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ABSTRACT This paper addresses an approximation-based adaptive event-triggered control problem against
unknown injection data in full state measurements and an actuator of systems with unknown strict-feedback
nonlinearities. It is assumed that full state variables measured for state-feedback control are corrupted by
unknown injection data that denote cyber attacks or fault signals, and all system nonlinearities are unknown.
Owing to the corrupted state feedback information, error surfaces using exactly measured state variables
become unknown during the recursive control design procedure for strict-feedback nonlinear systems. Thus,
they cannot be used to implement the adaptive event-triggered controller. To address this problem, an
approximation-based adaptive recursive event-triggered control design using the corrupted state variables
is established to ensure that error surfaces using exactly measured state variables converge to an adjustable
neighborhood of the origin in the Lyapunov sense. The adaptive controller and its event-triggering law using
corrupted states are designed under uncertain injection data where the adaptive injection data compensators
using the neural networks are constructed to deal with the unknown injection data effects. The stability of
the closed-loop systems and the exclusion of Zeno behavior are analyzed.

INDEX TERMS Event-triggered control, corrupted full state measurements, unknown injection data,
dynamic surface design, unknown strict-feedback nonlinearities.

I. INTRODUCTION
The development of information and communication
technology has stimulated the tight interaction of control sys-
tems and cyber components [1], [2]. Under the network-based
control environment, the exact transmission of measured
state variables of physical systems is an important problem
for ensuring the performance of controllers in the network.
During the network transmission of the state information for
the feedback control, unexpected time-varying injection data
can be added to the state information measured by sensors.
The sources of the injection data in the resilient control stud-
ies are largely divided into two categories: (i) measurement

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng H. Zhu .

faults and (ii) adversarial cyber attacks. In the first category,
the sensor faults influence the measurement information
for the feedback control. Many studies have addressed the
resilient control problems of linear and nonlinear systems
with measurement faults [3]–[6]. Especially, some limited
studies have appeared for the recursive control design of
lower-triangular nonlinear systems with measurement faults
where backstepping [7] and dynamic surface designs [8], [9]
have been used to construct the resilient control systems.
In [10], [11], the output functions were regarded as sensor
faults, and output-feedback control approaches were pre-
sented for nonlinear systems. In [12], an output-feedback
stabilizer design problem using a dual-domination approach
was addressed for lower-triangular nonlinear systems with
unknown measurement sensitivity. In [13], an adaptive
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compensation method of sensor failure was proposed for
parametric strict-feedback systems. In [14], a fuzzy adaptive
sensor fault compensation approachwas studied for nonlinear
strict-feedback systems. In [15], an adaptive control method
was presented for nonlinear systems with time-varying sen-
sor sensitivities. However, the existing works [10]–[15] for
lower-triangular nonlinear systems considered only an out-
put measurement fault. That is, they cannot be applied to
state-feedback recursive control design and stability analysis
problems in the presence of full state measurement faults
because corrupted state variables, instead of exactlymeasured
state variables, should be used to implement virtual and
actual controllers. In the second category, the measured state
information is stealthily monitored by adversarial attackers
and deception attack signals for attackers’ desire are mali-
ciously injected into the measured states. Thus, the deception
attack signals may depend on the state variables. For known
cyber attacks, some resilient control approaches have been
presented for linear and nonlinear systems [16]–[21]. To
consider unknown cyber attack signals in state variables
and an actuator, some adaptive control studies have recently
been investigated. In [22], sensor attacks of uncertain linear
systems were considered to design adaptive control architec-
tures. An adaptive control methodology was presented in [23]
where the time-varying parameters in deception attacks were
estimated via the projection algorithm. In [24], an adaptive
resilient control approach using Nussbaum functions was
studied in the presence of unknown control direction. How-
ever, these research results [22]–[24] for compensating for
unknown deception attacks in the adaptive control framework
are only available for linear systems. They cannot be applied
to the recursive design problem against unknown injection
data in full state measurements of lower-triangular nonlinear
systems.

Adaptive control problems of nonlinear lower-triangular
systems with uncertainties unmatched to a control input have
received great attention in the control design field because
of their application to many practical systems such as robot
manipulators, biological systems, power systems, flight sys-
tems, and traffic control systems. Thus, adaptive recursive
control design strategies have been actively developed to deal
with unmatched parametric or nonparametric uncertainties.
During the early stages of the research, the adaptive tech-
nique was combined with the recursive designs to estimate
unmatched parametric uncertainties online (see [25]–[31] and
references therein). Function approximation techniques using
neural networks or fuzzy logic systems have been applied to
design approximation-based adaptive control systems, in an
attempt to deal with unmatched nonparametric uncertainties
(i.e, nonlinear uncertainties) (see [32]–[39] and references
therein). In addition, distributed adaptive control approaches
have been presented for uncertain multi-agent nonlinear sys-
tems in the strict-feedback form [40]–[44]. In these stud-
ies, unknown nonlinear functions derived from the recursive
control design steps were estimated via radial basis func-
tion neural networks (RBFNNs) or fuzzy logic systems.

The uncorrupted state feedback information was used as the
input for these function approximators. If the state feedback
information is corrupted by unknown injection data, the cor-
rupted state feedback information should be used as the input
of the function approximators in the adaptive control frame-
work. This problem still persists in the full-state-feedback-
based adaptive control field of strict-feedback nonlinear
systems.

The event-triggered control technique is particularly
popular in the network-based control field of linear and
nonlinear systems, for ensuring the efficient use of the
network bandwidth [45]–[48]. In event-triggered control,
a control input is updated when a triggering law is satis-
fied. Thus, the computational and communicational resources
required for implementing the controller can be conserved.
Therefore, event-triggered control problems have been stud-
ied for systems with nonlinearities unmatched to the con-
trol input. In [49]–[51], adaptive event-triggered control
designs were developed for lower-triangular nonlinear sys-
tems with parametric uncertainties. In [52], the finite-
time stabilization problem of uncertain nonlinear systems
was addressed in the event-triggered control framework.
In [53]–[56], approximation-based adaptive control tech-
niques for estimating unknown nonlinear uncertainties were
combined with event-triggered control designs. Despite these
efforts, no studies have been reported thus far on the event-
triggered control problem against unknown injection data in
full state measurements and an actuator of lower-triangular
nonlinear systems.

