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1 Introduction

In this letter we explore the ultraviolet behaviour of supersymmetric models compactified

to four dimensions on a two-torus T2 in the presence of magnetic flux. Compactifications on

tori with magnetic fluxes were investigated in string theory e.g. [1]–[6] (for a review [7, 8])

and are interesting because they can break supersymmetry and lead to chiral fermions [9].

This motivated the interest in effective theory approach to model building e.g. [10]–[24].

In this work we compute (offshell) the one-loop correction to a two-point Green function

of the self-energy of a complex scalar field ϕ in a compactification to four dimensions of a

6D N=1 supersymmetric Abelian gauge theory on T2 with magnetic flux. The scalar field ϕ

is actually a Wilson line state, which is a fluctuation of a combination of components A5,6 of

the gauge fields AM (M=µ, 5, 6). The motivation is two-fold: few quantum investigations

exist for such compactification and the field ϕ may play the role of a higgs field in realistic

models, which is interesting for model building and the hierarchy problem.

We pay particular attention to the regularization of the quantum corrections. Indeed,

the one-loop integrals are divergent and call for a UV regularization consistent with the

symmetries of the theory. The regularization ensures that (the series of) these integrals

are well-defined and any divergences of the result in the limit of removing the regulator

dictate the form of the corresponding counterterm operators. Since effective theories are

non-renormalizable, the counterterms may be higher dimensional operators. The offshell

calculation is important and is actually necessary in order to capture the behaviour of the

effective theory which is an expansion in powers1 of (∂/Λ) [32] where Λ is a high scale

(e.g. compactification scale). We use dimensional regularization (DR), since it respects all

symmetries, in particular gauge symmetry. We then compare the UV behaviour of our

result for the quantum correction in the presence of magnetic flux against similar results

in orbifold compactifications without flux such as effective theory on T2/Z2, etc.

1Most quantum corrections from extra dimensions are computed onshell. For offshell results see [25–31].
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2 Magnetic compactification on a torus

We begin our study with the relevant part of the action. Consider first the action of a 6D

N=1 vector superfield and hypermultiplet compactified to 4D on a torus T2 in the presence

of magnetic flux. This can be described in 4D N=1 superfields language [33, 34]. For the

details of this compactification we refer the reader to [10–13]. For the vector superfield

Sv =

∫
d6x

{∫
d4θ
[
∂V ∂V + Φ†Φ +

√
2V (∂Φ + h.c.)

]
+

1

4

∫
d2θWαWα + h.c.

}
(2.1)

where ∂ ≡ ∂5 − i∂6. Only zero-modes of V (hereafter V0), of gauge kinetic field-strength

W (W0) and of the superfield Φ (Φ0) are relevant below. We have Φ0|θ=θ=0 = 1/
√

2(A6 +

iA5) + ϕ, where ϕ defines a complex continuous Wilson line state on T2.

We also need a 6D N=1 hypermultiplet of chiral superfields Q, Q̃ of charges ±q0

Sh =

∫
d6x

{∫
d4θ

[
Q†e2 q0 g V Q+ Q̃†e−2 q0 g V Q̃

]
+

[ ∫
d2θ Q̃ (∂ +

√
2g q0 Φ)Q+ h.c.

]}
(2.2)

with g the gauge coupling. One must integrate Sh, Sv over T2 in the presence of mag-

netic flux [10], but a set of basis functions is required. First, we use a symmetric gauge

choice with A5 = (−1/2)fx6 and A6 = (1/2)fx5 (f=constant), satisfying a constant field

strength F56 = ∂5A6 − ∂6A5 = f . Its flux through T2 closed surface is then quantised2

q0g/(2π)
∫
T 2 F56dx5dx6 = q0gfA/(2π)∈Z, (A is the area of the torus). The Kaluza-Klein

(KK) spectrum of the charged fields will then resemble that of Landau levels [10–12, 15].

To find the basis set of functions, notice that covariant derivatives Dk = ∂k + iq0gAk
(k = 5, 6) satisfy [iD5, iD6] = −iq0gf . Assuming f <0, one can construct a 1D harmonic

oscillator Hamiltonian H=p2/(2m)+ 1/2mω2x2 of p∼ iD6 and x ∼ iD5, m = 1/2, ω = 2.

