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ABSTRACT This paper addresses an adaptive temperature control problem for preventing the membrane
dehydration and electrode flooding of nonlinear proton exchangemembrane fuel cells (PEMFCs). Compared
with the previous thermal control results of PEMFC temperature systems, themain contributions of this paper
are two-fold: (i) nonlinear thermal management systems with nonlinear coolant circuit dynamics are firstly
adopted in the temperature control field of PEMFCs and (ii) temperature constraints are considered to avoid
the membrane dehydration and electrode flooding phenomena of PEMFCs. It is assumed that all system
parameters and nonlinearities of thermal management systems including nonlinear coolant circuit dynamic
are unknown. A recursive control design methodology is presented to guarantee the robust regulation and
constraint satisfaction of the stack temperature. From the Lyapunov theorem, the stability of the resulting
closed-loop system is analyzed.

INDEX TERMS Thermalmanagement systems, nonlinear coolant circuit dynamics, temperature constraints,
adaptive control, proton exchange membrane fuel cells (PEMFCs).

I. INTRODUCTION
Proton exchange membrane fuel cells (PEMFCs) have been
regarded as one of the most attractive alternative energy
sources in the future because of their advantages such as low
operating temperature, high energy efficiency, short charging
time, and less noise [1], [2]. The PEMFCs are interconnected
by multiple subsystems consisting of the hydrogen flow,
the humidity, the air supply, and the thermal management
systems. Among these subsystems, the control of thermal
management system is important for the general operation
of PEMFC in the electrochemical reaction. The temperature
range for the general operation of the fuel cells is 50–100◦C
while an optimal temperature is 80◦C [3]. Maintaining the
optimal temperature against the abrupt change of the external
load leads to improve the performance of thermal manage-
ment systems and to increase the lifetime of fuel cells [4].
Thus, the control problem of thermal management systems
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has actively appeared. The optimal temperature control prob-
lem using the relative humidity was addressed for PEMFCs
[5]. In [6], an active disturbance rejection control design was
developed for achieving precise temperature regulation of
thermal management systems in PEMFCs. In [7], an adap-
tive thermal control method was presented to control the
stack temperature in a certain range. Recently, a fault-tolerant
control approach using the sliding mode technique was pre-
sented for thermal management systems of PEMFCs with
sensor faults [8]. However, these control strategies [5]–[8]
were established without the consideration of coolant circuit
models that are important for adjusting the stack temperature
of PEMFCs.

Basically, PEMFCs provide electricity by an electrochem-
ical exothermic reaction using the oxygen and hydrogen, and
the heat generated at this time should be removed by a cooling
system [9]. Therefore, the thermal management considering
the coolant circuit model is essential for the optimization of
stack performance and contributes to the PEMFC technology
that is reliable for more practical applications [10]. Despite
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this importance, some limited results have been reported
for the temperature control in the presence of the coolant
circuit model of PEMFCs. A proportional-integral tempera-
ture control design based on a thermal circuit was presented
in [11]. In [12], a proportional-integral-derivative controller
was used to validate the experimental data of water-cooled
PEMFCs. A linear-quadratic-regulator-based control scheme
for the minimization of the parasitic power of automotive
fuel cell cooling systems was introduced in [13]. In [14],
a model reference adaptive control problem was investigated
to deal with system uncertainties and to control the stack and
coolant inlet temperature in PEMFCs. In [15], the modular
thermal modelling and model predictive control methods
of water-cooled PEMFC systems were presented. However,
the existing control strategies [11]–[15] are based on the
linearized model of PEMFC systems and thus are only reli-
able in the neighborhood of the specific operating point. For
more practical applications, there have been some attempts
to develop thermal controllers for nonlinear PEMFC sys-
tems. The fuzzy-based PEMFC temperature and circulating
coolant inlet temperature were controlled by adjusting the
coolant flux and bypass valve [16]. In [17], a sliding mode
control design using an extended Kalman filter was studied
to regulate the temperature of PEMFCs. Despite these efforts,
the aforementioned results [11]–[17] have two limitations as
follows.

(L1) The existing results [11]–[17] did not consider the
dynamics of the coolant pump, namely the coolant flux
effects were only considered in thermal management Sys-
tems. In [16], the coolant pump model reduced to the steady
state input-output representation was only considered and the
stability of the closed-loop systems was not proved theo-
retically. Because the coolant flux for controlling the stack
temperature can be adjusted by the dynamics of the coolant
pump [18], the nonlinear dynamics of the coolant pump
should be considered for the temperature control of PEMFCs.

(L2) The previous works [11]–[17] cannot deal with the
temperature constraint problem to prevent the membrane
dehydration and electrode flooding phenomena. The high
stack temperature of the fuel cells may interrupt the transport
effects of the reactants and cause the membrane dehydration
that deteriorates the cell performance. In addition, the low
stack temperature decreases the electrochemical reaction rate
and may lead to the water condensation and the electrode
flooding that degrade the performance of PEMFC systems
[1], [9]. Thus, the total stack temperature should remain
within some reasonable ranges to avoid the membrane dehy-
dration and electrode flooding phenomena while controlling
the stack temperature of PEMFCs.

Motivated by these limitations, we present an
approximation-based temperature control design to deal with
the membrane dehydration and electrode flooding problems
of uncertain nonlinear PEMFCs. In thermal management
systems, a nonlinear coolant circuit dynamics is combined
with the nonlinear dynamics of the total stack temperature
where temperature constraints are considered. All system

parameters and nonlinearities of the thermal management
systems are assumed to be unknown. An approximation-
based adaptive temperature control scheme is designed by
employing the barrier Lyapunov function technique [19] and
the dynamic surface design technique [20]. Through the
Lyapunov stability analysis, it is shown that temperature
constraints are satisfied to avoid the membrane dehydration
and electrode flooding and the robust regulation is achieved
against unknown system parameters and nonlinearities.

The contributions of this paper are two-fold:
(i) To the best of our knowledge, there are no tempera-

ture control studies for dealing with the nonlinear coolant
circuit model in the nonlinear thermal model of PEMFCs
although the dynamic property of the coolant pump influ-
ences the cooling stack highly. Hence, compared with the
existing works [5]–[8], [11]–[17], this paper firstly considers
the coolant-circuit-based uncertain nonlinear thermal man-
agement systems in the temperature control field of PEMFCs
where all system parameters and nonlinearities are unknown.