On the basis of the above discussion, the main difficul-
ties in designing an adaptive event-triggered resilient control
scheme against the aforementioned unknown injection data
are as follows.

(D1) Because full state measurements for feedback control
are corrupted by unknown injection data, the corrupted state
variables can be only used in the adaptive control scheme
using backstepping or dynamic surface techniques and thus
the error surfaces using the exactly measured state variables
for the recursive design are unknown for the control design.
Accordingly, the first difficulty is how to design an adaptive
controller using the corrupted full state variables to ensure
the convergence of the error surfaces using the exactly mea-
sured state variables for achieving the control objective in
Lyapunov-based recursive stability analysis.

(D2) Since the exactly measured state variables are not
available, the second difficulty is how to design the triggering
law using corrupted state variables in the adaptive event-
triggered control framework. Furthermore, the stability of
the closed-loop system and the exclusion of Zeno behavior
should be analyzed by the triggering law using the corrupted
state variables.

The objective of this paper is to propose a remedy for
difficulties (D1) and (D2), that is, to establish an adap-
tive resilient event-triggered control design strategy using
corrupted full state measurements for uncertain nonlinear
strict-feedback systems with unknown injection data in full
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state measurements and an actuator. It is assumed that full
state measurements corrupted by unknown injection data
are available for feedback, and system nonlinearities are
unknown. To overcome difficulties (D1) and (D2), auxil-
iary signals using corrupted full state variables are designed,
and an approximation-based adaptive event-triggered con-
troller and its triggering law are recursively constructed
using the auxiliary signals. For the proposed control scheme,
dynamic injection data compensators using RBFNNs are
designed to compensate for unknown injection data effects.
Although the proposed adaptive event-triggered controller
is based on corrupted full state variables, it is shown that
the convergence of the error surfaces using the exactly
measured state variables is ensured for achieving the con-
trol objective in the Lyapunov-based stability sense. Finally,
simulation examples including a practical application are
given for testifying the validity of the proposed theoretical
result.

The rest of this paper is outlined as follows. An adaptive
resilient event-triggered control problem of uncertain non-
linear strict-feedback systems with unknown injection data
in full state measurements and an actuator is formulated in
Section 2. The proposed event-triggered control design using
corrupted state variables and its stability analysis are pre-
sented in Sections 3. Simulation studies are given in Section
4. Finally, we conclude in Section 5.

II. PROBLEM FORMULATION
Let us consider the following uncertain nonlinear strict-
feedback systems with unknown injection data in full state
measurements and an actuator

ẋk = xk+1 + hk (x̄k )

ẋn = u+ κa(t, x̄n)+ hn(x̄n)

xi,a = xi + κi,s(t, xi) (1)

where k = 1, . . . , n − 1, i = 1, . . . , n,
x̄k = [x1, x2, . . . , xk ]> ∈ Rk are state variable vectors,
hi(x̄i) : Ri

7→ R are unknown C1 nonlinear functions,
κa and κi,s denote injection data in the actuator and the ith
state measurement, respectively, xi,a is the corrupted state
variables, and u ∈ R is an event-triggered control input that is
intermittently updated by a triggering law to be designed later.
The injection data are represented by κi,s(t, xi(t)) = ζi(t)xi(t)
and κa(t, x̄n(t)) = ξ (t)δ(x̄n(t)) where ζi and ξ are unknown
time-varying signals and δ is a continuous nonlinear function.
Assumption 1: Instead of the exactly measured state vari-

ables xi, the corrupted state variables xi,a are available only
for the feedback control design.
Assumption 2: [23], [24] There exist unknown constants

ζ̄i, ζ̄i,d , and ξ̄ such that |ζi| ≤ ζ̄i, |ζ̇i| ≤ ζ̄i,d , and |ξ | ≤ ξ̄ .
Assumption 3: [23] The time-varying signals ζi satisfy

ζi + 1 6= 0 and the sign of ζi + 1 is assumed to be positive.
Problem 1: Consider system (1). Our problem is to design

an adaptive resilient event-triggered control law u using
corrupted state variables so that system (1) is stabilized in

the presence of unknown strict-feedback nonlinearities and
unknown injection data in full state measurements and an
actuator while all other signals remain bounded.
Remark 1 (The following statements are noted): (i) In

contrast to the existing resilient control results [23], [24] for
linear systems, uncertain nonlinear strict-feedback systems
are considered in this paper. A recursive resilient event-
triggered control design strategy using the corrupted state
variables is established in the presence of unknown injection
data in full state measurements and an actuator;

(ii) Assumption 3 is reasonable for ensuring the control-
lability of the system (1) with injection data in full state
measurements [23]. This implies the existence of a nominal
solution for Problem 1;

(iii) Contrary to the existing recursive designs [10]–[15]
against output measurement faults, this paper considers full
state variables corrupted by unknown injection data (i.e,
xi,a = xi + κi,s(t, xi) in (1)) and the adaptive event-triggered
control problem using the corrupted state variables. Thus,
Problem 1 is the first trial in the adaptive control branch of
uncertain lower-triangular nonlinear systems.
Remark 2: System (1) in the strict-feedback form can rep-

resent many nonlinear practical applications such as aircraft
wing rock models, jet engines, flight systems, biochemical
processes, and flexible-joint robots [7]. The state variables
measured for the network-based feedback control of these
practical systems can be corrupted by sensor faults or cyber
attacks. The resilient event-triggered control strategy pro-
posed in this paper can then be applied to these practical
control problems.

