaling pathways in mice. (A) Plasma

adiponectin concentrations; (B) representative western blot analysis and quantification of AdipoR2,
total adenosine monophosphate-activated protein kinase (AMPK), p-AMPK, total S6K1, and p-S6K1 in
the liver; Representative reverse transcription polymerase chain reaction (RT-PCR) product bands and
quantitative comparison of mRNA expression for (C) lipogenesis, (D) lipolysis, fatty acid oxidation,
inflammation and (E) triglyceride synthesis in the liver. Results are presented as the mean ± SEM.
Statistical analysis was performed using one-way ANOVA and analyzed further by Duncan’s multiple
range test. Different letters above the bars indicate significant differences among experimental groups
(p < 0.05).

2.5. AI Improves Insulin Resistance and Downregulates Molecules Involved in Very Low Density
Lipoprotein Assembly

AI also prevented the negative impact of the HFD on glucose homeostasis; fasting blood glucose
and insulin levels were both reduced and the homeostasis model assessment of basal insulin resistance
(HOMA-IR) value was decreased (Figure 5A). In addition, mice treated with AI showed improved
tolerance to an oral glucose load, as demonstrated by a decreased area under the curve (AUC)
value compared with the HFD-fed mice (Figure 5B). As the improved hepatic insulin sensitivity was
associated with reduced VLDL assembly from TG and secretion by the liver, we evaluated whether
AI administration could regulate the signaling molecules involved in insulin sensitivity and VLDL
assembly in the liver. The downregulation of the phosphorylated form of insulin receptor substrate 1
(IRS1), protein kinase B (AKT), and forkhead box O1 (FOXO) proteins induced by HFD was completely
reversed by AI administration. The protein expression of ApoB100 and gene expression of microsomal
triglyceride transfer protein (MTTP), disulfide isomerase (PDI) and apolipoprotein CIII (ApoCIII),
which were involved in VLDL packaging, were strongly downregulated in the livers of mice that
received AI compared with those of HFD-fed mice (Figure 5C,D).
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insulin and glucose and homeostasis model assessment of basal insulin resistance (HOMA-IR)) index;
(B) oral glucose tolerance test (OGTT) and area under the curve (AUC); (C) densitometric quantification
of the phosphorylation of IRS1, AKT, FOXO, and ApoB100 in the liver; (D) hepatic expression of genes
involved in VLDL assembly; Statistical analysis was performed using one-way ANOVA and analyzed
further by Duncan’s multiple range test. Different letters above the bars indicate significant differences
among experimental groups (p < 0.05).

3. Discussion

In the present study, the ethanol extract of A. iwayomogi was supplemented to HFD-fed mice.
At concentrations of 0.25% and 0.5% AI, dose-dependent improvements were observed in the
major parameters of hypertriglyceridemia, such as plasma TG, FFA, ApoB, and LPL levels. The
supplementation of 0.25% and 0.5% AI (equivalent to 250 and 500 mg·kg−1 body weight of mice/day,
respectively) corresponded to intakes of approximately 1.2 g and 2.4 g/60 kg adult/day, respectively,
when calculated on the basis of normalization to body surface area as recommended by Reagan-Shaw,
Nihal, and Ahmad [14] and the US Food and Drug Administration (Available online: https://www.fda.
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gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm078932). The
toxicological study of AI used in this experiment was conducted in male and female Sprague-Dawley
rats after a 13-week repeated oral administration of 500, 1000, or 2000 mg·kg−1 body weight/day
and revealed no treatment-related mortality or adverse effects, including clinical observations, motor
activity assessment, body weight/weight gain, food consumption, ophthalmoscopy, clinical pathology,
hematology, urinalysis, organ weights, gross pathology, or histopathology. Therefore, the no observed
adverse effect level (NOAEL) of AI was estimated as equal to or greater than 2000 mg·kg−1 body
weight/day in both male and female animals [15]. Similarly, Kim et al. [16] reported the NOAEL for
fertility and early embryonic development of A. iwayomogi hot water extract as 2000 mg·kg−1 body
weight/day for rats.