(ii) Compared with the existing control designs [5]–[8],
[11]–[17], this paper addresses the membrane dehydration
and electrode flooding prevention problem in the temperature
control of PEMFCs. Thus, the constraints of the total stack
temperature are combined with the thermal control problem
of PEMFCs and an adaptive control methodology is devel-
oped to ensure the stability of the closed-loop system and the
constraint satisfaction of the stack temperature.

The rest of this paper is organized as follows. The stack
temperature and coolant circuit models of PEMFCs are
introduced in Section II. In Section III, the constrained
temperature control problem is formulated for the thermal
management systems with the nonlinear coolant circuit
dynamics. In Section IV, an approximation-based adaptive
control design is presented using the Lyapunov stability anal-
ysis. The simulation result of the resulting control system is
provided in Section V. Section VI gives the conclusion of this
paper.

II. THERMAL CHARACTERISTICS OF PEMFC
A. THERMAL MANAGEMENT MODEL OF NONLINEAR
PEMFC
The thermal management model is established using molar
conservation principles, the energy balance, and empirical
equations [6], [16]. The dynamics of the total stack tempera-
ture Tst is defined as

dTst
dt
=
Win −Wout +Wrea −Wwc −Wamb − Pfc

mstcp.s
(1)

where Win and Wout are the input and output of the gas
energy flow rate, respectively, Wrea is the total power from
the electrochemical reaction,Wwc denotes the rate of the heat
removal, Wamb is the rate of heat loss at the stack surface,
Pfc is the output power of the PEMFC, mst is the mass of the
PEMFC stack, and cp.s is the specific heat of the PEMFC.
Each variables in (1) are defined as follows.

83484 VOLUME 8, 2020



B. M. Kim, S. J. Yoo: Approximation-Based Adaptive Control of Constrained Uncertain Thermal Management Systems

TABLE 1. System parameters of the thermal management model.

(i) Definition of Win: The input gas energy flow rate Win
is obtained as

Win =

(
Qina.H2

cp.H2 + Q
in
a.H2Oc

g
p.H2O

)(
T ina − T0

)
+

(
Qinc.aircp.air + Q

in
c.H2Oc

g
p.H2O

)(
T inc − T0

)
(2)

where Qina.H2
and Qinc.air denote the hydrogen molar flow

rate and the cathode input air molar flow rate, respectively,
Qina.H2O

andQinc.H2O
are the input vapor molar flow rates of the

anode and cathode, respectively, and cp.H2 , cp.air , c
g
p.H2O

, T ina ,
T inc , and T0 are defined in Table 1. Here,Qina.H2

,Qinc.air ,Q
in
a.H2O

,
and Qinc.H2O

are defined as

Qina.H2
= λH2Q

rea
a.H2

Qinc.air = 0.21λO2Q
rea
c.O2

Qina.H2O =
Psat (T ina )Qina.H2

Pa − Psat (T ina )

Qinc.H2O =
Psat (T inc )Qinc.air
Pc − Psat (T inc )

(3)

where λH2 , λO2 , Pa, and Pc are defined in Table 1, the
saturation pressure function Psat (x) is given by [3]

logPsat (x) = −20.92+ 0.143x − (3.39× 10−4)x2

+(3.85× 10−7)x3 − (1.69× 10−10)x4 (4)

and Qreaa.H2
and Qreac.O2

denote the reacted hydrogen molar flow
rate and the reacted oxygen molar flow rate, respectively, and
are defined as Qreaa.H2

= 2Qreac.O2
= nIst/(2F) with the number

of the cells n, the PEMFC load current Ist , and Faraday
constant F .
(ii) Definition of Wout : The output gas energy flow rate

Wout considering the water generated in the liquid state is
represented by

Wout =

(
Qouta.H2

cp.H2 + Q
out
a.H2Oc

g
p.H2O

+ Qoutc.O2
cp.O2

+Qoutc.N2
cp.N2 + Q

out
c.H2Oc

g
p.H2O

+ Qgenc.H2O
clp.H2O

)
×

(
Tst − T0

)
. (5)

where cp.H2 , c
g
p.H2O

, cp.O2 , cp.N2 , and clp.H2O
are defined

in Table 1, each electrode vapor output molar rates with the
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saturated cell inner vapor are defined as

Qouta.H2
= Qina.H2

− Qreaa.H2

Qouta.H2O = Qina.H2O −
Psat (Tst )Qreaa.H2

Pa − Psat (Tst )
Qoutc.O2

= Qinc.O2
− Qreac.O2

Qoutc.N2
= 0.79Qinc.air

Qouta.H2O = Qinc.H2O −
Psat (Tst )Qreac.O2

Pc − Psat (Tst )

with Qinc.O2
= λO2Q

rea
c.O2

, the function Psat defined in (4), and
Qgenc.H2O

= nIst/(2F).
(iii) Definitions of Wrea, Wwc, and Wamb: The total fuel

energy Wrea is derived from the electrochemical reaction as
follows:

Wrea = Qreaa.H2
1H (6)

where1H is the hydrogen combustion enthalpy constant and
Qreaa.H2

is the reacted hydrogen molar flow rate defined in (3).
Since the output coolant temperature is the same as the

temperature of the stack (i.e, T outwc = Tst ) [6], the rate of heat
removal by the coolant Wwc is obtained as

Wwc = kclWclclp.H2O(Tst − T
in
wc) (7)

where kcl is a physical parameter,Wcl is the coolant flux, and
clp.H2O

and T inwc are defined in Table 1.
The heat loss rateWamb at the stack surface is expressed as

Wamb = (Tst − Tamb)/Rt (8)

where Rt and Tamb are the thermal resistance and ambi-
ent temperatures, respectively and their values are defined
in Table 1.