III. MAIN RESULTS
A. FUNCTION APPROXIMATION USING RADIAL BASIS
FUNCTION NEURAL NETWORKS
In this paper, RBFNNs are employed to approximate
unknown continuous nonlinear functions to be specified
in the adaptive event-triggered control design procedure.
Consider continuous real-valued nonlinear functions 9i(γi):
Rqi 7→ R where i = 1, . . . , n. RBFNNs can approximate
9i(γi) over a compact set 5γi ⊂ Rqi as [57], [58]

9i(γi) = θ>i Gi(γi)+ εi(γi) (2)

where i = 1, . . . , n, γi is the input vector, εi is the approxima-
tion error, θi ∈ Rli is the optimal weighting vector defined as
θi = argmin

θ̂i
[supγi∈5γi |9i(γi)−θ̂>i Gi(γi)|]; θ̂i is an estimate

of θi, and Gi(γi) = [gi,1(γi), . . . , gi,li (γi)]
>
∈ Rli ; Gaussian

functions gi,j(γi), j = 1, . . . , li, are defined as

gi,j(γi) = exp
[
−(γi − oi,j)>(γi − oi,j)

r2i,j

]
(3)

with the center of the receptive field oi,j ∈ Rqi and the width
of the Gaussian function ri,j ∈ R.
Assumption 4: [59] θi and εi are bounded as ‖θi‖ ≤ θ̄i

and |εi| ≤ ε̄i, respectively, where i = 1, . . . , n, θ̄i > 0 and
ε̄i > 0 are unknown constants.
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Lemma 1: [59] It holds that ‖Gi(γi)‖ ≤ Ḡi where
i = 1, . . . , n and Ḡi is a constant.

B. RECURSIVE ADAPTIVE EVENT-TRIGGERED CONTROL
DESIGN
In this section, a recursive design strategy using the corrupted
state feedback information is presented for the adaptive event-
triggered control of system (1).

Let us consider the following coordinate transformation on
the basis of the dynamic surface design technique

e1 = x1 (4)

ek = xk − ν̄k (5)

ρk = ν̄k − νk (6)

where k = 2, . . . , n, e1 and ek are error surfaces using exactly
measured state variables x1 and xk , ρk and νk denote boundary
layer errors and virtual control signals, respectively, and ν̄k
are signals provided by the first-order low-pass filters

τk ˙̄νk + ν̄k = νk , ν̄k (0) = νk (0) (7)

with small time constants τk > 0. Since the exactly measured
state variables xi, i = 1, . . . , n, are corrupted by unknown
injection data κi,s, the error surfaces ei, i = 1, . . . , n, are
not available for designing the virtual control laws νk and the
actual control law u. Thus, we propose auxiliary signals using
corrupted state variables xi,a, i = 1, . . . , n, as follows:

$1 = x1,a (8)

$k = xk,a − ν̄k − ζ̂k ν̄k (9)

where k = 2, . . . , n, and ζ̂k is the estimate of ζk which is
provided by the injection data compensator to be designed
later.
Remark 3: It is well known that the convergence of the

error surfaces ei should be analyzed for stable control design
based on the Lyapunov stability theorem in conventional
dynamic surface control where i = 1, . . . , n. However, the
error surfaces ei are unknown for our control design because
the exactly measured state variables xi are corrupted during
the feedback procedure. Thus, we present a recursive event-
triggered control design using the available auxiliary signals
$i, instead of the unknown error surfaces ei, to ensure the
convergence of the error surfaces ei in the Lyapunov sense.
For the recursive design based on the Lyapunov stability

analysis, (8) and (9) can be rewritten as

$1 =
e1
φ1

(10)

$k = ek + ζkxk − ζ̂k ν̄k + ζk ν̄k − ζk ν̄k

=
ek
φk
+ ζ̃k ν̄k (11)

where k = 2, . . . , n, ζ̃k = ζk− ζ̂k , and φk = 1/(1+ζk ). From
Assumption 3, (10) and (11) are well defined. In addition,
from Assumption 2, there exist unknown positive constants
φ
i
, φ̄i, and φ̄i,d such that φ

i
≤ |φi| ≤ φ̄i and |φ̇i| ≤ φ̄i,d

where i = 1, . . . , n.

From now on, the approximation-based adaptive event-
triggered stabilizer using the auxiliary signals $i is recur-
sively designed. The control design procedure is based on
the Lyapunov stability theorem [7]. This theorem provides a
design methodology to deal with the adaptive control design
and stability analysis, simultaneously. In the first design step,
a Lyapunov function V1 consisting of the error surface e1
and the weight estimation error θ̃1 for RBFNN is chosen to
analyze the convergence of the error surface e1 and the bound-
edness of θ̃1. In the kth design step, a Lyapunov function Vk
consisting of the error surface ek , weight estimation error θ̃k
for RBFNN, and compensation error ζ̃k for the injection data
is selected to analyze the convergence of the error surface ek
and the boundedness of θ̃k and ζ̃k where k = 2, . . . , n.
Step 1: Differentiating the first error surface e1 with

respect to time yields

ė1 = x2 + h1(x1). (12)

Consider the Lyapunov function V1 = e21/(2φ1) +
θ̃>1 θ̃1/(2λ1) where θ̃1 = θ1 − θ̂1. Its time derivative is

V̇1 = −
φ̇1

2φ21
e21 +

1
φ1
e1(e2 + ρ2 + ν2 + h1(x1))−

1
λ1
θ̃>1
˙̂
θ1

≤
1
φ1
e1(e2 + ρ2 + ν2 + ϕ1)−

1
λ1
θ̃>1
˙̂
θ1 (13)

where ϕ1 = h1(x1)+ (φ̄1,d/(2φ1))e1.
Then, there exists a continuous nonlinear function 91(γ1)

such that
1
φ1
e1ϕ1 ≤

1
φ1
e191(γ1) (14)

where 91(γ1) = h1(x1)+ (φ̄1,d/(2φ1))e1 and γ1 = e1. From
(2), employing the RBFNN θ>1 G1(γ1) to estimate 91(γ1)
yields

91(γ1) = θ>1 G1(γ1)+ ε1. (15)

Based on the auxiliary signal $1, the first virtual control
law is derived as

ν2 = −(β1 + m1)$1 − θ̂
>

1 G1(γ1,a) (16)
˙̂
θ1 = λ1$1G1(γ1,a)− λ1σ1θ̂1 (17)

where β1 > 0, m1 > 0, λ1 > 0, and σ1 > 0 are design
constants, and γ1,a = e1,a with e1,a = x1,a.
Then, substituting (14) and (15) into (13) gives

V̇1 ≤
1
φ1
e1(e2 + ρ2 + ν2 + θ>1 G1(γ1)+ ε1)−

1
λ1
θ̃>1
˙̂
θ1.