Its eigenfunctions define the basis set of functions ψn,j [10–12]. The ladder operators are

a = (1/
√
α) (iD5 −D6), a† = 1/

√
α (iD5 +D6) with [a, a†] = 1, so H = α(a†a+ 1/2) and

α = −2q0gf =
4πN

A
> 0, (N ∈ Z+) (2.3)

The basis functions are ψn,j = (a†)n/
√
n!ψ0,j , where n refers to the Landau level and j

reflects the N -fold degeneracy. These are orthonormal on T2, and a†ψn,j =
√
n+ 1ψn,j ,

with ψ0,j as zero mode: aψ0,j = 0. Then ∂ +
√

2q0gΦ0 = −i
√
αa† +

√
2q0g ϕ, which is

used in Sh, together with an expansion of superfields in the basis functions ψn,j(xm):

Q(xM , θ, θ) =
∑
n,j

Qn,j(xµ, θ, θ)ψn,j(xm), M = µ, 5, 6. (2.4)

2Another way to see the quantisation condition is the following. We can make a gauge choice near x5 = 0

and x5 = 2πR5: Region I (−πR5 < x5 < πR5): A5 = 0, A6 = fx5, and Region II (πR5 < x5 < 2πR5):

A5 = 0, A6 = f(x5 − 2πR5). Then, two gauge potentials are connected by a gauge transformation in the

overlapping region: AII − AI = −2πfR5 = ∂Λ, with Λ = −2πfR5x6. As a result, the wavefunctions of

charged fields, φ, are connected in this overlapping region as φII = e−iq0gf2πR5x6φI . Then, single-valuedness

of wavefunctions along the x6 direction requires q0gf(2π)R5R6 = N with N integer. The periodicity along

the x6 direction is guaranteed by the same quantisation condition.
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Figure 1. One-loop diagrams, at external momentum q, of bosonic (a) and fermionic (b) contri-

butions, respectively, to the Wilson line scalar (ϕ) self-energy.

A similar expansion exists for Q̃(xM , θ, θ) in this basis, with coefficients Q̃ñ,j̃(xµ, θ, θ). One

finds the relevant part of the 4D action [10]

S ⊃
∫
d4x

{∫
d4θ

[
ϕ†ϕ+

∑
n,j

Q†n,je
2 q0 g V0Qn,j +

∑
n,j

Q̃†n,je
−2 q0 g V0Q̃n,j + 2fV0

]
(2.5)

+

∫
d2θ

[
1

4
Wα

0 W0,α − i
∑
n,j

√
α(n+ 1) Q̃n+1,jQn,j +

∑
n,j

√
2 q0 g Q̃n,j ϕQn,j

]
+ h.c.

}

where we kept only the zero modes of the gauge kinetic term and of Wilson line scalar

ϕ. After eliminating the auxiliary fields one identifies the scalar fields mass: m2
Q̃n,j

=

m2
Qn,j

= α(n + 1/2); for fermions their mass can be read from the last line of the above

equation: m2
Ψn,j

= α(n + 1) for a Dirac fermion composed of two Weyl spinors as in

Ψn,j ≡ (χ̃n+1,j , χn,j)
T . The (onshell-SUSY) couplings of these fields, in components, are:

L = −i
√

2q0g
∑
n,j

√
α(n+ 1)ϕ

[
Q̃†n+1,jQ̃n,j −Q

†
n,jQn+1,j

]
−
√

2q0 g
∑
n,j

ϕ χ̃n,jχn,j + h.c.

−2q2
0 g

2
∑
n,j

[
|Qn,j |2 + |Q̃n,j |2

]
|ϕ|2 (2.6)

where the sums are over n ≥ 0; χ̃ (χ) are the Weyl spinors of Q̃ (Q) superfields. With this

information we can investigate the quantum corrections to the mass of the scalar field ϕ.

3 One-loop corrections to Wilson line

With the above action, we compute the one-loop corrections to the Wilson line scalar, shown

in figure 1 for non-vanishing external 4-momentum q. This allows us to investigate their

UV behaviour under scaling of the momentum. Since the integrals are divergent, we use the

DR scheme, in order to find the poles and identify their corresponding counterterms. This

regularization preserves all symmetries of the theory. After performing a Wick rotation to

the Euclidean space and with the DR subtraction scale µ introduced to ensure dimensionless

coupling (g) in d = 4− 2ε dimensions, we find for the bosonic contribution

δm2
b(q

2) = 2 q2
0 g

2Nµ2ε
∑
n≥0

∫
ddk

(2π)d
2 k2 + α[

(q + k)2 + α (n+ 1/2)
][
k2 + α (n+ 3/2)

