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We single out the Starobinsky model and its extensions among generic f (R) gravity as attractors at large 
field values for chaotic inflation. Treating a R3 curvature term as a perturbation of the Starobinsky model, 
we impose the phenomenological bounds on the additional term satisfying the successful inflationary 
predictions. We find that the scalar spectral index can vary in both the red or blue tilted direction, 
depending on the sign of the coefficient of the R3 term, whereas the tensor-to-scalar ratio is less affected 
in the Planck-compatible region. We also discuss the role of higher order curvature term for stability and 
the reheating dynamics for the unambiguous prediction for the number of efoldings up to the R3 term.
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1. Introduction

Cosmic inflation solves various problems of standard Big Bang 
cosmology including the horizon problem, homogeneity, structure 
formation, etc, and it has been tested by the measurements of 
Cosmic Microwave Background anisotropies with unprecedented 
precision. Favored vanilla single-field inflations consist a canoni-
cal kinetic term, and some with monomial type potentials have 
now been excluded at more than 2σ level by the measured scalar 
spectral index and the bound on the tensor-to-scalar ratio [1].

The Starobinsky inflation model [2] drew new attention from 
the fact that a successful slow-roll inflation can be obtained with 
a single parameter beyond the SM, namely the coefficient of the 
R2 curvature term. The inflationary predictions of the Starobin-
sky model are well consistent with the Planck data. Therefore, the 
discussion has been generalized to a class of Starobinsky-like mod-
els with common properties during inflation [3–7], including the 
Higgs inflation as a particular case [8].

The unitarity issue is important in defining the validity of the 
semi-classical treatment of inflationary dynamics. In the case of 
the original Higgs inflation with a large non-minimal coupling, 
the unitarity problem occurs due to the would-be Goldstone com-
ponents of the Higgs field [9–12], which motivated sigma-model 
type extensions [13–16]. In the case of Higgs inflation at critical-
ity where both the Higgs quartic coupling and its beta function 
coefficient almost vanish [17,18], the unitarity scale is far above 
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the Hubble scale during inflation, so the unitary problem is much 
milder.

In the case of the Starobinsky model, the dynamics of the dual 
scalar field can unitarize the Higgs inflation up to the Planck scale 
[6,7]. Making an appropriate field redefinition of the dual scalar 
field and transforming to the Einstein frame, the Starobinsky model 
provides an appropriate coupling between the dual scalar field and 
the Higgs field such that Higgs inflation is recovered below the 
mass of the dual scalar field [19–22]. Other theoretical issues such 
as fine-tuning [23], swampland conjecture [24] and the Palatini 
formulation of Higgs inflation [25,26] are also recently addressed.

It has also been shown recently that the nontrivial inflaton tra-
jectory in the Higgs-R2 inflation [19,27] can provide an interesting 
possibility that primordial black holes can form during inflation as 
the dark matter candidate [28,29]. However, in the region of the 
parameter space where primordial black holes saturate the relic 
density, the resulting spectral index of the curvature perturbations 
is slightly more red-tilted as compared to the best-fit value of the 
Planck data at 1σ level [28,29].

In this article, we discuss the Starobinsky inflation model 
among general f (R) gravity models from the point of attractors at 
large fields for chaotic inflation. Extending the Starobinsky model 
with a cubic R3 curvature term, we impose the conditions on the 
cubic curvature term for maintaining a successful inflation and 
identify how the inflationary predictions of the Starobinsky model 
can be modified. We also briefly discuss the potential instability of 
the cubic term and the effects of even higher order curvature term 
on this issue. The reheating dynamics up to R3 term is also dealt 
with for completeness.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The article is organized as follows. We begin with a connection 
between a generic f (R) gravity and its scalar dual theory. Then, 
we show the criteria for f (R) gravity to give successful predic-
tions for inflation. Next, we extend the Starobinsky model with a 
cubic R3 term and derive the inflationary observables as compared 
to those of the Starobinsky model. We go on to discuss the re-
heating dynamics up to R3 correction and show the unambiguous 
prediction for the number of efoldings in this case. We also dis-
cuss the roles of the dual scalar field in the extended Starobinsky 
model for unitarizing the Higgs inflation with a non-minimal cou-
pling and curing the vacuum instability problem in the SM. Finally, 
conclusions are drawn.

