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Abstract: We present hybrid organic inorganic materials, namely, SrTiO3/polyaniline (PANI)
composites, with high thermoelectric performance; samples with various SrTiO3 contents (10,
20, 30, and 50 wt.%) were prepared. The PANI component was obtained through the polymerization
of aniline monomers, followed by camphosulfonic acid-doping to enhance its electrical conductivity.
SrTiO3, with a high Seebeck coefficient, was used as the N-type inorganic componenet; it was
synthesized via a one-pot solvothermal methods and, then, dispersed into the conductive PANI
matrix. The SrTiO3 content influenced the Seebeck coefficient and electrical conductivity of the
resulting composites. The variations in the thermoelectric properties of the SrTiO3/PANI composites
consequently changed their power factor; at room temperature, the highest value was ~49.6 µW·m/K2,
which is 17 times larger than that of pure PANI.
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1. Introduction

Thermoelectric (TE) power generation is a core technology for renewable energy harvesting and
greenhouse gas reduction because of the potential energy conversion between thermal and electrical
energies [1–9]. The efficiency of TE materials can be evaluated by the dimensionless figure of merit, ZT
= S2
·σ·T/κ, where S, σ, T, and κ are, respectively, the Seebeck coefficient, the electrical conductivity, the

absolute temperature, and the total thermal conductivity. The previous studies generally focused on
inorganic TE materials such as Te-based compounds (Bi2Te3, Ag2Te, and Cu2Te) [10–12], Se alloys (SnSe,
Cu2Se) [13–15], and conducting oxides (NaCo2O4, CaMnO3) [16,17]; however, these materials are
typically expensive and brittle, which prevents their application in large areas. Thus, polymer-based
TE materials have recently been widely used for energy harvesting due to their unique advantages, i.e.,
low cost, low processing temperature, and mechanical flexibility. In this regard, we have developed
high-efficiency metal polymer TE devices [18–20].

The ZT can be simply achieved by a low thermal conductivity or with a high power factor (PF=S2
·σ).

Currently, conductive polymers such as poly(3,4-etylenedioxythiophene)-poly(4-styrenesulfonate)
(PEDOT:PSS), polypyrrole, and polythiophene are being used as TE base materials because of their
outstanding thermoelectric properties [21–23]. Ju et al. enhanced the thermoelectric properties of a
conductive PEDOT:PSS matrix by incorporation SnSe nanosheets [24]. SnSe nanosheet/PEDOT:PSS
composites have exhibited also enhanced ZT (0.32) at room temperature, which is ~6 times larger than
that of pristine PEDOT:PSS. Polyaniline (PANI) is another promising conductive polymer due to its
unique characteristics, namely, high σ, and low κ [25–28]; Anno et al. prepared camphorsulfonic acid
(CSA)-doped PANI [29], observing an increased PF of ~0.02 µWm/K2. Wang et al. observed a σ of
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~65 S/cm for pure PANI and prepared a PANI/Te nanorod composite via a solution mixing method,
achieving high PF (~80 µWm/K2) at high temperature [30].

Perovskite strontium titanate and its composites are recently being widely used as N-type materials
due to their high S and chemical stability. In particular, at room temperature, SrTiO3 has an outstanding
S (~400 µV/K) [27] compared to other extensively used N-type materials such as Bi2Te3, Sb2Te3, and
Ag2Te [31–34].

In this study, we suggest a strategy to increase the thermoelectric performance by fabrication
of hybrid polymer-based TE composites, namely, SrTiO3/PANI composites. The PANI matrix was
synthesized through the polymerization of aniline monomers, followed by the doping with CSA to
enhance its σ. SrTiO3 was prepared via a one-pot solvothermal method by using Sr and Ti precursor
solutions. Then, different SrTiO3 contents were incorporated into the PANI matrix to obtain hybrid
organic-inorganic TE composites, whose thermoelectric properties (S, σ, and PF) were successively
analyzed. We expected that the SrTiO3 nanoparticles were randomly dispersed within the PANI matrix,
providing a highly efficient thermoelectric performance.

2. Experimental

2.1. Materials

Sodium hydroxide (NaOH, 98%), ethanol (C2H5OH, 94%) and hydrochloric acid (HCl, 99%)
were purchased from Sigma Aldrich (St. Louis, MO, USA). Strontium nitrate (Sr(NO3)2, 98%),
titanium tetraisopropoxide [(CH3)2CHO]4Ti (TTIP, 98%), ammonium persulfate (APS, 98%), aniline
(99%), and D(+)-camphorsulfonic acid(CSA, 98%) were provided by Daejung Chemicals & Metals Co.
(Seoul, Korea). All chemicals were used without further purification.