The HPLC chromatogram of AI revealed the presence of relatively high amounts of specific
chlorogenic acids, such as 3,5-dicaffeoylquinic acid (5.2% w/w), 5-O-caffeoylquinic acid (3.4% w/w),
and 3,4-dicaffeoylquinic acid (0.8% w/w). Chlorogenic acids are a family of esters formed between
certain trans-cinnamic acids and (-)-quinic acid and are one of the most abundant polyphenols in
the human diet; coffee, fruits, and vegetables are the major sources [17]. Approximately 71 different
species of chlorogenic acid have now been identified from different sources [18,19]. Some in vitro
and in vivo potential pharmacological properties have been reported, including hypoglycemic,
antihypertensive, antiviral, antifungal, hepatoprotective, neuroprotective, and immunoprotective
activities [20]. 5-O-Caffeoylquinic acid was reported to prevent mice from diet-induced obesity and
obesity related metabolic syndromes, including hepatic steatosis, insulin resistance, and chronic
inflammation [21–23]. Other types of chlorogenic acids, such as 3,5-dicaffeoylquinic acid and
3,4-dicaffeoylquinic acid, were also effective for the inhibition of oleic acid-induced lipid accumulation
in human hepatoma cell lines (HepG2) [24,25]. Miyamae et al. [26] suggested that caffeoyl groups
bound to quinic acid are important for activity and the more caffeoyl groups are bound to quinic acid,
the higher accelerating activity on ATP production exhibits.

Besides chlorogenic acids, scopolin (0.97% w/w), scopoletin (0.84% w/w), and patuletin-3-O-
glucoside (0.50% w/w) were also present in AI in considerable amount. Scopoletin and scopolin
(a glucoside form of scopoletin) are coumarin compounds which have been identified in many different
medicinal plants, including species of Scopolia, Brunfelsia, Solanum, and Mallotus, in addition to
Artemisia. [27]. Data from our laboratory have shown that 0.02% (w/w) scopolin supplemented to
HFD mice significantly prevented increments in body weight, and hepatic lipids levels [28]. Scopolin
(100 mg·kg−1 body weight) ameliorated adjuvant-induced arthritis in rats by the downregulation
of proinflammatory and proangiogenic cytokines, such as vascular endothelial growth factor, basic
fibroblast growth factor-2, and interleukin-6 [29]. Scopoletin (0.05% w/w) effectively attenuated
alcohol-induced hepatic steatosis in HFD-induced obese mice by the inhibition of lipogenesis through
modulation of the AMPK–SREBP1c signaling pathway [30]. The involvement of scopoletin in the
protection from the risk of Alzheimer’s disease has been suggested as this compound increased
extracellular acetylcholine concentration, which is responsible for regulating learning and memory
in rat brain. Patuletin-3-O-glucoside is commonly found in A. iwayomogi, but not in other species of
Artemisia, such as A. annua and A. capillaries [31–34], and its physiological functions are still unknown.
Further studies are needed to gain insight into the contributions of each phenolic compound to the
AI-induced attenuation of hypertriglyceridemia in mice.

AMPK is a conserved intracellular energy sensor that has been implicated in the regulation
of glucose and lipid homeostasis in hepatocytes [35]. HFD per se reduces circulating adiponectin
level, which results in the decreased phosphorylation of AMPK via reduced liver kinase B1 (LKB1)
phosphorylation in the liver. The inactivation of AMPK leads to increased phosphorylation and
activation of mammalian target of rapamycin (mTOR)/S6K1, a subsequent increase in phosphorylation
of LXRα [36], and the ultimate activation of SREBP1c, a lipogenic transcription factor. AMPK is
also a well-established cellular energy sensor that switches on catabolic pathways, including fatty
acid oxidation, and switches off anabolic pathways, including lipogenesis [37]. The HFD-induced



Int. J. Mol. Sci. 2017, 18, 1762 10 of 17

inactivation of AMPK negatively regulated fatty acid oxidation through the inactivation of the
transcription factors PGC1α and PPARα and the downregulation of their target genes, including
CPT1, NRF1, and TFAM (Figure 6).