2. The dual scalar theory of f (R)

We can connect a generic f (R) gravity to a corresponding 
scalar-tensor theory by Legendre transformation:

S = 1

2

∫
d4x

√−g f (R) (1)

→ S = 1

2

∫
d4x

√−g
[

f (φ) + f ′(φ)(R − φ)
]

(2)

≡
∫

d4x
√−g

[
1

2
�2 R − V (φ)

]
(3)

where the frame function and the potential are respectively given 
as

�2(φ) = f ′(φ), (4)

V (φ) = 1

2

[
φ f ′(φ) − f (φ)

]
. (5)

One notes that the variation δφ of the second equation recovers 
the original action.

The action in the Einstein frame can be obtained by Weyl trans-
formation gEμν = �2 gμν :

S E =
∫

d4x
√−gE

[
1

2
R E − 1

2
gμν

E ∂μs∂ν s − V E(s)

]
, (6)

where the canonical field s and the potential in the Einstein frame 
is V E are respectively given as1

s(φ) =
√

3

2
ln�2(φ) =

√
3

2
ln

[
f ′(φ)

]
, (7)

V E(s) = V (φ(s))

�(φ(s))4
= φ f ′(φ) − f (φ)

2 f ′2(φ)

∣∣∣∣
φ=φ(s)

, (8)

where φ(s) can be obtained by inverting s(φ).
We note that the chaotic inflation constrains the asymptotic 

form of f (φ): for instance, a monomial function f (φ) ∼ φn+1 leads 
to

V E ∼ φn+1

φ2n
∼ φ1−n (9)

such that n = 1 gives a flat potential for inflation.

3. Selection rules for inflation

We consider a general form of the higher curvature correction 
to Einstein gravity by taking f (R) = aR + bRn+1 with n ≥ 1, and 
discuss the selection rules for a successful slow-roll inflation.

1 The metric ḡab = e2ψ gab gives 
√−ḡ = eDψ

√−g and R̄ = e−2ψ
[

R − 2(D −
1)∇2ψ − (D − 2)(D − 1)gab∂aψ∂bψ

]
in D-dimensions.
Putting a = 1 and b ≡ β/(n + 1), f ′(φ) = 1 + βRn ,

s(φ) =
√

3

2
ln

[
1 + βφn] , (10)

σ(s) ≡ e

√
2
3 s = 1 + βφn. (11)

The equation is easily solved and we obtain φ(s):

φ(s) =
(

σ(s) − 1

β

) 1
n

. (12)

The potential in Einstein frame is

V E(s) = φ(s)σ (s) − f (φ(s))

2σ(s)2
(13)

= n

2(n + 1)β1/n

(σ − 1)
n+1

n

σ 2
, (14)

where f (φ(s)) =
(

σ(s)−1
β

) 1
n + b 

(
σ(s)−1

β

)n+1
n is already taken into 

account. When n = 1, we recover the Starobinsky’s inflaton poten-

tial V E (s) = 1
4β

(1 − e−
√

2
3 s

)2.
Indeed, the case n = 1 is special: when we consider the large 

field limit, s 
 1, σ(s) 
 1,

lim
s→∞ V E = n

2(n + 1)β1/n
e

√
2
3

(
1−n

n

)
s
, (15)

which approaches constant if n = 1 so that we can realize a large 
field inflation scenario as Starobinsky pointed out [2].

By expanding the potential the naïve cutoff scale of the theory 
near s ∼ 0 becomes:

V E = αn

∑
k=1,�=0

(−2)�(2/3)(k+�)/2

k!�! sk+� (16)

≡
∑

k=1,�=0

sk+�

�k+�−4
, (17)

where the cutoff scales for operators with mass dimension D =
k + � > 4 are

�D =
[

k!�!
αn(−2)�(2/3)k+�

] 1
k+�−4

(18)

where αn = nβ
− 1

n
2(n+1)

. Now requesting �D > 1, we find the lower 
bound on β as

β >

[
n22�+k

2(n + 1)3k+�k!�!