(iv) Definition of Pfc: The output power of entire PEMFC
is expressed as

Pfc = nIstVc. (9)

where n is number of the cells and Ist > 0 is the load current
of the fuel cell. Here, the operating voltage Vc of the fuel cell
is defined by combining all voltage drops associated with the
activation loss and ohmic loss as follows [21], [22]:

Vc = E − Vact − Vohm

where the open circuit voltage E is defined as

E = 1.229− 8.5× 10−4(Tst − 298.15)+ 4.3085× 10−5

×Tst

(
ln(PH2 )+

1
2
ln(PO2 )

)
PH2 = [Pa/(Psat (Tst )e(1.635i/T

1.334
st ))− 1]Psat (Tst )

PO2 = (Pc − Psat (Tst ))/(1+ 3.762e(0.291i/T
0.832
st ))

with the current density i = Ist/Ac defined by the PEMFC
current Ist and the active area Ac, the activation overvoltages
Vact is given by Vact = V0 + Va(1 − e−10i) [22], and the
ohmic overvoltages Vohm is defined as Vohm = iRohm. Here,
the values of V0, Va, and their coefficients can be derived

from the empirical process [22] and the ohmic resistance
Rohm = dm/σm is proportional to the membrane thickness
dm and inversely proportional to the membrane conductivity
σm = (5.139 × 10−3λm − 3.26 × 10−3)e(1.155−350/Tst ) with
the membrane water content λm = 14 [3].

Using Definitions (i)–(iv), the thermal management sys-
tem (1) can be represented by

dTst
dt
= aIst + φ1(Tst , Ist )− φ2(Tst )Wcl (10)

where a, φ1(Tst , Ist ), and φ2(Tst ) are defined as

a = [(Q1 + Q2)(T inc − T0)+ QoT0 + Qr ]/(mstcp.s)

φ1 =

[3ncgp.H2O

4F

(
Psat (Tst )

Pc − Psat (Tst )

)
(Tst − T0)Ist

−(QoIst + R−1t )Tst + TambR−1t

−Vc(Tst , Ist )nIst

]
/(mstcp.s)

φ2 = kclclp.H2O(Tst − T
in
wc)/(mstcp.s) (11)

with

Q1 = λHcp.H2 + λOcp.air ,

Q2 = cgp.H2O
λHO

Psat (T inc )
Pc − Psat (T inc )

, Qr =
n1H
2F

,

λH =
nλH2

2F
, λO =

nλO2

4 · 0.21F
, λHO = λH + λO

Qo =
n
4F

(
2(λH2 − 1)cp.H2 + (λO2 − 1)cp.O2

+3.76λO2cp.N2 + 2clp.H2O

+cgp.H2O
Psat (T inc )

Pc − Psat (T inc )
(2λH2 + λO2/0.21)

)
Vc(Tst , Ist ) = 0.95+ (1.2545× 10−5)Tst

−va1(1.79Pc − 0.79Psat (Tst ))2

−va2(1.79Pc − 0.79Psat (Tst ))

−va3 −
dmIste(−1.155+350/Tst )

Ac(0.005139λm − 0.00326)
va1(Tst ) = (1.618× 10−2)(1− 10−3Tst ),

va2(Tst ) = (1.8× 10−4)Tst − 0.166,

va3(Tst ) = (−5.8× 10−4)Tst + 0.5736

and their physical parameters are given in Table 1.

B. NONLINEAR COOLANT CIRCUIT DYNAMICS WITH FLUX
AND PUMP MODELS
In [18], the dynamic model of the coolant circuit with the
36V motor centrifugal pump was derived based on the fun-
damental relationships among the motor-armature current,
motor speed and coolant flow rate. In this model, the coolant
flux can be manipulated using a variable speed pump without
a control valve. Thus, the weight and complexity of the
system can be reduced [18]. The dynamics of the coolant
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TABLE 2. Parameters of the coolant system [18].

management system is given by

dWcl

dt
= c1W 2

cl − c2Wclωr + c3ω2
r −

1
Jw

dωr
dt
= c4ωr + c5W 2

cl + c6Wclωr − c7ω2
r

−
τf

Jcom
+

C
Jcom

Im (12)

whereWcl is the coolant flux, ωr is the angular velocity of the
coolant pump motor, Im is the input motor-armature current
of the coolant pump, the constants Jw, Jcom, τf , and C are
given in Table 1, and the coefficients c1, . . . , c7 are given
in Table 2.

III. PROBLEM FORMULATION
A. THERMAL MANAGEMENT SYSTEMS WITH NONLINEAR
COOLANT CIRCUIT DYNAMICS
Let us define the variables x1 = Tst , x2 = Wcl , x3 = ωr ,
δ = Ist , and u = Im. Then, the thermal management system
with a 75-kW fuel cell stack and a 36V motor centrifugal
coolant pump (i.e., (10) and (12)) can be rewritten by the
following state-space model

ẋ1 = aδ + φ1(x1, δ)− φ2(x1)x2
ẋ2 = φ3(x2, x3)

ẋ3 = φ4(x2, x3)+ bu

y = x1 (13)

where φ3 = c1x22−c2Wclωr+c3ω2
r −1/Jw, and φ4 = c4x3+

c5x22 + c6x2x3 − c7x
2
3 − τf /Jcom and b = C/Jcom.

Assumption 1: The system parameters a, b and the func-
tions φ1, φ2, φ3, and φ4 are unknown.
Lemma 1 [23]: The inequality |µ| ≤ µ tanh(µ/κ) +

0.2785κ is ensured for any constant κ > 0 and µ ∈ R.
Lemma 2 [24]: For the interval −kc < z < kc with any

z ∈ R and kc ∈ R, it holds that

log
(

k2c
k2c − z2

)
≤

z2

k2c − z2
.