(18)

From (10), it holds that e1 = φ1$1. Using (16) and
e1 = φ1$1, (18) becomes

V̇1 ≤
1
φ1
e1(e2 + ρ2)+$1(−(β1 + m1)$1 + θ̃

>

1 G1(γ1,a)

+ θ>1 ψ1 + ε1)−
1
λ1
θ̃>1
˙̂
θ1 (19)
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where ψ1 = G1(γ1) − G1(γ1,a). Adding and subtracting the
term (β1/φ21 )e

2
1 to (19), and using e1 = φ1$1 and (17) yield

V̇1 ≤
1
φ1
e1(e2 + ρ2)+$1(−m1$1 + ς1)−

β1

φ21

e21

+ σ1θ̃
>

1 θ̂1 (20)

where ς1 = θ>1 ψ1 + ε1.
Step k (k = 2, . . . , n − 1): The time derivative of the kth

error surface (5) is given by

ėk = xk+1 + hk (x̄k )− ˙̄νk (21)

where k = 2, . . . , n− 1.
Consider the Lyapunov function Vk = e2k/(2φk )+ ζ̃

2
k /2+

θ̃>k θ̃k/(2λk ) where k = 2, . . . , n − 1, ζ̃k = ζk − ζ̂k , and
θ̃k = θk − θ̂k . Its time derivative along (6) and (21) is
represented by

V̇k = −
φ̇k

2φ2k
e2k +

1
φk
ek (ek+1 + ρk+1 + νk+1 − ˙̄νk + hk (x̄k ))

+ ζ̃k (ζ̇k −
˙̂
ζk )−

1
λk
θ̃>k
˙̂
θk

≤
1
φk
ek (ek+1 + ρk+1 + νk+1 − ˙̄νk + ϕk )−

1
φk−1

ek−1ek

+
1
φk
ek (βk + ιk )ν̄kζk + ζ̃k (ζ̇k −

˙̂
ζk )−

1
λk
θ̃>k
˙̂
θk (22)

where ϕk = hk (x̄k )+(φ̄k,d/(2φk ))ek+(φk/φk−1)ek−1−(βk+
ιk )ν̄kζk ; βk > 0 and ιk > 0 are constants.
From the boundedness of ζk , φk and φk−1, there exists a

continuous function 9k (γk ) such that

1
φk
ekϕk ≤

1
φk
ek9k (γk )+ ak (23)

where ak > 0 is a constant and γk = [x̄>k , ek−1, ek , ν̄k , bk ]
>

with a constant bk > 0. By employing the RBFNN θ>k Gk (γk )
to estimate 9k (γk ), we have

9k (γk ) = θ>k Gk (γk )+ εk . (24)

An adaptive injection data compensator is presented as

˙̂
ζk = θ̂

>
k Gk (γk,a)ν̄k − (βk − mk − (βk + ιk )2ν̄2k )ν̄k$k

− (βk + ιk )ν̄2k ζ̂k − αk ζ̂k (25)

where k = 2, . . . , n, βk > 0, mk > 0, ιk > 0, and
αk > 0 are design parameters, γk,a = [x̄>k,a, ek−1,a, ek,a,
ν̄k , bk ]>; x̄k,a = [x1,a, . . . , xk,a]>, ek−1,a = xk−1,a − ν̄k−1
with ν̄1 = 0, and ek,a = xk,a − ν̄k .
The kth virtual control law using the auxiliary signal$k is

designed as

νk+1 = −(βk + mk + (βk + ιk )2ν̄2k )$k

− θ̂>k Gk (γk,a)+
νk − ν̄k

τk
(26)

˙̂
θk = λk$kGk (γk,a)− λkσk θ̂k (27)

where λk > 0 and σk > 0 are design constants.

Using ek = φk ($k − ζ̃k ν̄k ) in (11) and νk+1 in (26), (22)
becomes

V̇k

≤
1
φk
ek (ek+1 + ρk+1)−

βk

φ2k
e2k +

βk

φ2k
e2k

+ ($k − ζ̃k ν̄k ){−(βk + mk + (βk + ιk )2ν̄2k )$k

+ θ̃>k Gk (γk,a)+ θ
>
k ψk + εk}

+ ιk ζ̃
2
k ν̄

2
k − ιk ζ̃

2
k ν̄

2
k −

1
φk−1

ek−1ek +
1
φk
ek (βk + ιk )ν̄kζk

+ ζ̃k (ζ̇k −
˙̂
ζk )−

1
λk
θ̃>k
˙̂
θk + ak

=
1
φk
ek (ek+1 + ρk+1)

+$k{−(βk+mk+(βk+ιk )2ν̄2k )$k+θ̃
>
k Gk (γk,a)+ςk}

− ζ̃k ν̄k{−(βk+mk+(βk+ιk )2ν̄2k )$k+θ̃
>
k Gk (γk,a)+ςk}

−
βk

φ2k
e2k + βk ($

2
k − 2ζ̃k ν̄k$k )+(βk+ιk )ζ̃ 2k ν̄

2
k−ιk ζ̃

2
k ν̄

2
k

−
1

φk−1
ek−1ek +

1
φk
ek (βk + ιk )ν̄kζk + ζ̃k (ζ̇k −

˙̂
ζk )

−
1
λk
θ̃>k
˙̂
θk + ak

=
1
φk
ek (ek+1 + ρk+1)