We observed that AI effectively reversed the HFD-induced decreases in plasma adiponectin level
and hepatic AMPK phosphorylation in mice. The activation of AMPK following AI administration was
accompanied by the inactivation of a downstream signaling cascade through S6K1, LXRα, SREBP1c,
PPARγ, and their target genes involved in lipogenesis (FAS, ACL, ACC, FABP, and CD36), and by the
activation of a signaling cascade through PGC1α, PPARα, and their target genes (CPT1, NRF1, and
TFAM) involved in fatty acid oxidation (Figures 4 and 6). The TG biosynthetic pathway in the liver
is catalyzed by several enzymes: GPAT and DGAT catalyze the first and last steps in TG synthesis,
respectively. GPDH is the enzyme responsible for the catalysis of the reversible redox conversion
of dihydroxyacetone phosphate to glycerol 3-phosphate and phosphatidate phosphohydrolase
(PAP) catalyzes the dephosphorylation of phosphatidate, which yields diacylglycerol and inorganic
phosphate [38–41]. In the meantime, hepatic TGs are hydrolyzed by HTGL to form FFAs and the
carboxyl group of the FFA forms a linkage with the thiol group of CoA to yield a fatty acyl-CoA; this
process is catalyzed by ACS. The AI-induced attenuation of hypertriglyceridemia observed in HFD-fed
mice was also associated with the downregulation of genes involved in TG biosynthesis (GPAT, GPDH,
PAP, and DGAT) (Figure 4E) and the upregulation of genes related to TG hydrolysis (HTGL and ACS)
in the liver (Figure 4D).
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VLDL assembly in the liver is dependent on substrate availability and tightly regulated by
insulin [42,43]. When hetero-dimerized with its small subunit PDI in the endoplasmic reticulum, MTTP
catalyzed the transfer of TG to nascent ApoB, the rate-limiting step in hepatic VLDL production [44–46].
Under fasting conditions, hepatic VLDL production is induced, increasing VLDL secretion into the
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blood, whereas in response to postprandial insulin release, hepatic VLDL production is suppressed
to limit plasma TG excursion [47–50]. The acute inhibition of VLDL production by insulin is critical
for the rapid adaptation of the liver metabolism between fasting and refeeding states to maintaining
plasma lipids within the physiological range. However, in an insulin-resistant state, hepatic VLDL
production is elevated: the cell surface insulin receptor and intracellular mediators such as IRS1
and AKT are dephosphorylated, leading to decreased phosphorylation and degradation of FOXO
and subsequent upregulation of MTTP and ApoC, which are key molecules in the assembly and
intracellular trafficking of newly synthesized VLDL (Figure 6). We found that AI efficiently reversed
the HFD-induced insulin resistance in mice as the fasting plasma levels of insulin and glucose and the
AUC value from oral glucose loading were all significantly decreased. Furthermore, AI administration
increased the phosphorylated form of proteins involved in insulin signaling, such as p-IRS1, p-AKT,
and p-FOXO, and subsequently suppressed MTTP, PDI, and ApoCIII genes and ApoB100 protein in
the liver (Figures 5 and 6). The favorable effects of AI, comprising the improvement of HFD-induced
insulin resistance and the downregulation of molecules involved in VLDL assembly in the liver, might
be partially reflected in decreased plasma concentrations of triglyceride and ApoB protein (Figure 2B).