2.2. Preparation of PANI

A PANI powder was produced via the chemical polymerization of aniline monomers by using
HCl as the dopant and APS as the oxidant. According th the typical synthetic procefure, the monomers
(0.05 g) were dispersed in 25 mL of 1M HCl and sonicated the mixture at room temperature. Then,
another 1 M HCl solution (1 mL) containing 0.01 g of APS was slowly added to this colloidal solution,
followed by steady stirring for 12 h to obtain an aniline/HCL suspension. Next, the polymerization
reaction was carried out at 0 ◦C under stirring for 6 h in an ice bath. The products were filtered and
sequentially washed with 1 M HCl, deionized (DI) water, and ethanol, followed by CSA doping to
improve the PANI electrical conductivity. The resulting PANI powder was further doped with CSA at
a mole ratio of 1:0.6 through a solid-state reaction.

2.3. Synthesis of SrTiO3

First, Sr(NO3)2 (1.9 g) and TTIP (2.55 g) were dissolved in DI water (30 mL) and ethanol (180 mL),
respectively. The Sr precursor solution was then slowly added to the Ti one, which was subsequently
heated and stirred at 50 ◦C for 30 min. Next, a 0.2 M NaOH aqueous solution (10 mL) was added to
the mixture, followed by stirring for another 30 min. Afterwards, the as-obtained solution was poured
into a Teflon-lined autoclave and heated at 140 ◦C for 24 h. The resulting product (SrTiO3) was filtered,
washed repeatedly, and loaded into a quartz ampoule that was successively sealed with a flame at
350 ◦C for 30 min.

2.4. Preparation of SrTiO3/PANI Composites

A quantity of 0.1 g of the CSA-doped PANI and various amounts (10, 20, 30, and 50 wt.%) of
SrTiO3 were dissolved in m-cresol. These mixtures were stirred for 6 h and filtered twice with DI water
and ethanol. Finally, the as-prepared SrTiO3/PANI composites were dried in a vacuum oven, ground
into fine powders, and hot-pressed at 80 ◦C for 10 min under 50 MPa.
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2.5. Characterization of the SrTiO3/PANI Composites

The morphology of the samples was examined with a field emission scanning electron microscopy
(FE-SEM) system (SIGMA, Oberkochen, German), while their element maps were obtained with an
energy dispersive X-ray spectroscopy (EDS) instrument (NORAN system 7, Thermo scientific, Seoul,
Korea). An X-ray diffraction (XRD) analyzer (New D8-Advance, Bruker-AXS) with Cu Kα radiation
(0.154056 nm) was used to identify the crystal phase of the composites; the XRD patterns were acquired
in a 2θ range of 20 to 80◦ at a scan rate of 1◦/s. The binding energy peaks were analyzed by using
an X-ray photoelectron spectroscopy (XPS) system (Thermo U.K. K-alpha, Seoul, Korea) with Al Kα

radiation (1486.6 eV).
Disc-shaped samples with a 12.7 mm diameter were prepared to determine σ and S. The electrical

conductivity was derived by using a Keithley 2400 source meter and the four-point probe method;
the thickness of the samples was measured with a digital micrometer. The Seebeck coefficient was
estimated with homemade equipment consisting of a pair of voltmeters and thermocouples. Five
SrTiO3/PANI samples were prepared for the reproducibility of the experiments and the average values
are reported here.

3. Results and Discussion

In the formation of SrTiO3 via the one-pot solvothermal method, NaOH plays a key role as follows.
The high OH− concentration provided by the NaOH solution promotes the hydrolysis of TTIP, yielding
negatively charged Ti sol that successively reacts with the Sr cations from the Sr precursor, finally
forming SrTiO3 [31].

The XRD patterns of synthesized SrTiO3 (Figure 1a) showed diffraction peaks at 32.4◦, 39.9◦, 46.5◦,
57.8◦, 67.8◦, and 77.2◦. that were attributed to, respectively, the (100), (111), (200), (211), and (220)
planes of perovskite SrTiO3 (JCPDS no. 35-0734), indicating the formation of pristine SrTiO3 with a
well-defined cubic by structure [35,36].
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The successful synthesis and chemical composition of SrTiO3 was then confirmed by the XPS results.
In the XPS survey spectrum (Figure 1b), the Sr 3d and Ti 2p peaks were observed. The high-resolution
Sr 3d spectrum (Figure 1c) showed peaks at ~132 and ~134 eV that correspond to the Sr 3d5/2 and 3d3/2

binding energies, respectively, of pristine SrTiO3, suggesting its existence in the Sr2+ state. Ti existed as
Ti4+, as revealed by the two separate peaks at ~463 and ~458 eV, corresponding to Ti 2p1/2 and Ti 2p3/2,
respectively (Figure 1d) [37].

The FE-SEM analysis clearly showed the nano-sized (~50–100 nm) grains of the synthesized
SrTiO3 (Figure 2a,b). Furthermore, the corresponding Sr and Ti maps (Figure 2c,d) confirmed its
unary composition.
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Figure 2. (a,b) Field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray
spectroscopy (EDS) images of SrTiO3. (c,d) Elemental maps of (b), obtained via energy dispersive
X-ray spectroscopy.