+$k{−mk$k − (βk + ιk )2ν̄2k$k + θ̃
>
k Gk (γk,a)+ ςk}

− ζ̃k ν̄k{βk$k−mk$k−(βk+ιk )2ν̄2k$k+(βk+ιk )ν̄k ζ̂k

+ θ̃>k Gk (γk,a)+ ςk} −
βk

φ2k
e2k + (βk + ιk )ν̄2k ζ̃kζk

− ιk ζ̃
2
k ν̄

2
k −

1
φk−1

ek−1ek +
1
φk
ek (βk + ιk )ν̄kζk

+ ζ̃k (ζ̇k −
˙̂
ζk )−

1
λk
θ̃>k
˙̂
θk + ak (28)

where ψk = Gk (γk )− Gk (γk,a) and ςk = θ>k ψk + εk .
Then, from ζ̃k ν̄k = $k − (ek/φk ), we have

(βk + ιk )ν̄2k ζ̃kζk = (βk + ιk )ν̄kζk

(
$k −

ek
φk

)
≤ (βk + ιk )2ν̄2k$

2
k +

ζ̄ 2k

4

−
1
φk
ek (βk + ιk )ν̄kζk . (29)

Substituting (25), (27), and (29) into (28) yields

V̇k ≤
1
φk
ek (ek+1 + ρk+1)+$k (−mk$k + ςk )

− ζ̃k ν̄k (θ>k Gk (γk,a)+ ςk )−
βk

φ2k
e2k − ιk ζ̃

2
k ν̄

2
k

−
1

φk−1
ek−1ek + ζ̃k (ζ̇k + αk ζ̂k )+ σk θ̃>k θ̂k

+ ak +
ζ̄ 2k

4
. (30)
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Step n: Consider the Lyapunov function Vn = e2n/(2φn)+
ζ̃ 2n /2+ θ̃

>
n θ̃n/(2λn) with ζ̃n = ζn− ζ̂n and θ̃n = θn− θ̂n. From

ėn = u + ξφ(x̄n) + hn(x̄n) − ˙̄νn, the time derivative of V̇n is
given by

V̇n≤
1
φn
en(u− ˙̄νn+ϕn)−

1
φn−1

en−1en+
1
φn
en(βn + ιn)ν̄nζn

+ ζ̃n(ζ̇n −
˙̂
ζn)−

1
λn
θ̃>n
˙̂
θn (31)

where ϕn = hn(x̄n) + ξφ(x̄n) + (φ̄n,d/(2φn))en +
(φn/φn−1)en−1 −(βn + ιn)ν̄nζn; βn > 0 and ιn > 0 are
constants.

Due to the boundedness of φn, φn−1, ζn, and ξ , there exists
a continuous function 9n(γn) such that

1
φn
enϕn ≤

1
φn
en9n(γn)+ an (32)

where an > 0 is a constant and γn = [x̄>n , en−1, en, ν̄n, bn]
>

with a constant bn > 0. By employing the RBFNN θ>n Gn(γn)
to estimate 9n(γn), we have

9n(γn) = θ>n Gn(γn)+ εn. (33)

The approximation-based adaptive event-triggered control
law is presented as

u(t) = ū(tl), t ∈ [tl, tl+1) (34)

tl+1 = inf{t > tl ||Su(t)| ≥ mu,1|$n(t)| + mu,2} (35)

where for l ∈ Z+, tl denotes the update time of the controller,
Su = ū(t)− u(t) is the measurement error due to the trigger-
ing, $n is defined as $n = xn,a − ν̄n − ζ̂nν̄n in (9), and mu,1
and mu,2 are positive design constants. (34) and (35) imply
that the control law u is set to ū(tl) for t ∈ [tl, tl+1), and
when the triggering law (35) is satisfied, its value is updated
at tl+1. Here, the signal ūwith the auxiliary signal$n and the
injection data compensator ζ̂n is designed as follows:

ū = −(βn + mn + (βn + ιn)2ν̄2n )$n

− θ̂>n Gn(γn,a)+
νn − ν̄n

τn
(36)

˙̂
θn = λn$nGn(γn,a)− λnσnθ̂n (37)
˙̂
ζn = θ̂

>
n Gn(γn,a)ν̄n − (βn − mn − (βn + ιn)2ν̄2n )ν̄n$n

− (βn + ιn)ν̄2n ζ̂n − αnζ̂n (38)

where $n = xn,a − ν̄n − ζ̂nν̄n, γn,a = [x̄>n,a, en−1,a, en,a,
ν̄n, bn]>; x̄n,a = [x1,a, . . . , xn,a]>, en−1,a = xn−1,a − ν̄n−1,
and en,a = xn,a − ν̄n, mn > 0 and αn > 0 are design
parameters, and λn > 0 and σn > 0 are design constants.

Using en = φn($n − ζ̃nν̄n) in (11), Su = ū(t) − u(t), and
(36), (31) becomes

V̇n ≤ $n{−(βn+mn+(βn+ιn)2ν̄2n )$n+θ̃
>
n Gn(γn,a)+ ςn}

− ζ̃nν̄n{−(βn + mn + (βn + ιn)2ν̄2n )$n + θ̃
>
n Gn(γn,a)

+ ςn} −
βn

φ2n
e2n + βn($

2
n − 2ζ̃nν̄n$n)+ (βn + ιn)ζ̃ 2n ν̄

2
n

− ιnζ̃
2
n ν̄

2
n −

1
φn−1

en−1en +
1
φn
en(βn + ιn)ν̄nζn

+ ζ̃n(ζ̇n −
˙̂
ζn)−

1
λn
θ̃>n
˙̂
θn + an −

1
φn
enSu. (39)

Owing to Su(tl) = 0 for l ∈ Z+ and $n(t) =
ζ̃nν̄n + (en/φn), we have

−
1
φn
enSu ≤

1
φn
|en|(mu,1|$n(t)| + mu,2)