B. CONSTRAINED TEMPERATURE CONTROL PROBLEM
The temperature management has been recognized as one
of significant technical challenges of PEMFCs. The high
cell temperature causes membrane dehydration because of
the insufficient water supply to PEMFC and the low cell
temperature may lead to electrode flooding caused by water
condensation, consequently to hinder reactant mass transport

with a resultant voltage loss [1], [9]. Based on [3], the optimal
value of the total stack temperature is yr = 353K . Thus,
it is important to consider the regulation problem of thermal
management control systems with temperature constraints.
To this end, the constraints of the total stack temperature y
are considered as

yr − kc ≤ y ≤ yr + kc, ∀t ≥ 0. (14)

where the constant kc denotes the physical temperature con-
straint to prevent themembrane dehydration and the electrode
flooding of PEMFCs. If the initial stack temperature y(0)
does not remain within the constraints, it means that PEMFCs
are under the membrane dehydration and electrode flooding
phenomena at the initial time. This is not reasonable for the
stable operation of PEMFCs. Thus, it is assumed that the
initial stack temperature y(0) satisfies the constraints (14).
Property 1: For system (13), there exists an unknown pos-

itive constant φ
2
such that 0 < φ

2
≤ φ2.

Proof: The function φ2(x1) is defined as φ2(x1) =
kclclp.H2O

(x1 − T inwc)/(mstcp.s). In Table 1, it holds that
mstcp.s > 0, clp.H2O

> 0, kcl > 0, and T inwc > 0. Addition-
ally, since the output coolant temperature is the same as the
temperature of the stack and is larger than the inlet chilling
coolant temperature T inwc [3], x1 > T inwc is ensured. Therefore,
Property 1 is satisfied.
Problem 1: Consider the uncertain thermal management

system (13) with temperature constraints (14) of the PEMFC.
The main control problem is to find approximation-based
adaptive control law u so that the system output y follows the
optimal value yr within the constraints (14).
Remark 1: Contrary to the previous temperature control

methods for thermal management systems of
PEMFCs [5]–[8], [11]–[17], the nonlinear coolant circuit
dynamics (12) with flux and pump models is firstly consid-
ered with the nonlinear stack temperature dynamics (10) for
the temperature control problem of PEMFCs. Furthermore,
the temperature constraint problem is addressed to prevent the
membrane dehydration and electrode flooding of PEMFCs.
Therefore, a solution on Problem 1 cannot be suggested in
the previous works [5]–[8], [11]–[17].

IV. ADAPTIVE TEMPERATURE CONTROL IN THE
PRESENCE OF NONLINEAR COOLANT CIRCUIT DYNAMICS
A. RADIAL BASIS FUNCTION NEURAL NETWORKS
For the online approximation of unknown nonlinear functions
Wi, i = 1, 2, 3, to be defined in the controller design, radial
basis function neural networks (RBFNNs) are used. Using the
universal approximation property of the RBFNN [25], [26],
for continuous real-valued function Wi(%i) : D%i 7→ R with
a compact set D%i ⊂ Rqi , there exists the ideal weight vector
θ∗i with a sufficiently large qi such that

Wi(%i) = θ∗>i ξi(%i)+ ψi(%i) (15)

where i = 1, 2, 3, %i = [%i,1, . . . , %i,qi ]
>
∈ D%i and ψi

are the input vector and the network reconstruction error,
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respectively, θ∗i ∈ Rri is the optimal weighting vector
defined as θ∗i = argmin

θ̂i
[sup%i∈D%i |Wi(%i) − θ̂>i ξi(%i)|]

with the node number ri > 1 and the estimate θ̂i of
θ∗i , and ξi(%i) = [ξi,1(%i), ξi,2(%i), . . . , ξi,ri (%i)]

>
∈ Rri ;

ξi,j(%i) = e−‖%i−ci,j‖
2/ι2i,j , j = 1, . . . , ri denotes the Gaus-

sian function with the center of the receptive field ci,j =
[ci,j,1, . . . , ci,j,qi ]

>
∈ Rqi and the width ιi,j ∈ R.

Assumption 2 [25]: The optimal weighting vector and
reconstruction error are bounded as ‖θ∗i ‖ ≤ θ̄i and |ψi| ≤ ψ

∗
i

with unknown constants θ̄i > 0 and ψ∗i > 0, respectively.

B. DESIGN OF ADAPTIVE CONTROLLER
In this section, an approximation-based adaptive controller
design strategy is presented for system (13) with the out-
put constraint (14). For the dynamic surface design [20],
the error surfaces and the boundary layer errors are
defined as

z1 = y− yr
z2 = x2 − α1f
z3 = x3 − α2f
ε1 = α1f − α1

ε2 = α2f − α2 (16)

where z1, z2 and z3 are control error surfaces, ε1 and ε2 are
boundary layer errors, α1 and α2 are the virtual control laws,
and α1f and α2f are the signals derived from the first-order
filters with the time constants ν1, ν2 > 0 as follows:

ν1α̇1f + α1f = α1, α1f (0) = α1(0)

ν2α̇2f + α2f = α2, α2f (0) = α2(0). (17)

The recursive control design consists of three steps. In the
first step, the adaptive virtual control law α1 is designed to
stabilize the dynamics of the first error surface z1 for the
regulation of the stack temperature x1 while the stack tem-
perature constraints (14) are satisfied. To this end, the Lya-
punov stability analysis strategy using a barrier function is
established. In the second step, the adaptive virtual control
law α2 is designed to stabilize the dynamics of the second
error surface z2 based on the flux dynamics of the nonlinear
coolant circuit (12). In the third step, the adaptive actual
control law u denoting the input motor-armature current of
the coolant pump is designed to stabilize the dynamics of
the third error surface z3. For the stable control design, the
Lyapunov stability theorem [27] is used in these design steps.
In addition, the first-order low-pass filters (17) based on the
dynamic surface design technique are employed to avoid the
calculation of the time derivative of the virtual control laws
in the recursive design.

Step 1: The time derivative of z1 along the first equation
of (13) is given by

ż1 = aδ + φ1(x1, δ)− φ2(x1)x2. (18)

The output constraint problem (14) can be redefined as the
constraint problem of z1 as follows:

−kc < z1(t) < kc. (19)

From (19), we consider the following barrier Lyapunov
function

Vz1 =
1
2
log

k2c
k2c − z

2
1

(20)

where log denotes the natural logarithm.
Differentiating Vz1 with respect to time yields

V̇z1 =
z1ż1

(k2c − z
2
1)
= ρcż1 (21)

where ρc = z1/(k2c − z21). Then, V̇z1 along (16) and (18)
becomes

V̇z1 = ρc(aδ + φ1(x1, δ)− φ2(x1)(z2 + ε1 + α1)). (22)

From Lemma 1, it holds that

ρcaδ ≤ |ρc|aδ

≤ ρc tanh
(
ρc

κ0

)
aδ + 0.2785aδκ0

≤ ρc tanh
(
ρc

κ0

)
aδ
φ2

φ
2

+ 0.2785aδκ0
φ2

φ
2

(23)

where κ0 > 0 is a constant.
Then V̇z1 becomes

V̇z1 ≤ ρcφ2

(
− z2 − ε1 − α1 +

φ1

φ2
+ tanh

(
ρc

κ0

)
āδ
)

+0.2785āδκ0φ2 (24)

where ā = a/φ
2
.