The FT–IR spectra (Figure 3a) exhibited two bands at at ~1580 and ~1450 cm−1 and another two at
~1300 and ~1140 cm−1; these signal pairs were attributed to the C=C vibration and the C–N structure,
respectively, of the quinoid and benzoid rings in PANI [38,39]. The successful preparation of the
SrTiO3/PANI composites as then confirmed by their XRD patterns (Figure 3b), which showed that the
SrTiO3 peaks systemically gained intensity as the SrTiO3 content increased. These peaks demonstrate
the good dispersion of SrTiO3 and PANI in the sample composite matrix. The FE-SEM observation of
the SrTiO3 (30 wt.%)/PANI sample (Figure 3c) further confirmed the uniform dispersion of these two
components. Their random dispersion was also demonstrated, along with the successful synthesis of
SrTiO3/PANI, via the EDS elemental mapping (Figure 3d–f).

For the measurements of the TE properties, the PANI and SrTiO3/PANI disks were loaded into a
Fe mold and pressed at 200 ◦C under 50 MPa for 10 min.

Figure 4a compared electrical conductivities at room temperature of the various SrTiO3 /PANI
samples and pristine PANI (i.e., 0 wt.%). The pristine PANI sample exhibited a σ value of 62.4 S/cm,
which is consistent with previous results [26]. As regards the composite sample, σ decreased with the
increase in the SrTiO3 contents; this was due to its relatively lower σ of SrTiO3 compared to that of
PANI [26]. This trend can be explained by the relation of σ with the charge carrier mobility (µ) and
concentration (n): σ = n·e·µ, where e is the electron charge. According to this relation, σ is directly
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proportional to n and µ, whose values are given in Figure S1. For the SrTiO3/PANI samples, n decreased
when increasing the SrTiO3 content, resulting in the above-mentioned σ reduction.Polymers 2019, 11, x FOR PEER REVIEW 5 of 8 
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Figure 4. (a) Electrical conductivity, (b) Seebeck coefficient, and (c) Power factor of the SrTiO3/PANI
composites as functions of the SrTiO3 content.

The pristine PANI sample exhibited a positive S (Figure 4b), confirming its P-type semiconducting
behavior. On the other hand, the SrTiO3/PANI composites showed negative S values due to the N-type
semiconducting behavior of SrTiO3; furthermore, the absolute S value increased along with the SrTiO3

content because of the high S of SrTiO3 at room temperature (~−300 µV/K) [40]. The Sebeck coefficient
of a material is generally inversely proportional to µ and this trend is described by the following
model [41,42]:

S =
8·π2
·kB

2

3·e·h2 ·m
∗
·T·(

π
3·n

)
2
3 (1)

where kB is the Boltzmann constant, h, is the Planck constant, and m* is the effective mass of the
charge carrier.
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When increasing the absolute S and decreasing σ, at room temperature, the SrTiO3(20 wt.%)/PANI
sample exhibited the largest PF, i.e., ~29.6 µW·m/K2, which is 17 times larger than that of pristine PANI.

Is this study, we prepared SrTiO3/PANI composites and evaluated their thermoelectric properties.
With increasing the SrTiO3 content, S accordingly increased while σ decreased. Therefore, the maximum
PF was obtained for the composite. These experimental results can provide a strategy for achieving
highly efficient TE materials.

4. Conclusions

We fabricate SrTiO3/PANI composites with various SrTiO3 contents and analyzed their
thermoelectric properties. The purpose was to fabricate PANI-based materials with high thermoelectric
efficiency. The PANI and SrTiO3 components were synthesized via, respectively, the polymerization
of aniline monomers and a one-pot solvothermal method with Sr and Ti precursor solutions; NaOH
was crucial in the SrTiO3 nanoparticle growth. The morphology and nanostructure of the composites
were characterized through XRD, XPS, FT-IR, FE-SEM, and EDS analyses. Upon increasing the SrTiO3

content, σ decreased because of the low σ of SrTiO3, while S increased. Due to these two trends, at
room temperature, the sample with 20 wt.% SrTiO3 exhibited the maximum power factor of ~49.6
µW·m/K2, which is ~17 times larger than that of pure PANI. The results of this study demonstrate
that the combination of SrTiO3 with PANI as the organic polymer is a successful strategy to fabricate
outstanding organic–inorganic TE materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/4/777/s1,
Figure S1: (a) carrier concentration, and (b) Carrier mobility of PANI-SrTiO3 composites with various SrTiO3
contents at room temperature, Figure S2: (a) FE-SEM images of (a). pristine PANI, (b) pristine SrTiO3, and (c)
PANI-SrTiO3 composites, Table S1. Seebeck coefficient, electrical conductivity, carrier concentration, and carrier
mobility of PANI-SrTiO3 composites at room temperature.
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