4. Materials and Methods

4.1. Preparation of AI and HPLC Analysis

The dried aerial part of A. iwayomogi was collected from Kyung-Dong Oriental Market in South
Korea and identified by Wan Kyunn Whang. A voucher was deposited at the Botany Resources
Laboratory at Chung-Ang University (Seoul, Korea). The A. iwayomogi was coarsely powdered and
extracted with 50% ethanol on a rotary shaker at room temperature for 48 h. Liquid extract was
separated and extracted with 50% ethanol at room temperature for additional 24 h. The ethanol
extract was filtered with filter paper (Hyundai Micro Co., Seoul, Korea) and concentrated in a vacuum
evaporator (N-11, Eyela, Tokyo, Japan). The mixture was sterilized for 10–20 min at 80–95 ◦C, dried in
a spray dryer (B-290, Buchi, Germany) with maltodextrin.

For the HPLC of AI, the dried ethanol extract of A. iwayomogi (1 mg) was immersed in
1 mL 50% aqueous ethanol and filtered through a 0.2-µm membrane filter. HPLC analyses were
performed using a Waters HPLC system (Waters Corporation, Milford, MA, USA) with an autosampler.
Chromatographic separation was achieved using a Sunfire C18 column (4.6 mm × 250 mm, 5 µm inner
diameter, Waters) at 30 ◦C with a flow rate of 0.9 mL·min−1 and a mobile phase composed of 0.1%
(v/v) aqueous formic acid (A) and acetonitrile (B) using the following gradient elution: 85–84% A
from 0–5 min; 84–72% A from 5–10 min; 72–69% A from 10–15 min, and 69–40% A from 15–20 min.
The injection volume was 10 µL and the detection wavelength was set at 330 nm.

4.2. Animals and Diets

Five-week-old male C57BL/6N mice (18–20 g) were obtained from Orient Bio (Gyeonggi-do,
Korea) and housed in a pathogen-free facility at Yonsei University (Seoul, Korea) at room temperature
with a 12-h light/dark cycle. The study was approved by the Institutional Animal Care and Use
Committee of the Yonsei Laboratory Animal Research Center (Permit no. IACUC-A-201402-142-01,
10 February 2014). The animals were allowed an acclimatization period of one week, during which
they were fed a commercial diet (Purina Rodent Chow 5001, Nestlé Purina, St. Louis, MO, USA)
with ad libitum access to tap water. Thereafter, the mice were divided into five groups (n = 8/group),
which were each allocated to one of five experimental diets: chow diet (Chow), high-fat diet (HFD)
(200 g fat·kg−1 body weight (170 g of lard and 30 g of corn oil) + 1% (w/w) cholesterol), and HFD
supplemented with 0.1% AI, 0.25% AI, and 0.5% AI, respectively. The mice were subjected to the
experimental diet for 10 weeks, during which time all animals were permitted ad libitum access to
the diet and water. Throughout the experimental period, weekly body weight and daily food intake
were measured. At the end of the experiment, mice were anaesthetized with 0.15 mL avertin (2.5% in
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tert-amyl alcohol) per 10 g body weight after a 12-h fast. Blood was drawn from the abdominal aorta
into an ethylenediaminetetraacetic acid (EDTA)-coated tube. Plasma was subsequently obtained
by centrifuging the blood at 2000× g for 15 min at 4 ◦C. The livers were excised, rinsed with
phosphate-buffered saline (PBS), and weighed. A portion of each liver was fixed in 10% formalin for
further analysis. The plasma and liver samples were stored at −80 ◦C until analysis.

The oral glucose tolerance test (OGTT) was performed 2 weeks prior to the end of the experimental
period on 6 h-fasted mice. Glucose (2 g kg−1 bodyweight) was administered by oral gavage
and the blood glucose levels were measured from the tail blood at 0, 15, 30, 60, 90, and 120 min
after administration.