]n

, k + � > 4. (19)

As the number in the parentheses is smaller than unity in the re-
gion of our interest, the theory setup does not suffer from unitarity 
issues below the Planck scale as long as the condition in Eq. (19)
is satisfied.

4. Extension of the Starobinsky model

Given that the Starobinsky model is selected for inflation as an 
appropriate extension of the Einstein gravity, we introduce a cubic 
curvature term as the extension of the Starobinsky model, namely, 
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take f (R) = aR + bR2 + cR3. Then, we present the modified pre-
dictions for inflation in this case.2

Taking a = 1, b = β/2, and c = γ /3, we get the frame function 
in the dual scalar theory as f ′(φ) = 1 + βφ + γ φ2, and

s(φ) =
√

3

2
ln

[
1 + βφ + γ φ2

]
, (20)

σ(s) ≡ e

√
2
3 s = 1 + βφ + γ φ2. (21)

The quadratic equation is easily solved and we get φ(s):

φ(s) = β

2γ

(√
1 + 4

γ

β2 (σ (s) − 1) − 1

)
. (22)

If γ is small (γ � β) and φ ∼ 1, we may treat the γ term as a 
small perturbation in σ(s), so that we find a convenient approxi-
mation βφ(s) + 1 = σ(s) − γ

β2 (σ (s) − 1)2 + · · · , or

φ(s) = σ(s) − 1

β

[
1 − γ

β

(
σ(s) − 1

β

)
+O

(
γ

β

)2
]

. (23)

The potential in Einstein frame is

V E(s) = βφ(s)2(1 + 4γ
3β

φ(s))

4
(

1 + βφ(s)(1 + γ
β
φ(s))

)2
, (24)

≈ V 0(s)

[
1 − 2

3

γ

β

(
σ(s) − 1

β

)
+ · · ·

]
(25)

where V 0(s) = 1
4β

(1 − 1
σ )2 = 1

4β
(1 − e

−
√

2
3 s

)2 is the potential for 
γ = 0. As the potential is expanded by powers of 

√
2/3s, this setup 

is free from unitarity issues.

4.1. Inflation

The slow-roll parameters are

ε = 1

2

(
V ′

E

V E

)2

= ε0 + γ

β
�ε, (26)

η = V ′′
E

V E
= η0 + γ

β
�η (27)

where ε0 and η0 are the slow roll parameters when γ = 0 and the 
corrections are perturbatively calculated as:

ε0 = 4

3(σ (s) − 1)2
, (28)

η0 = − 4(σ (s) − 2)

3(σ (s) − 1)2
, (29)

�ε = − 8σ(s)

9β(σ (s) − 1)
+O

(
γ

β

)
, (30)

�η = −4σ(σ + 3)

9β(σ − 1)
+O

(
γ

β

)
. (31)

The number of efoldings from the start (s) to the end (se < s0) 
of inflation is calculated

Ne(s) =
s∫

se

ds√
2ε

(32)

= Ne0 + �Ne, (33)

2 We note other extensions of the Starobinsky model were also studied with dif-
ferent perspectives [30–33].
where Ne0 for γ = 0 and the correction term �Ne are

Ne0 =
s∫

se

ds√
2ε0

=
[

3

4
σ(s) −

√
6

4
s

]s0

se

, (34)

≈ 3

4
σ(s), (s 
 se ∼ 1 assumed) (35)

and

�Ne = −
(

γ

β

) s∫
se

�ε d|s|
23/2ε

3/2
0

(36)

≈
(

γ

β

)
σ(s)3

12β
, (s 
 se ∼ 1 assumed) (37)

We find se requesting Min(ε, |η)|) = 1 and s∗ requesting 60-
efoldings:

Ne(s∗) = 3

4
σ(s∗) +

(
γ

β

)
σ(s∗)3

12β
= 60. (38)