Now, the Lyapunov function V1 is considered as

V1 =
1
φ2
Vz1 +

1
2

(
θ̃>1 γ

−1
1 θ̃1 + γ

−1
2 ψ̃2

1 + γ
−1
3 ã2

)
where θ̃1 = θ∗1 − θ̂1, ψ̃1 = ψ∗1 − ψ̂1, ã = ā − â; θ̂1, ψ̂1,
and â are estimates of θ∗1 , ψ

∗

1 , and ā, respectively, γ1 > 0 is
a tuning matrix, and γ2 > 0 and γ3 > 0 are tuning constants.
The time derivative of V1 along (24) and (23) becomes

V̇1 = ρc

(
− z2 − ε1 − α1 +W1(%1)+ tanh

(
ρc

κ0

)
āδ
)

−θ̃>1 γ
−1
1
˙̂
θ1 − γ

−1
2 ψ̃1

˙̂
ψ1 − γ

−1
3 ã ˙̂a+ 0.2785āδκ0 (25)

where W1(%1) = φ1/φ2 − (φ̇2/ρcφ22 )Vz1; %1 = x1. Based
on (15) and Assumption 2, the unknown nonlinearity W1 is
estimated by W1(%1) = θ∗>1 ξ1 + ψ1.
From Lemma 1, it holds that

ρcψ1 ≤ |ρc|ψ
∗

1

≤ ρc tanh
(
ρc

κ1

)
ψ∗1 + 0.2785κ1ψ∗1 (26)
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where κ1 > 0 is a constant. Then, (25) becomes

V̇1 ≤ ρc

(
− z2 − ε1 − α1 + tanh

(
ρc

κ0

)
āδ

+θ∗>1 ξ1 + tanh
(
ρc

κ1

)
ψ∗1

)
−θ̃>1 γ

−1
1
˙̂
θ1 − γ

−1
2 ψ̃1

˙̂
ψ1 − γ

−1
3 ã ˙̂a+ C1 (27)

where C1 = 0.2785āδκ0 + 0.2785κ1ψ∗1 .
The first adaptive virtual control law α1 with adaptation

laws for θ̂1, ψ̂1, and â is presented as

α1 = ζ1z1 +
1
2
ρc + θ̂

>

1 ξ1 + tanh
(
ρc

κ1

)
ψ̂1

+ tanh
(
ρc

κ0

)
âδ (28)

˙̂
θ1 = γ1(ρcξ1 − σ1θ̂1) (29)

˙̂
ψ1 = γ2

(
ρc tanh

(
ρc

κ1

)
− σ2ψ̂1

)
(30)

˙̂a = γ3

(
ρc tanh

(
ρc

κ0

)
δ − σ3â

)
(31)

where ζ1 > 0 denotes a design parameter and σ1 > 0, σ2 > 0,
σ3 > 0 are the design parameters for σ -modification [28].
Substituting (28)–(31) into (27) yields

V̇1 ≤ −ζ1ρcz1 −
1
2
ρ2c − ρc(z2 + ε1)

+σ1θ̃
>

1 θ̂1 + σ2ψ̃1ψ̂1 + σ3ãâ+ C1. (32)

Following the inequality |ρcε1| ≤ (1/2)ρ2c + (1/2)ε21 , we
have

V̇1 ≤ −ζ1ρcz1 − ρcz2 +
1
2
ε21 + σ1θ̃

>

1 θ̂1

+σ2ψ̃1ψ̂1 + σ3ãâ+ C1. (33)

Remark 2: The adaptive virtual control law (28) with the
adaptive laws (29)–(31) is designed in the first step where
the barrier Lyapunov function (20) is employed to deal with
the stack temperature constraint problem. From the Lya-
punov stability analysis, the adaptive laws (29) and (30) are
derived to tune the weighting vector of the neural-network-
based function approximator θ̂>1 ξ1 and to compensate for
the unknown reconstruction error ψ1, respectively. In addi-
tion, the adaptive law (31) is derived to compensate for the
unknown parameter ā.
Step 2: Consider ẋ2 = φ3(x2, x3). The time derivative of z2

is ż2 = φ3(x2, x3)− α̇1f . Using the mean value theorem [29],
the function φ3 is represented by

φ3(x2, x3) = φ3(x2, α∗)+ hϑ (x3 − α∗) (34)

where hϑ (x̄ϑ ) = ∂φ3(x2, x3)/∂x3|x3=xϑ with xϑ = ϑx3+(1−
ϑ)α∗; x̄ϑ = [x2, xϑ ]>, 0 < ϑ < 1 and α∗(x2) is a smooth
function.
Property 2: The sign of the unknown function hϑ is pos-

itive, and it is satisfied that 0 < hϑ0 ≤ hϑ where hϑ0 is an
unknown constant.

Proof: From the definition of φ3, we have ∂φ3/(∂x3) =
−c2x2 + 2c3x3. Based on the prediction data given
in Table 2 of [18], it is ensured that ∂φ3/∂x3 > 0 in the
practical operation range of the coolant circuit dynamics (12).
Additionally, 0 < hϑ0 ≤ hϑ is ensured with an unknown
constant hϑ0 .
Assumption 3: There exists an unknown constant hϑd >

0 such that |ḣϑ (·)| ≤ hϑd for all x̄ϑ ∈ �x ⊂ R2 with the
compact region �x .