≤
mu,1
φ2n

e2n +
mu,1
φn
|en||ζ̃nν̄n| +

mu,2
φn
|en|

≤
2mu,1
φ2n

e2n +
mu,1
4
ζ̃ 2n ν̄

2
n +

λu

φ2n
e2n +

m2
u,2

4λu
(40)

where λu > 0 is a constant.
Using (40) and (βn+ ιn)ζ̃ 2n ν̄

2
n = (βn+ ιn)ζ̃nν̄2n (ζn− ζ̂n), we

obtain

V̇n ≤ $n{−mn$n − (βn + ιn)2ν̄2n$n + θ̃
>
n Gn(γn,a)+ ςn}

− ζ̃nν̄n{βn$n − mn$n − (βn + ιn)2ν̄2n$n

+ (βn + ιn)ν̄nζ̂n + θ̃>n Gn(γn,a)+ ςn}

− (βn − 2mu,1 − λu)
e2n
φ2n
+ (βn + ιn)ν̄2n ζ̃nζn

−

(
ιn −

mu,1
4

)
ζ̃ 2n ν̄

2
n −

1
φn−1

en−1en

+
1
φn
en(βn + ιn)ν̄nζn + ζ̃n(ζ̇n −

˙̂
ζn)

−
1
λn
θ̃>n
˙̂
θn + an +

m2
u,2

4λu
(41)

where ψn = Gn(γn)− Gn(γn,a) and ςn = θ>n ψn + εn.
Then, using ζ̃nν̄n = $n − (en/φn) gives

(βn + ιn)ν̄2n ζ̃nζn ≤ (βn + ιn)2ν̄2n$
2
n +

ζ̄ 2n

4

−
1
φn
en(βn + ιn)ν̄nζn. (42)

Substituting (38), (37), and (42) into (41) yields

V̇n ≤ $n(−mn$n + ςn)− ζ̃nν̄n(θ>n Gn(γn,a)+ ςn)

− (βn − 2mu,1 − λu)
e2n
φ2n
−

(
ιn −

mu,1
4

)
ζ̃ 2n ν̄

2
n

−
1

φn−1
en−1en + ζ̃n(ζ̇n + αnζ̂n)

+ σnθ̃
>
n θ̂n + an +

ζ̄ 2n

4
+
m2
u,2

4λu
. (43)

Remark 4: Compared with the existing event-triggered
control results [53]–[55], this paper considers the event-
triggered control problem against unknown injection data
in full state measurements and an actuator. Moreover, the
adaptive controller (34) and its event-triggering law (35) are
designed using the auxiliary signal $n with the corrupted
state variable xn,a and the injection data compensation ζ̂n.
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Although the corrupted state variables are used in the pro-
posed adaptive event-triggered control scheme, the conver-
gence of the error surfaces ei using the exactly measured state
variables xi, the boundedness of all closed-loop signals, and
the exclusion of Zeno behavior are successfully analyzed in
the following section.

C. STABILITY ANALYSIS
For the stability analysis, the dynamics of the boundary layer
errors (6) are considered as

ρ̇k+1=−
ρk+1

τk+1
+ηk+1(ēk+1, ρ2, . . . , ρk+1,

¯̂
θk ,
¯̂
ζk ,1k ) (44)

where k = 1, . . . , n − 1, ēk+1 = [e1, . . . , ek+1]>,
¯̂
θk = [θ̂1, . . . , θ̂k ]>,

¯̂
ζk = [ζ̂1, . . . , ζ̂k ]> with ζ̂1 = 0,

1k = [ζ1, . . . , ζk , ζ̇1, . . . , ζ̇k ]>, and η2 = (β1 + m1)$̇1 +
˙̂
θ>1 G1 + θ̂>1 (∂G1/∂γ1,a)γ̇1,a and ηk+1 = (βk + mk +

(βk + ιk )2ν̄2k )$̇k − 2(βk + ιk )2ν̄k (ρk/τk )$k +
˙̂
θ>k Gk +

θ̂>k (∂Gk/∂γk,a)γ̇k,a + ρ̇k/τk are continuous functions.
A total Lyapunov function V is selected as V =

∑n
i=1 Vi+∑n−1

i=1 ρ
2
i+1/2.

Theorem 1: Consider uncertain nonlinear strict-feedback
systems (1) with unknown injection data in full statemeasure-
ments and an actuator. The proposed adaptive event-triggered
controller (34)–(38) with an event-triggering condition (35)
achieves that for any initial conditions satisfying V (0) ≤ µ

with a constant µ > 0,
(i) all signals of the closed-loop system are semi-globally

uniformly ultimately bounded;
(ii) the error surfaces ei, i = 1, . . . , n, converge to an

adjustable neighborhood of the origin;
(iii) the minimum inter-event time t l > 0 satisfying
|tl+1 − tl | ≥ t l for l ∈ Z+ exists.

Proof: The time derivative of V using (20), (30), and
(43) is

V̇ ≤
n∑
i=1

(
−
βi

φ2i
e2i − mi$

2
i +$iςi + σiθ̃

>
i θ̂i

)

+

n∑
i=2

(
− ζ̃iν̄iχi − ιiζ̃

2
i ν̄

2
i + ζ̃i(ζ̇i + αiζ̂i)+

ζ̄ 2i

4

)

+

n−1∑
i=1

(
−
ρ2i+1

τi+1
+ η̄i+1ρi+1

)
+ (2mu,1 + λu)

e2n
φ2n

+
mu,1
4
ζ̃ 2n ν̄

2
n +

m2
u,2

4λu
+

n∑
i=2

ai (45)

where η̄i+1 = ηi+1 + (1/φi)ei and χi = θ>i Gi(γi,a)+ ςi.
Consider the sets Ai := {

∑i
j=1((e

2
j /φj) + (θ̃>j θ̃j/λj)) +∑i

j=2(ζ̃
2
j + ρ

2
j ) ≤ 2µ} and Bi = {

∑i
j=1(ζ

2
j + ζ̇

2
j ) ≤ di}

where i = 1, . . . , n and di =
∑i

j=1(ζ̄
2
j + ζ̄

2
j,d ). Ai and Bi are

compact in Rdim(Ai) and R2i, respectively. Since Ai × Bi is
also compact in Rdim(Ai)+2i, |η̄i+1| ≤ qi+1 on Ai × Bi where
qi+1 > 0 are constants and dim(Ai) denotes the dimension of
the set Ai.