4.3. Biochemical Analysis

The plasma levels of TG, FFAs, total cholesterol, high density lipoprotein (HDL)-cholesterol, and
glucose were enzymatically determined using commercial kits (Bio-Clinical System, Gyeonggi-do,
Korea). Plasma LDL + VLDL cholesterol levels were calculated by subtracting the level of HDL
cholesterol from the total cholesterol. Plasma total ApoB and LPL concentrations were measured
using the commercially available mouse-specific enzyme-linked immunosorbent assay (ELISA) kits
(MyBiosource, San Diego, CA, USA). The plasma concentrations of adiponectin and insulin were
measured by using a commercially available mouse ELISA kit (Millipore, Billerica, MA, USA). The
HOMA-IR, which was used to assess insulin resistance, was calculated as fasting plasma glucose ×
fasting plasma insulin/22.5. The plasma activities of AST and ALT were measured using commercial
kits (Bio-Clinical System). After homogenization of the liver tissues, the lipids were extracted with
chloroform: methanol (2:1) as previously described [51]. The chloroform phases were carefully
removed, dried under nitrogen, and re-suspended in ethanol; TG, cholesterol and FFAs were assayed
using same kits that were used for quantification in plasma.

4.4. Histological Examination

For hematoxylin and eosin (H&E) staining, formalin-fixed liver was embedded into paraffin and
cut into 5 µm sections. An observer blinded to the treatment groups assigned steatosis (0–5 scale)
and inflammation (0–3 scale) values to H&E-stained liver sections according to semi-quantitative
pathological standards. Briefly, the pathological degree of steatosis was visually scored in five
non-contiguous medium-power fields (MPFs, ×100) as follows: no steatosis = 0; minimal steatosis = 1;
slight steatosis = 2; moderate steatosis = 3; marked steatosis = 4; severe steatosis = 5. In addition,
the degree of lobular inflammation was scored as follows: no inflammation foci = 0; 1–2 inflammation
foci per 100 × field = 1; 3–4 inflammation foci per 100 × field = 2; >4 inflammation foci per 100 × field = 3.

4.5. Semi-Quantitative RT-PCR Analysis

The total mRNA from liver samples was isolated using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). RT-PCR was performed using a Superscript II kit (Invitrogen). The forward and reverse
primer sets for target and internal marker genes are listed in Table S1 and the RT-PCR conditions were
as follows: initial denaturation, 5 min, 94 ◦C; followed by 35–38 cycles of denaturation, 30 s, 94 ◦C;
annealing, 30 s, 55 ◦C; and extension, 1 min, 72 ◦C; with a final extension period of 10 min at 72 ◦C.
Next, 4 µL of each PCR reaction mixture was mixed with 1 µL 6× loading buffer and loaded onto a
2% agarose gel containing ethidium bromide. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
mRNA levels were used as an internal control.

4.6. Western Blot Analysis

The liver tissues were lysed in Western lysis buffer consisting of 100 mM Tris-HCl (pH 7.4),
5 mM EDTA, 50 mM NaCl, 50 mM sodium pyrophosphate, 50 mM NaF, 100 mM orthovanadate,
1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 2 µg·mL−1 aprotinin, 1 µg·mL−1 pepstatin
A, and 1 µg·mL−1 leupeptin. The samples were frequently vortexed during a 10-minute incubation
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period on ice and centrifuged for 20 min at 1300× g. The protein concentration of each supernatant
was quantified using a protein assay reagent from the Bradford assay (Bio-Rad, Richmond, CA, USA)
in accordance with the manufacturer’s instructions.