Using the implicit function theorem [27], α∗(x2) satisfies
φ3(x2, α∗) = 0. Thus, ż2 becomes

ż2 = hϑ (z3 + ε2 + α2 − α∗)− α̇1f . (35)

Consider the following Lyapunov function V2

V2 =
1

2hϑ
z22 +

1
2

(
θ̃>2 γ

−1
4 θ̃2 + γ

−1
5 ψ̃2

2

)
(36)

where γ4 > 0 is a tuning matrix, γ5 > 0 is a tuning gain, and
θ̃2 = θ

∗

2 − θ̂2 and ψ̃2 = ψ
∗

2 − ψ̂2; θ̂2 and ψ̂2 are estimates of
θ∗2 and ψ∗2 , respectively.

The time derivative of V2 is obtained as

V̇2 = z2(z3 + ε2 + α2 +W2(%2))− θ̃>2 γ
−1
4
˙̂
θ2

−γ−15 ψ̃2
˙̂
ψ2 (37)

where W2(%2) = −α∗ − (α1 − α1f )/(ν1hϑ )+ (hϑd /2h
2
ϑ0
)z2;

%2 = [x2, (α1−α1f )/ν1, z2]> owing to α̇1f = (α1−α1f )/ν1.
From (15) and Assumption 2, the nonlinear function W2 is
approximated by W2(%2) = θ∗>2 ξ2 + ψ2.
Then, using the inequality

z2ψ2 ≤ |z2|ψ∗2

≤ z2 tanh
(
z2
κ2

)
ψ∗2 + 0.2785κ2ψ∗2 (38)

with a constant κ2 > 0, (37) becomes

V̇2 = z2

(
z3 + ε2 + α2 + θ∗>2 ξ2 + tanh

(
z2
κ2

)
ψ∗2

)
−θ̃>2 γ

−1
4
˙̂
θ2 − γ

−1
5 ψ̃2

˙̂
ψ2 + C2 (39)

where C2 = 0.2785κ2ψ∗2 .
The virtual control law α2 with the adaptation parameters

θ̂2 and ψ̂2 is chosen as

α2 = −ζ2z2 + ρc − θ̂>2 ξ2 − tanh
(
z2
κ2

)
ψ̂2 −

1
2
z2 (40)

˙̂
θ2 = γ4(z2ξ2 − σ4θ̂2) (41)

˙̂
ψ2 = γ5

(
z2 tanh

(
z2
κ2

)
− σ5ψ̂2

)
(42)

where ζ2 > 0 is a control gain and σ4 > 0 and σ5 > 0 are the
design parameters for the σ -modification [28].
Using (40)–(42), Property 1, and Assumption 2, (39)

becomes

V̇2 ≤ −ζ2z22 + ρcz2 −
1
2
z22 + z2(z3 + ε2)

+σ4θ̃
>

2 θ̂2 + σ5ψ̃2ψ̂2 + C2. (43)
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Using the inequality |z2ε2| ≤ (1/2)z22 + (1/2)ε22 , we have

V̇2 ≤ −ζ2z22 + ρcz2 + z2z3 +
1
2
ε22

+σ4θ̃
>

2 θ̂2 + σ5ψ̃2ψ̂2 + C2. (44)

Remark 3: In the second step, the controllability of the
nonaffine nonlinear function φ3(x2, x3) is analyzed by using
the mean value theorem and deriving Property 2. Then,
the adaptive virtual control law (40) with adaptive laws (41)
and (42) is constructed using the Lyapunov stability analysis.
In the Lyapunov-based control design, the adaptive laws
(41) and (42) are derived to tune the weighting vector of
the neural-network-based function approximator θ̂>2 ξ2 and to
compensate for the unknown reconstruction errorψ2, respec-
tively.

Step 3: Consider ẋ3 = φ4(x2, x3) + bu. A Lyapunov
function candidate V3 is chosen as

V3 =
1
2
b̄z23 +

1
2

(
θ̃>3 γ

−1
6 θ̃3 + γ

−1
7 ψ̃2

3 + γ
−1
8 b̃2

)
(45)

where θ̃3 = θ∗3 − θ̂3, ψ̃3 = ψ∗3 − ψ̂3, and b̃ = b̄ − b̂; θ̂3,
ψ̂3, and b̂ are estimates of θ∗3 , ψ

∗

3 , and b̄ = 1/b, respectively,
γ6 > 0 is a tuning matrix, and γ7 > 0 and γ8 > 0 are tuning
gains.

The time derivative of V3 gives

V̇3 = z3(u+W3(%3)− b̄α̇2f )

−θ̃>3 γ
−1
6
˙̂
θ3 − γ

−1
7 ψ̃3

˙̂
ψ3 − γ

−1
8 b̃ ˙̂b (46)

where W3(%3) = b̄φ4(%3); %3 = [x2, x3]>.
By substituting W3 = θ

∗>

3 ξ3 + ψ3 into (46) and using the
inequality

z3ψ3 ≤ z3 tanh
(
z3
κ3

)
ψ∗3 + 0.2785κ3ψ∗3 (47)

with a constant κ3 > 0, (46) becomes

V̇3 = z3

(
u+ θ∗>3 ξ3 + tanh

(
z3
κ3

)
ψ∗3 − b̄α̇2f

)
−θ̃>3 γ

−1
6
˙̂
θ3 − γ

−1
7 ψ̃3

˙̂
ψ3 − γ

−1
8 b̃ ˙̂b+ C3 (48)

where C3 = 0.2785κ3ψ∗3 .
Finally, we derive an adaptive actual control law u as

follows:

u = −ζ3z3 − z2 − θ̂>3 ξ3 − tanh
(
z3
κ3

)
ψ̂3

+b̂
α2 − α2f

ν2
(49)

˙̂
θ3 = γ6(z3ξ3 − σ6θ̂3) (50)

˙̂
ψ3 = γ7

(
ρ tanh

(
z3
κ3

)
− σ7ψ̂3

)
(51)

˙̂b = γ8

(
− z3

α2 − α2f

ν2
− σ8b̂

)
(52)

where ζ3 > 0 is a control gain and σ6, σ7, σ8 > 0 denote the
design parameters for the σ -modification [28].