] . (3.1)
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For the fermionic part

δm2
f (q2) = −2 q2

0 g
2Nµ2ε

∑
n≥0

∫
ddk

(2π)d
2 k (q + k)[

(q + k)2 + αn
] [

(k2 + α (n+ 1)
] . (3.2)

Performing the integrals in the DR scheme (see the appendix) gives3

δm2
b(q

2) = K0 (4πµ2/α)ε
∫ 1

0
dx
[
(2q2 x2 + α) Γ[ε] ζ[ε, ρ1] + dαΓ[−1 + ε] ζ[−1 + ε, ρ1]

]
δm2

f (q2) = −K0 (4πµ2/α)ε
∫ 1

0
dx
[
2q2 x(x− 1) Γ[ε] ζ[ε, ρ2] + dαΓ[−1 + ε] ζ[−1 + ε, ρ2]

]
(3.3)

with the notation

K0 ≡
2q2

0g
2N

(4π)2
, ρ2 = ρ1 −

1

2
= (1− x)

(
1 + x

q2

α

)
> 0 (3.4)

where we introduced the Hurwitz zeta function ζ[s, a] =
∑

n≥0(n + a)−s [35, 36]. The

above bosonic and fermionic contributions have poles from Gamma functions, Γ[ε] and

Γ[−1 + ε]. One could proceed in eqs. (3.3) to Taylor expand the zeta functions for small ε

and isolate the poles from the finite part, however, one cannot then integrate the resulting

terms involving (d/dz ζ[z, ρ])z=−1 since for this derivative only asymptotic expansions are

known [35]. To avoid this, we integrate by parts the second term in both δm2
b,f and use

∂ζ[s, ρ]

∂ρ
= −s ζ[s+ 1, ρ] (3.5)

This gives

δm2
b(q

2) = K0

(
4πµ2

α

)ε[
dαΓ[ε− 1] ζ[−1 + ε, 1/2] + Γ[ε]

∫ 1

0
dx ζ[ε, ρ1] f1(x)

]
δm2

f (q2) = −K0

(
4πµ2

α

)ε[
dαΓ[ε− 1] ζ[−1 + ε, 0] + Γ[ε]

∫ 1

0
dx ζ[ε, ρ2] f2(x)

]
Here f1(x) = 2 q2 x2 +α+x dαρ′1(x) and f2(x) = 2 q2 x(x−1) +x dαρ′2(x) with a notation

ρ′j(x) = (d/dx)ρj(x), j = 1, 2. Further

Γ[ε] =
1

ε
− γE +O(ε)

ζ[ε, ρj ] = ζ[0, ρj ] + ε ζ(1,0)[0, ρj ] +O(ε2), j = 1, 2.(
4πµ2

α

)ε
= 1 + ε ln

4πµ2

α
+O(ε2) (3.6)

3Unlike in 6D orbifolds, in the present case only one KK sum is present, which would apparently make

the result less UV divergent. This is however misleading because in the present case the (masses)2 under

the sum are linear rather than quadratic in the level (n), thus there is no UV improvement in this sense.

– 4 –
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with the Euler constant γE ≈ 0.577216. We then find4

δm2
b(q

2) = K0

[
− q4

30α

(
1

ε
+ ln

4πµ2e−γE

α

)
− α

12
ln
e3G24

4
− q2

6
− q4

30α
+H1(q)

]
+O(ε)

δm2
f (q2) = −K0

[
4 q4

30α

(
1

ε
+ ln

4πµ2e−γE

α

)
+ α lnG4 − q4

30α
+H2(q)

]
+O(ε) (3.7)

with G = 1.28243 the Glaisher constant5,6. Above we introduced the functions H1, H2

H1(q) =

∫ 1

0
dx (2 q2 x2 + α+ 4xα ρ′1(x)) ln

Γ[ρ1(x)]√
2π

=
α

12
ln
G24 e3

4
+
q2

6
− 9 ζ[3]

8π2
q2 + cb

q4

α
+O((q2/α)3) (3.8)

with cb = −109/720− (1/15) ln 2 + lnG− 14 ζ ′[−3]) ≈ −0.02414, and

H2(q) =

∫ 1

0
dx (2q2 x (x− 1) + 4αxρ′2(x)) ln

Γ[ρ2(x)]√
2π

= −α lnG4 +
3ζ[3]