The proteins were loaded onto an 8% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE), and transferred to a nitrocellulose membrane (Amersham, Buckinghamshire, UK). After
transfer, the membranes were blocked with 5% bovine serum albumin in Tris-buffered saline with 0.05%
Tween 20 and probed with the specified primary antibodies (1:1000 dilution) overnight at 4 ◦C. Primary
antibodies to the following proteins were tested: GAPDH, AMPK, p-AMPK (Thr172), S6K1, p-S6K1
(Thr389), IRS1, p-IRS1 (Ser302), AKT, p-AKT (Ser473), FOXO, p-FOXO (Ser253) (all obtained from Cell
Signaling Technology, Danvers, MA, USA), AdipoR2, and ApoB100 (obtained from Abcam, Cambridge,
UK). The membranes were washed and incubated with the appropriate secondary antibodies in
Tris-buffered saline with 0.05% Tween 20 for 1 h. The blots were developed using an enhanced
chemiluminescence detection kit (Amersham) in accordance with the manufacturer’s instructions.

4.7. Statistical Analysis

The results of body weight gain and plasma biochemistry are presented as the mean ± standard
error of mean (SEM) of eight mice in each group. The RT-PCR and western blot data are shown
as the mean ± SEM of three independent experiments (n = 2 or 3 per experiment) for each group,
cumulatively including eight mice. Statistical analysis was performed using one-way ANOVA and
analyzed further by Duncan’s multiple range test. Differences among experimental groups were
considered to be statistically significant for values of p < 0.05.

5. Conclusions

Overall, our observations confirmed that AI improved hypertriglyceridemia, body weight
gain, hepatic lipid accumulation, and insulin resistance during the administration of HFD in mice.
The AI-induced improvement of hypertriglyceridemia appears to be exerted at two different levels:
first, by decreasing lipid availability through stimulation of adiponectin-AMPK mediated signaling
cascades; and second, by downregulating molecules involved in TG-rich lipoprotein assembly through
improved hepatic insulin resistance. Thus, these findings supported the development of AI as a
therapy or prevention for diet-induced hypertriglyceridemia.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/8/1762/s1.
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Abbreviations

ACC Acetyl-CoA carboxylases
ACL ATP citrate lyase
ACS Acyl coa synthetase
AdipoR2 Adiponectin receptor 2
AI Artemisia iwayomogi extract
AKT Protein kinase B
ALT Alanine aminotransferase
AMP Adenosine monophosphate
AMPK Adenosine monophosphate-activated protein kinase
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ANOVA Analysis of variance
ApoB Apolipoprotein B
ApoC Apolipoprotein C
AST Aspartate aminotransferase
AUC Area under the curve
CD36 Cluster of differentiation 36
CoA Coenzyme A
CPT1 Carnitine palmitoyltransferase 1
DGAT Diacylglycerol acyltransferase
ELISA Enzyme-linked immunosorbent assay
FABP Liver fatty acid binding protein 1
FAS Fatty acid synthase
FOXO Forkhead box O1
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GPAT Glycerol-3-phosphate acyltransferase
GPDH Glycerol-3-phosphate dehydrogenase
HDL High density lipoprotein
HFD High-fat diet
HPLC High performance liquid chromatography
HOMA-IR Homeostasis model assessment of basal insulin resistance
HTGL Hepatic triglyceride lipase
IL-6 Interlukin-6
IRS1 Insulin receptor substrate 1
LDL Low density lipoprotein
LKB1 Liver kinase B1
LPL Lipoprotein lipase
LXRα Liver X receptor α
MTTP Microsomal triglyceride transfer protein
NOAEL No observed adverse effect level
NRF1 Nuclear respiratory factor 1
p phospho-
PAP Phosphatidate phosphohydrolase
PDI Protein disulfide isomerase
PGC1α Peroxisome proliferator-activated receptor-γ coactivator 1α
PPARα Peroxisome proliferator-activated receptor α
PPARγ Peroxisome proliferator-activated receptor γ
RT-PCR Reverse transcription polymerase chain reaction
S6K1 S6 kinase 1
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM Standard error of the mean
SREBP1c Sterol regulatory element binding protein 1c
TFAM Mitochondrial transcription factor A
TG Triglyceride
TNFα Tumor necrosis factor α
VLDL Very low density lipoprotein
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