Substituting (49)–(52) into (48), we get

V̇3≤−ζ3z23−z2z3+σ6θ̃
>

3 θ̂3+σ7ψ̃3ψ̂3+σ8b̃b̂+C3. (53)

Remark 4: In the third step, the actual control law (49)
with adaptive laws (50)–(52) is designed using the Lyapunov
stability theorem. In the Lyapunov-based control design, the
adaptive laws (41) and (42) are derived to tune the weighting
vector of the neural-network-based function approximator
θ̂>3 ξ3 and to compensate for the unknown reconstruction
error ψ3, respectively. Furthermore, the adaptive law (52) is
designed to compensate for the unknown parameter b̄.
Remark 5: The previous temperature control

results [11]–[17] for PEMFC thermal management systems
did not consider the dynamic property of the coolant pump
and the temperature constraint problem to prevent the mem-
brane dehydration and electrode flooding. However, we con-
sider the nonlinear dynamics of the coolant circuit (12) with
the non-affine and affine nonlinearities φ3 and φ4 in the
constrained thermal management systems (13). By deriving
two physical properties (i.e., Properties 1 and 2) for the
recursive control design, we construct the approximation-
based adaptive temperature control scheme (i.e., (28)–(31),
(40)–(42) and (49)–(52)), as shown in Fig. 1. Moreover, all
system parameters and nonlinearities can be compensated
by the proposed adaptive approximation control scheme,
compared to [11]–[17].

C. STABILITY ANALYSIS
This section focuses on the stability analysis of the proposed
control system. The dynamics of the boundary layer errors
are follow as

ε̇1 = −
ε1

ν1
+ N1(z1, z2, ε1, θ̂1, ψ̂1, â)

ε̇2 = −
ε2

ν2
+ N2(z1, z2, z3, ε1, ε2, θ̂1, θ̂2, ψ̂1, ψ̂2, â) (54)

and

N1 = −ζ1ż1 −
ρ̇c

2
−
˙̂
θ>1 ξ1 − θ̂

>

1 ξ̇1 − sech2
(
ρc

κ1

)
ρ̇c

κ1
ψ̂1

− tanh
(
ρc

κ1

)
˙̂
ψ1 − sech2

(
ρc

κ0

)
ρ̇c

κ0
âδ

− tanh
(
ρc

κ0

)
˙̂aδ − tanh

(
ρc

κ0

)
âδ̇

N2 = ζ2ż2 − ρ̇c +
˙̂
θ>2 ξ2 + θ̂

>

2 ξ̇2 + tanh
(
z2
κ2

)
˙̂
ψ2

+sech2
(
z2
κ2

)
ż2
κ2
ψ̂2 +

1
2
ż2.

Consider the following total Lyapunov function V

V = V1 + V2 + V3 +
1
2
ε21 +

1
2
ε22 . (55)

Remark 6: The total Lyapunov function V in (55) consists
of the Lyapunov functions V1, V2, and V3 used in the design
steps and the boundary layer errors ε1 and ε2 for the first-
order filtering of the virtual control laws. The function V is
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FIGURE 1. Block Diagram of the proposed adaptive control system.

defined to analyze the stability of the controlled closed-loop
system. The inequalities (33), (44), and (53) induced from the
control design steps are used for the stability analysis in the
proof of the following theorem.
Theorem 1: Consider the uncertain nonlinear thermal

management system (13) with the temperature constraint
(14). For any initial conditions satisfying V (0) ≤ l with
a constant l > 0 and yr − kc < y(0) < yr + kc, the
proposed adaptive control scheme consisting of (28)–(31),
(40)–(42) and (49)–(52) ensures that all the signals in the
closed-loop system are uniformly ultimately bounded and the
control error converges to a neighborhood of the origin while
the stack temperature remains within constraints.

Proof: From (33), (44), (53), and (54), the time deriva-
tive of V becomes

V̇ ≤ −ζ1ρcz1 − ζ2z22 − ζ3z
2
3 −

1
ν1
ε21 +

1
2
ε21 + ε1N1

−
1
ν2
ε22 +

1
2
ε22 + ε2N2 −

σ1

2
‖θ̃1‖

2
−
σ2

2
ψ̃2
1 −

σ3

2
ã2

−
σ4

2
‖θ̃2‖

2
−
σ5

2
ψ̃2
2 −

σ6

2
‖θ̃3‖

2
−
σ7

2
ψ̃2
3

−
σ8

2
b̃2 +

σ1

2
θ̄21 +

σ2

2
(ψ∗1 )

2
+
σ3

2
ā2 +

σ4

2
θ̄22

+
σ5

2
(ψ∗2 )

2
+
σ6

2
θ̄23 +

σ7

2
(ψ∗3 )

2
+
σ8

2
b̄2

+C1 + C2 + C3. (56)

Consider the set 5 := {(1/φ2) log(k2c /(k
2
c − z21)) + z22 +

z23 + θ̃
>

1 γ
−1
1 θ̃1 + γ

−1
2 ψ̃2

1 + γ
−1
3 ã2 + θ̃>2 γ

−1
4 θ̃2 + γ

−1
5 ψ̃2

2 +

θ̃>3 γ
−1
6 θ̃3 + γ

−1
7 ψ̃2

3 + γ
−1
8 b̃2 + ε21 + ε

2
2 ≤ 2l}. Since 5 is

compact in R10+r1+r2+r3 , |N | ≤ B is satisfied on 5 where
B > 0 is a constant. From the inequality εiNi ≤ N 2

i ε
2
i /2 +

1/2, i = 1, 2, (56) becomes

V̇ ≤ −ζ1ρz1 − ζ2z22 − ζ3z
2
3 −

2∑
i=1

(
1
νi
−

1
2
−
N 2
i

2

)
ε2i

−
σ1

2
‖θ̃1‖

2
−
σ2

2
ψ̃2
1 −

σ3

2
ã2 −

σ4

2
‖θ̃2‖

2
−
σ5

2
ψ̃2
2

−
σ6

2
‖θ̃3‖

2
−
σ7

2
ψ̃2
3 −

σ8

2
b̃2 + C (57)

where C = C1 + C2 + C3 + 1 + (1/2)[θ̄21 + (ψ∗1 )
2
+ ā2 +

θ̄22 + (ψ∗2 )
2
+ θ̄23 + (ψ∗3 )

2
+ b̄2].