2π2
q2 + cf

q4

α
+O((q2/α)3) (3.9)

and cf = 11/45 + 16 ζ ′[−3] ≈ 0.3305. Therefore, up to irrelevant O(ε) terms

δm2
b(q

2) = K0

[
− q4

30αε
+O(q2/α)

]
δm2

b(q
2) = K0

[
− 4q4

30αε
+O(q2/α)

]
(3.10)

The sum of bosonic and fermionic contributions δm2(q2) = δm2
b(q

2) + δm2
f (q2), is found in

general from eq. (3.7), but for small momenta q2 � α it simplifies

δm2(q2) = K0

[
− q4

6α

(
1

ε
+ ln

4πµ2e−γ0

α

)
− 21ζ[3]

8π2
q2 +O(q6/α3)

]
. (3.11)

with γ0 = γE + 6(cb − cf ). A pole is present in the two-point Green function,7 reflecting

the UV divergences of the theory and the limits q2 → 0 and ε → 0 do not commute,

which shows the importance of this calculation. A finite quantum correction (∝ q2) is

also present.

4 Counterterms and symmetries

Eq. (3.11) shows that a counterterm is needed to cancel the pole q4/ε. The counterterm

involves the 2-point self-energy, so it has the form Lc.t. = −K0/(6α)ϕ†22ϕ. In superfield

language, this operator has the form (λ is a new dimensionless coupling):

L =
λ

α

∫
d4θ ϕ†2ϕ = −λ

α
ϕ†22ϕ+ · · · (4.1)

where we used the same notation for the superfield and its scalar component.

4One has ζ[0, ρ] = 1/2−ρ, ζ(1,0)[0, ρ] = ln Γ[ρ]− ln
√

2π, and ζ(1,0)[−1, 1
2
] = − 1

2
ζ(1,0)[−1, 0]− 1

24
ln 2 [36].

5Glaisher constant is given by lnG = 1/12− ζ′[−1], with ζ[x] the Riemann zeta function.
6The poles in eqs. (3.7) are identical to those obtained if we Taylor expanded the expressions in eqs. (3.3)

about ε = 0, and used ζ[0, ρ] = 1/2− ρ, and ζ[−1, ρ] = −1/2 (ρ2 − ρ+ 1/6) [36].
7This is a genuine 6D divergence.
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This operator respects all symmetries of the theory and its presence is a reminder that

our theory, although supersymmetric, is nevertheless non-renormalizable. Indeed, such

theories are an expansion in powers (∂/Λ)n [32], so such counterterms are expected; here

Λ is the scale of new physics (from a 4D perspective), in this case Λ2 ∼ α ∼ 1/A. Higher

loops will generate more operators of this type. This operator, often overlooked in similar

quantum calculations due to technical difficulties, is not specific to compactification with

fluxes - it was also seen in 5D and 6D orbifold models at one-loop [25–31]. The counterterm

modifies the dispersion relations (the poles of the propagator) of the scalar ϕ, which acquires

a new solution, ghost-like, due to the higher order derivative [37]. Eqs. (3.11), (4.1) show

the propagator of ϕ has new pole at

m2
pole =

α

λ

[
1 +

21ζ[3]

8π2
K0

]
(4.2)

This mass state is of the order of the compactification scale
√
α ∼ 1/

√
A and corresponds

to the ghost degree of freedom. Note that the effective theory approach is reliable for a

large torus area/radii (or small flux8 α ∼ 1/A) but then also operator (4.1) is enhanced!

In applications it is useful to replace this operator by an equivalent polynomial one [38,

39]; this is done by a non-linear field-redefinition or, equivalently, by using the equation of

motion (in superfields) for ϕ: −1/4D
2
ϕ† +

√
2q0g

∑
n,j Q̃n,jQn,j = O(A), where we used

eq. (2.5). This is used back in the action and effectively integrates the ghost (D
2
ϕ†) but

leaves ϕ in the action; then operator (4.1) becomes (with −16ϕ†2ϕ = ϕ†D
2
D2ϕ)

L ∝ λ

α

∫
d4θ q2

0g
2

∣∣∣∣∑
n,j

Q̃n,jQn,j

∣∣∣∣2 (4.3)

This is a dimension-six polynomial effective operator, equivalent to L of (4.1) and brings

many non-renormalizable operators in the action, suppressed by α.