Finally, from the COBE normalization [1],

V∗
ε

∣∣∣∣
s∗

≈ 3σ 2(s∗)
16β

+
(

γ

β

)
σ 4(s∗)

8β2
= 0.0274, (39)

where V∗ is the inflaton vacuum energy at horizon exist, and cor-
respondingly determine the R2 coupling as

β ≈ 2.26 × 109
( N

60

)2
. (40)

Having two conditions from Eqs. (38) and (39), we now try 
to make the predictions for cosmological observations. Here we 
consider the spectral index and the tensor-to-scalar ratio taking 
σ(s∗) ≈ 4

3 Ne − δ 64
243 N3

e where δ ≡ γ /β2 � 1 from Eq. (38):

ns = 1 − 6ε(s∗) + 2η(s∗) (41)

≈ 1 − 2

Ne
− 9

2N2
e

− δ
128

81
Ne, (42)

and

r = 16ε(s∗) ≈ 12

N2
e

− δ
256

27
. (43)

When δ = 0, we recover the well-known relations in R2 inflation 
and consequently Higgs inflation with non-minimal coupling [34]
and the small δ-corrections give additional contributions to ob-
servables so that we can set the bounds on the size of δ [28,30].

In Fig. 1, we show the effect of the R3 correction with δ =
γ /β2 ∼ 10−4 in comparison with the Planck constraints in (ns − r)
plane [1]. The blue, red and purple lines from bottom to top 
correspond for Ne = 60, 56.9 and 55, respectively. In particular, 
Ne = 56.9, is the efolding number required for solving the hori-
zon problem obtained by considering reheating, which we discuss 
in detail in the next section. Due to the negative correction to ns

and the positive correction to r from the positive δ, the predic-
tion moves from right-up to the left-down when δ changes from 
−2.0 × 10−4 to 2.0 × 10−4. The middle point is for δ = 0 corre-
sponding to the Starobinsky limit (or the Higgs inflation limit).

In Fig. 2, we show the bound on δ for different choices of 
Ne = 50 −65 taking the Planck 2018 data into account. The vertical 
dotted line depicts the case Ne = 56.9.
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Fig. 1. (ns, r) for Ne = 60 (blue), Ne = 56.9 (red) and Ne = 55 (purple) efoldings 
with δ = [−2.0, 2.0] × 10−4 vs Planck2018 1σ (yellow) and 2σ (green) constraints 
[1].

Fig. 2. The bound on δ for varying Ne ∈ (50, 65) from Planck2018 1σ (yellow) and 
2σ (green) constraints [1]. Ne = 56.9 is indicated by the vertical, dotted line.

The running of spectral index is also calculated:

dns

d log k
= −2ξ + 16εη − 24ε2 (44)

= − 2

N2
e

+ 128

81
δ

(
1 − 153

32N2
e

)
(45)

where ξ = V ′
E (s)V ′′′

E (s)

V 2
E (s)

. The TT,TE,EE+ lowE+lensing constraint from 
Planck 2018 [1] is

dns

d log k
= −0.0045 ± 0.0067 (68% CL). (46)

That leads −0.0067 < δ|Ne=60 < 0.0017, which gives less signifi-
cant constraint at the moment.

In passing, we comment on the initial condition for inflation 
in the presence of the R3 corrections. In particular, for a negative 
value of γ , there is a potential instability developing at large infla-
ton field values. From eq. (8), the Einstein frame potential with the 
R3 term included is given explicitly as a function of φ by

V E(φ) = 1

4

βφ2 + 4
3γ φ3

(1 + βφ + γ φ2)2
. (47)

The field φ is not a canonical field due to the modified kinetic 
term, but it is sufficient to take the above potential for the anal-
ysis of the initial condition for inflation. Then, we find that there 
exists a maximum of the potential at φc = − 1 > 0 for β > 0 and 
2δβ
δ < 0, but it is located far beyond the regime of the slow-roll infla-
tion near φe ∼ 4

3β
Ne , that is, φc 
 φe for |δ| ∼ 10−4. Nonetheless, 

there might be a concern on the correct initial condition for the 
slow-roll inflation, φi , because the inflaton could have rolled down 
to a wrong minimum for φi > φc . Therefore, we restrict ourselves 
to the inflaton field values satisfying φi < φc , such that the initial 
condition for the slow-roll inflaton is set for our previous discus-
sion to hold.