From Assumption 4 and Lemma 1, there exist constants
ς̄i > 0 and χ̄i > 0 such that |ςi| ≤ ς̄i and |χi| ≤ χ̄i. Using
$iςi ≤ mi$ 2

i + ς̄
2
i /(4mi), −ζ̃iν̄iχi ≤ ῑiζ̃

2
i ν̄

2
i + χ̄

2
i /(4ῑi) with

a constant ῑi > 0, θ̃>i θ̂i ≤ −(1/2)θ̃
>
i θ̃i + (1/2)θ̄>i θ̄i, ζ̃iζ̇i ≤

ῑiζ̃
2
i + ζ̄

2
i,d/(4ῑi), ζ̃iζ̂i ≤ −(1/2)ζ̃

2
i + (1/2)ζ̄ 2i , and η̄i+1ρi+1 ≤

ῑi+1η̄
2
i+1ρ

2
i+1+1/(4ῑi+1), and choosing βi = 2mu,1+λu+β∗i

with a constant β∗i > 0, ιi = ῑi + mu,1/4, αi = 2ῑi + α∗i
with a constant α∗i > 0, and 1/τi+1 = ῑi+1q2i+1 + τ

∗

i+1 with a
constant τ ∗i+1 > 0 give

V̇ ≤
n∑
i=1

(
−
β∗i

φ2i
e2i −

σi

2
θ̃>i θ̃i

)
−

n∑
i=2

α∗i

2
ζ̃ 2i + c0

+

n−1∑
i=1

(
−τ ∗i+1ρ

2
i+1−

(
1−

η̄2i+1

q2i+1

)
ῑi+1q2i+1ρ

2
i+1

)
(46)

where c0 =
∑n

i=1(ς̄
2
i /(4mi) + (σi/2)θ̄>i θ̄i) +

∑n
i=2 ai +∑n

i=2(χ̄
2
i /(4ῑi)+ ζ̄

2
i,d/(4ῑi)+ (αi/2)ζ̄ 2i + ζ̄

2
i /4+ 1/(4ῑi))+

m2
u,2/(4λu).
Owing to |η̄i+1| ≤ qi+1 on V = µ, (46) becomes

V̇ ≤ −c1V + c0 with 0 < c1 < min{2(β∗1/φ̄1), . . . ,
2(β∗n/φ̄n), 2τ

∗

2 , . . . , 2τ
∗
n , σ1λ1, . . . , σnλn, α

∗

2 , . . . , α
∗
n}. Thus,

V̇ < 0 on V = µ when c1 > c0/µ. This implies that V ≤ µ
is an invariant set, i.e., if V (0) ≤ µ, then V (t) ≤ µ for all
t ≥ 0. Integrating both sides of V̇ ≤ −c1V + c0 with respect
to time yields V (t) ≤ e−c1tV (0)+ (c0/c1)(1− e−c1t ). Using
(1/φ̄M )

∑n
i=1 e

2
i /2 ≤ V (t) with φ̄M = maxi=1,...,n{φ̄i}, the

stabilization error vector e = [e1, . . . , en]> is exponentially
bounded to the compact set � = {e|‖e‖ ≤

√
2φ̄Mc0/c1}

where the set� can be adjusted arbitrarily small by c1. Thus,
Theorems 1-(i) and 1-(ii) are ensured. This completes the
proofs of Theorems 1-(i) and 1-(ii).

The existence of the minimum inter-event time t l sat-
isfying |tl+1 − tl | ≥ t l is checked to show the exclu-
sion of Zeno behavior. Differentiating the measurement error
Su(t), ∀t ∈ [tl, tl+1), with respect to time, it holds that
d |Su|/dt = sgn(Su)Ṡu ≤ |˙̄u| where sgn(Su) is the sign of Su
and ˙̄u is defined as

˙̄u = −(βn + mn + (βn + ιn)22ν̄n ˙̄νn)$n

− (βn + mn + (βn + ιn)2ν̄2n )$̇n

−
˙̂
θ>n Gn − θ̂

>
n Ġn +

ν̇n − ˙̄νn

τn
. (47)

From the proofs of Theorems 1-(i) and 1-(ii), all closed-loop
signals are bounded. Therefore, we obtain | ˙̄u| ≤ d̄u where d̄u
is a constant. Let us integrate | ˙̄u| ≤ d̄u during t ∈ [tl, tl+1) and
use the event-triggering law (35). Then, the inter-execution
times tl+1− tl satisfy |tl+1− tl | ≥ (mu,1|$n(t)|+mu,2)/d̄u ≥
mu,2/d̄u. Thus, the minimum inter-event time is defined as
t l = mu,2/d̄u. This completes the proof of Theorem 1-(iii).
Remark 5: From the proof of Theorem 1, the stabilization

performance can be improved by reducing the compact set�.
From this standpoint, the design parameters can be selected.
The choice of the design parameters is only a sufficient
condition for Theorem 1. The guidelines for the choice of the
design parameters are as follows.
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(i) Increasing the design parameters βi, i = 1, . . . , n helps
to increasing of the convergence rate of the error surfaces ei
(i.e., increasing c1), and thus � can be reduced.
(ii) As the design parameters mi, i = 1, . . . , n and

ιj, j = 2, . . . , n increase, c0 is reduced. Therefore, � can be
reduced.

(iii) As the design parameters λi denoting the tuning rate
increase and the design parameters σi for the σ -modification
are fixed as small values, the tuning speed of the adaptive
parameters θ̂i can be increased where i = 1, . . . , n.

(iv) According to the limited resources of the network, the
number of released data during the transient and steady-state
responses can be adjusted by choosing the design parameters
mu,1 and mu,2 in the event-triggering law (35).
Remark 6: The control gain functions and the event-

triggered state variables are not considered in the strict-
feedback nonlinear systems (1). The problems caused by the
control gain functions reported in [60] and the event-triggered
state variables reported in [61] should be reformulated under
the state feedback information corrupted by unknown injec-
tion data. Thus, the proposed approach cannot be applied in
a straightforward manner to these problems. Future work can
explore the extension of the proposed approach to complex
systems in the strict-feedback form.