From Lemma 2, we have −ζ1ρcz1 ≤ −ζ1z21. Then, choos-
ing 1/νi = 1/2 + B2i /2 + ν̄i with a constant ν̄i > 0 and
i = 1, 2, we obtain

V̇ ≤ −ζ1z21 − ζ2z
2
2 − ζ3z

2
3 −

2∑
i=1

ν̄iε
2
i −

σ1

2
‖θ̃1‖

2

−
σ2

2
ψ̃2
1 −

σ3

2
ã2 −

σ4

2
‖θ̃2‖

2
−
σ5

2
ψ̃2
2 −

σ6

2
‖θ̃3‖

2

−
σ7

2
ψ̃2
3 −

σ8

2
b̃2 −

2∑
i=1

(
1−

N 2
i

B2i

)
B2i ε

2
i

2
+ C . (58)

Then, V̇ ≤ −KV + C is satisfied on V = l where K =
min{2ζ1φ2, 2ζ2, 2ζ3, 2ν̄i, σ1/(λmax(γ

−1
1 )), σ2γ2, σ3γ3, σ4 /

(λmax(γ
−1
4 )), σ5γ5, σ6/(λmax(γ

−1
6 )), σ7γ7, σ8γ8}. When K >

C/l, V̇ < 0 that leads to the uniform ultimate boundedness of
all closed-loop signals. Since Vz1 is bounded, the stack tem-
perature constraint−kc < z1(t) < kc is satisfied for all t ≥ 0.
The boundedness of x1 yields |φ2| ≤ φ̄2. From V̇ ≤ −KV +
C , we have Vz1/φ̄2 ≤ V (t) ≤ e−KtV (0)+ (C/K )(1− e−Kt ).
Then, we have |ϕc| ≤

√
1− e−2φ̄2[V (0)e−Kt+(C/K )(1−e−Kt )]. As

t →∞, |ϕc| ≤
√
1− e−(2φ̄2(C/K )). Thus, the control error z1

can be reduced by adjusting design parameters.
Remark 7: Based on the proof of Theorem 1, some guide-

lines for the choice of the design parameters are given as
follows.

1) As ζ1, ζ2, and ζ3 increase, K increases. Thus, the bound√
1− e−2φ̄2(C/K ) of ϕc can be reduced, namely, the control

error z1 is reduced.
2) As κi decreases, C is reduced. Subsequently, the bound√
1− e−2φ̄2(C/K ) of ϕc can be reduced, namely, the control

error z1 is reduced.
3) The adaptive parameters θ̂i, ψ̂i, â, and b̂, i = 1, 2, 3,

can be tuned rapidly by increasing γi and fixing σi as small
constants.

V. SIMULATION RESULTS
Consider the nonlinear thermal management system (13)
with the nonlinear coolant circuit dynamics. Different from
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FIGURE 2. Load current.

FIGURE 3. Comparison of temperature control results.

the existing temperature control methods [5]–[8], [11]–[17],
the proposed adaptive thermal controller firstly deals with
the nonlinear coolant circuit dynamics of PEMFCs. Thus,
the controller [6] considering only the thermal management
model (10) is used for the simulation comparison about the
temperature constraint satisfaction. The load current δ is
shown in Fig. 2 and the initial values of the state variables
are x1(0) = 353, x2(0) = 0.2, and x3(0) = 100. For the
temperature constraint, we choose kc = 0.5. The design
parameters for the proposed controller are adopted as ζ1 = 1,
ζ2 = 400, ζ3 = 0.1, ν1 = ν2 = 0.01, κi = 5, γ1 = diag[0.5],
γ2 = 10, γ3 = 1, γ4 = diag[50], γ5 = 1, γ6 = diag[0.01],
γ7 = 0.1, γ8 = 10−7, σj = 10−3, σ3 = 0.005, σ5 = 0.1,
σ7 = 0.1, and σ8 = 103 where i = 0, . . . , 3 and j = 1, 2, 4, 6.

The adaptive regulation results of the stack temperature to
yr = 353 are compared in Fig. 3. While the temperature
response using the controller [6] violates the temperature con-
straint according to the change of the load current, the output

FIGURE 4. Coolant flux x2 and motor speed x3 of the proposed control
system.

FIGURE 5. Control input of the proposed control system.

response of the proposed adaptive thermal control system
is ensured within stack temperature constraints. The coolant
flux and motor speed of coolant circuit of the proposed
adaptive control system are depicted in Fig. 4. The pump
motor current for the control input of the proposed control
system is displayed in Fig. 5. Fig. 6 shows the outputs of
the RBFNNs and the parameter estimates used in the pro-
posed control system. In these figures, we can see that the
proposed adaptive control has good regulation performance
while the stack temperature remains within constraints for
preventing the membrane dehydration and electrode flooding
of nonlinear PEMFCs. Furthermore, the control result reveals
that the dynamic load current and the parametric and non-
parametric uncertainties can be overcome by establishing the
approximation-based adaptive control strategy although the
uncertain nonlinear coolant circuit dynamics is considered in
the thermal management systems.
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FIGURE 6. RBFNN outputs and adaptive parameters of the proposed
control system (a) θ̂>

1 ξ1, θ̂>

2 ξ2, and θ̂>

3 ξ3 (b) ψ̂1,ψ̂2, and ψ̂3 (c) â and b̂.

VI. CONCLUSION
The paper has established the adaptive temperature con-
trol strategy for avoiding the membrane dehydration
and electrode flooding of uncertain thermal management

systems with nonlinear coolant circuit dynamics of nonlinear
PEMFCs. The coolant circuit model including the nonlinear
coolant flux and pump dynamics has been firstly combined
with the nonlinear stack temperature dynamics in temperature
control field. Then, an adaptive temperature control scheme
has been constructed to guarantee the robust temperature reg-
ulation within the stack temperature constraints even though
all system parameters and nonlinearities are unknown and the
external load changes suddenly. A Lyapunov-based analysis
method has been derived to prove the convergence of the
control error while all closed-loop signals remain bounded.
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