We remark that even higher order curvature corrections such 
as 1

4 κ R4 can be included, but their effects are subdominant com-
pared to the contributions up to R3 term, as far as the coefficient 
of the new correction term is small enough. In particular, the dual 
scalar theory for the extension with R4 gives rise to a quartic po-
tential, as f (φ) = φ + 1

2 βφ2 + 1
3 γ φ3 + 1

4 κφ4, thus stabilizing the 
scalar potential for κ > 0. For a small κ coupling, there can be a 
new minimum sufficiently far away from the inflationary regime, 
nevertheless the inflaton can roll down to a correct vacuum after 
inflation, being consistent with the perturbativity of the R4 term. 
Several studies in the literature deal with the curvature terms be-
yond the Starobinsky inflation model [30–33] and inflation with 
higher curvature terms in four or higher dimensions [35–38].

5. Reheating

In this section, we discuss the reheating dynamics in the 
Starobinsky model via the minimal gravitational interactions and 
the impact on the precise determination of the number of efold-
ings.

The interaction Lagrangian between the inflaton and the SM 
in Einstein frame is given in terms of the trace of the energy-
momentum tensor [16,39], as follows,

Lint√−g
= − 1

2 f ′(φ)
T μ
μ

= −1

2
e−

√
2
3 s T μ

μ (48)

with

T μ
μ = −(∂μh)2 + 4V E + m f

v
h f̄ f

−δV
m2

V

v2
h2 VμV μ + T μ

μ,loops. (49)

Here, h is the Higgs boson, f denotes the SM fermions, V = W , Z
with δV = 1, 2, respectively, and T μ

μ,loops correspond to the loop 
corrections due to trace anomalies [16]. Expanding the inflaton 
near the minimum of the inflaton potential, we identify the in-
flaton coupling as Lint = 1√

6
s T μ

μ . Then, assuming that electroweak 
symmetry is already broken at the time of reheating, the total de-
cay rate of the inflaton with ms 
 mh, mV is dominated by the 
inflaton decay modes into the electroweak sector [16], given ap-
proximately by

�s ≈ m3
s

48π M2
P

. (50)

Here, from Eq. (40), the inflaton mass is given by

ms = M P√
3β

= 2.96 × 1013 GeV
( 60

Ne

)
. (51)

As a result, using Eq. (50) with Eq. (51), the reheating temper-
ature is determined from the perturbative decay of the inflaton as
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TRH =
(

90

π2 g∗

)1/4 √
M P �s

=
(

100

g∗

)1/4( 60

Ne

)3/2

× (4.6 × 109 GeV). (52)

It is known that the number of efoldings required to solve the 
horizon problem depends on the reheating temperature TRH and 
the equation of state w during reheating [40], as follows,

Ne = 61.4 + 3w − 1

12(1 + w)
ln

(
45V∗

π2 g∗T 4
RH

)
− ln

(
V 1/4∗
H∗

)
. (53)

In our model, the universe is dominated by matter during inflation, 
i.e. w = 0. Therefore, using the results in eqs. (52) and (39), we 
determine the number of efoldings as

Ne = 56.9. (54)

Consequently, from Fig. 1, we can make a definite prediction for 
the spectral index and the tensor-to-scalar ratio up to R3 correc-
tions.

6. Unitarizing Higgs inflation beyond the Starobinsky model

In this section we discuss the roles of the dual scalar field for 
unitarizing the Higgs inflation beyond the Starobinsky model and 
solving the vacuum instability problem in the SM.