IV. SIMULATION RESULTS
Two simulation studies including a wing rock model with
ailerons are presented to illustrate the validity of the proposed
theoretical result against unknown injection data in full states
and an actuator. In these simulations, the triggering law (35)
is checked periodically with the sampling time 1 ms.
Example 1:Consider the following second-order nonlinear

system with unknown injection data in full state measure-
ments and an actuator:

ẋ1 = x2 + h1(x1)

ẋ2 = u+ κa(t, x̄2)+ h2(x̄2)

xi,a = xi + κi,s(t, xi) (48)

where i = 1, 2, h1 = x21 sin(x1) + x2, and h2 = x1x2 +
x2 cos(x1). Then, the injection data are given by κ1,s = (0.5+
cos(1.2t))x1, κ2,s = (0.5+sin(1.8t))x2, and κa = x1x2 cos(t).
It is assumed that the inherent nonlinearities h1 and h2, and
the injection data κ1,s, κ2,s, and κa are unknown. The initial
values are set to x1(0) = 1.5 and x2(0) = −1 where i = 1, 2.
The design parameters are selected as β1 = β2 = 1, m1 = 1,
m2 = 4, ι2 = 0.1, b2 = 0.1, τ2 = 0.001, λ1 = λ2 = 0.02,
σ1 = σ2 = 0.001, α2 = 0.5, mu,1 = 0.4, and mu,2 = 0.04.
Fig. 1 shows the stabilization result and the event-triggered

control input. Fig. 2 displays the outputs of RBFNNs and
the injection data compensator. The inter-execution times and
the cumulative number of events are displayed in Fig. 3.
The total triggering number is 163 and thus only 1.087%
of the total 15000 sampled data are used to implement the
proposed adaptive controller. Thus, the control efforts can
be reduced using the event-triggering laws. Although the

FIGURE 1. Control results and input for example 1 (a) x1 and x2 (b) u.

FIGURE 2. Outputs of RBFNNs and injection data compensator for
example 1 (a) θ̂>1 G1 and θ̂>2 G2 (b) ζ̂2.

corrupted state variables are only used in the controller and its
event-triggering law, the proposed recursive event-triggered
design against unknown injection data in full state measure-
ments and an actuator achieves the stabilization of uncertain
nonlinear strict-feedback systems.
Example 2: The stabilization problem of the wing rock

model with ailerons in the presence of unknown injection data
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FIGURE 3. Inter-execution times and the cumulative number of events for
example 1 (a) inter-execution times tl+1 − tl (b) the cumulative number
of events.

FIGURE 4. Control results and input for example 2 (a) xi , i = 1,2,3 (b) u.

in full state measurements and an actuator is considered in
this example. The model dynamics is described by

ẋ1 = x2 + h1(x1)

ẋ2 = x3 + h2(x̄2)

FIGURE 5. Outputs of RBFNNs and injection data compensators for
example 2 (a) θ̂>1 G1, θ̂>2 G2, and θ̂>3 G3 (b) ζ̂2 and ζ̂3.

FIGURE 6. Inter-execution times and the cumulative number of events for
example 2 (a) inter-execution times tl+1 − tl (b) the cumulative number
of events.

ẋ3 = u+ κa(t, x̄3)+ h3(x̄3)

xi,a = xi + κi,s(t, xi) (49)

where i = 1, 2, 3, x1 is the roll angle, x2 is the
roll rate, x3 is the aileron deflection angle, h1 = 0,
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h2 = p1x1 + p2x2 + p3|x1|x2 + p4|x2|x2 + p5x31 , and
h3 = −x3. Here, the model parameters of the delta wing
for a 25o angle of attack are set to p1 = −0.01859521,
p2 = 0.015162375, p3 = −0.06245153, p4 = 0.00954708,
and p5 = 0.02145291 [62]. The unknown injection data
κ1,s = (1 + cos(t))x1, κ2,s = (1 + sin(t))x2, κ3,s = (1 +
sin(t))x3, and κa = (x21 )x3 sin(x2t) cos(t) influence the system
(49). It is assumed that h2, h3, κi,s, i = 1, 2, 3, and κa are
unknown for the adaptive event-triggered control design. In
the uncontrolled system (49) with u = 0, the roll angle x1 is
divergent for the large initial condition [62]. Thus, the large
initial conditions are chosen as x1(0) = 0.52359 rad, x2(0) =
0.17453 rad, and x3(0) = 0 rad. The design parameters for
the proposed event-triggered controller are chosen as βi = 1,
m1 = 1, m2 = m3 = 5, ι2 = ι3 = 0.2, b2 = b3 = 0.1,
τ2 = τ3 = 0.001, λ1 = 0.06, λ2 = λ3 = 0.02, σi = 0.001,
α2 = α3 = 0.5, mu,1 = 0.1, and mu,2 = 0.01 where
i = 1, 2, 3.
The control result and event-triggered input are displayed

in Fig. 4. Fig. 5 shows the outputs of RBFNN and the injection
data compensators. Fig. 6 displays the inter-execution times
and the cumulative number of events where the total trigger-
ing number is 243. Therefore, only 1.62% of the 15000 sam-
pled data are used to achieve good stabilization performance
against unknown injection data in full statemeasurements and
an actuator, and unknown system nonlinearities.

V. CONCLUSION
An adaptive event-triggered control approach has been pro-
posed for uncertain nonlinear strict-feedback systems with
unknown injection data in full state measurements and an
actuator. The approximation-based adaptive controller and its
event-triggering condition have been constructed using state
variables corrupted by unknown injection data in full state
measurements. To this end, auxiliary signals using corrupted
state variables and dynamic injection data compensators
using neural networks have been designed to compensate
for unknown injection data effects. It has been shown that
the proposed event-triggered control scheme using corrupted
state variables ensures the convergence of the error surfaces
using exactly measured state variables. Further extension to
the decentralized resilient event-triggered control problem
of interconnected nonlinear systems with unknown injection
data is conceivable. This remains as a meaningful subject for
future research.
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