In the extended Starobinsky model with f (R) = R + 1
2 βR2 +

1
3 γ R3, discussed in the previous sections, we include a non-
minimal coupling ξ for the Higgs field h in unitary gauge. Then, 
in the dual scalar theory, the frame function in Eq. (4) becomes

�2(φ) = 1 + βφ + γ φ2 + ξh2. (55)

Moreover, we also add the Higgs potential in Jordan frame to get

V (φ,h) = 1

4
βφ2 + 1

3
γ φ3 + 1

4
λ(h2 − v2)2. (56)

Then, similarly as in Eq. (21), we make the field definition by

βσ̂ = 1 + βφ + γ φ2 + ξh2. (57)

From this, taking the R3 curvature term as perturbations, the ap-
proximate solution for φ to the above equation is given in terms 
of σ̂ and h by

φ(σ̂ ,h) = σ̂ − 1

β
− ξ

β
h2 − γ

β

(
σ̂ − 1

β
− ξ

β
h2

)2
, (58)

in turn, leading to the Jordan frame action in a simple form,

S =
∫

d4x
√−g

[
1

2
β σ̂ R − 1

2
(∂μh)2 − 1

4
β
(
σ̂ − 1

β
− ξ

β
h2

)2

+1

6
γ

(
σ̂ − 1

β
− ξ

β
h2

)3 − 1

4
λ(h2 − v2)2

]
. (59)

This is nothing but the induced gravity model, unitarizing the 
Higgs inflation [7,13,19,20]. By using the equation of motion for σ̂
with σ̂ = 1

β
+ ξ

β
h2, we can integrate out the σ̂ field to get precisely 

the effective action for the Higgs inflation [7,13]. In this process, 
the R3 curvature term maintains the same equation of motion for 
the σ̂ field as in the Starobinsky model. In this regard, we can 
take the extended Starobinsky model as an UV completion of the 
Higgs inflation up to the Planck scale. As discussed in the previous 
sections, the robustness of the Starobinsky model for a successful 
inflation can be ensured in the presence of small higher curvature 
terms.
Finally, we remark that the approximate potential in Einstein 
frame can be obtained from V E = V /�4 at the linear order in γ , 
as follows,

V E � 1

β2σ̂ 2

[
1

4
β
(
σ̂ − 1

β
− ξ

β
h2

)2

−1

6
γ

(
σ̂ − 1

β
− ξ

β
h2

)3 + 1

4
λ(h2 − v2)2

]
. (60)

As a result, for 〈σ̂ 〉 � 1
β

, we find that the running Higgs quartic 
coupling is given by

λh = λ + ξ2

β
, (61)

which amounts to a positive tree-level shift for β > 0, ensuring the 
vacuum stability in the SM for a given value λ, inferred from the 
Higgs mass [41,42], as far as the perturbativity constraint on the 
running Higgs quartic coupling, i.e. ξ2/β � 1, is satisfied. Further-
more, the R3 curvature term leads to a suppressed dimension-6 
operator, LD6 = − 1

6 cH h6 with cH = γ ξ3/β3 = δ ξ3/β � δ β1/2 �
4.8(N/60)/M2

P where we used ξ2/β � 1, |δ| � 10−4 and Eq. (40).

7. Conclusion

We considered an f (R) = R + βR2/2 + γ R3/3 type of gravity 
model for inflation. Taking the R3 term as perturbations, we identi-
fied the modifications to the inflationary parameters of the original 
Starobinsky model. We also showed that the dual scalar theory is 
well defined without issues regarding unitarity below the Planck 
scale. The analytic expressions for the scalar spectral index (ns) 
and the tensor-to-scalar ratio (r) were derived and compared with 
the Planck 2018 results. We found that the ratio of the coefficient 
of R3 (γ ) and that of R2 (β) is constrained as |γ /β2| < 1.0 × 10−4

at 2σ level or 0.6 × 10−4 at 1σ level, which is consistent with 
the treatment of δ = γ /β2 as small perturbations in our analysis. 
As an important consequence of this study, we found that a slight 
negative R3 correction to the Higgs-R2 inflation may provide a bet-
ter fit in ns − r plane when the primordial black hole production 
is significant [29] as noticed earlier by other authors [28]. Lastly 
we showed that the dual scalar field in the extended Starobinsky 
model is responsible for unitarizing the Higgs inflation in the pres-
ence of the non-minimal coupling for the Higgs field.
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