Having identified the counterterm operator, we can now formally set q2 = 0 in the

one-loop correction δm2
b,f (q2) of eqs. (3.7) and by using the exact relations

H1(0) = (α/12) ln(G24e3/4), H2(0) = −α lnG4 (4.4)

we find from eqs. (3.7)

δm2
b(0) = 0, δm2

f (0) = 0, ⇒ δm2(0)≡δm2
b(0)+δm2

f (0)=0. (4.5)

Therefore the bosonic and fermionic contributions vanish separately for q2 → 0, as con-

jectured in [10]. This indicates that at one-loop ϕ is a flat direction of the corresponding

potential which has a vanishing curvature: δm2(q2=0)=0, as we showed. Beyond one-loop,

any quantum calculation must include the one-loop counterterm of eq. (4.1).

Let us comment briefly on the result of eq. (4.5). In compactifications without flux the

Wilson line ϕ changes the boundary conditions of the charged fields, giving a continuous

shift of the KK levels masses [9]. Then ϕ acquires at one-loop a potential and a nonzero

8One cannot take α→ 0 since the flux is quantised.
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correction δm2(q2 = 0) [40]. By contrast, in our compactification with flux, ϕ = ϕ1 + iϕ2

only shifts [12] the argument z = (x5, x6) of the wavefunction of the KK modes9 by an

amount ∝ (ϕ1/f, ϕ2/f) and so the Wilson line does not enter in the mass formulae of the

KK modes (and of the potential). This explains why the momentum-independent correction

δm2(0) vanished at one-loop, with ϕ a flat direction. This appears as a consequence of

the continuous (classical) translation symmetry of T2 which can “shift away” ϕ, so the KK

spectrum (and the potential) does not depend on it.

The initial continuous translation symmetry of T2 is broken however at the quantum

level by non-local Wilson loops.10 To see this, we put together the solution for the back-

ground gauge potential in the symmetric gauge and the constant Wilson line ϕ= ϕ1+iϕ2

in the following form:11 A5 = −1
2fx6 + ϕ2 and A6 = 1

2fx5 + ϕ1. Now, the Wilson loops

integrals are: w1(x6) = exp[i q0 g
∫ a5

0 dx5A5] = exp[i q0 g(−fx6/2 + ϕ2)a5] and w2(x5) =

exp[i q0 g
∫ a6

0 dx6A6] = exp[i q0 g(fx5/2 + ϕ1)a6] where ak = 2πRk, k = 5, 6. The Wilson

loops w1,2 must be invariant, in particular under translations x6 → x6 + δ6, x5 → x5 + δ5;

this happens only if δ5 = 4πk/(fa6q0g) = 2a5k/N and δ6 = 4πl/(fa5q0g) = 2a6l/N . Here

k, l,N ∈ Z are integers and we used the flux quantisation condition fa5a6q0g = 2πN

(see section 2). As a result, the continuous translation symmetry of T2 is broken by non-

local Wilson loops to a discrete (accidental) translation symmetry x5 → x5 +a5(2k/N),

x6→x6+a6(2l/N) [13, 41]. With this continuous symmetry broken, one must investigate

at higher orders if the one-loop flat direction of ϕ can be maintained.

To complete our discussion, let us also examine what happens if the sum over the

modes in the calculation of the quantum corrections to δmb,f (q2) is truncated to a fixed

number of levels. Truncating the summation to 0 ≤ n ≤ n0 − 1 for bosons (n0 levels) and

to 0 ≤ n ≤ n′0−1 for fermions (n′0 levels) we find from eqs. (3.1), (3.2), after some algebra12

δm2
b(q

2) = −1

ε
K0 αn0 (2n0 + 1) +O(ε0)

δm2
f (q2) =

1

ε
K0 αn

′
0 (2n′0 + q2/α) +O(ε0) (4.6)

Their sum becomes, for n0 = n′0 (by supersymmetry)

δm2(q2) = −1

ε
K0 αn0 (1− q2/α) +O(ε0) (4.7)

9Let us show this for the KK zero modes. The Wilson line changes the equation for the zero mode:

aψ0 = 0: (i∂̄ + 1
2
i q0 g |f |z − q0 g ϕ†)ψ0 = 0, with z = x5 + ix6. Then, the solution for the zero mode

becomes ψ0 = h(z) exp[− 1
2
q0 g |f | (z̄ − z̄0)(z − z0)], where z0 ≡ −2

√
2 iϕ†/|f | and h(z) is a holomorphic

function. Therefore, a constant Wilson line only shifts z by z0, but the number of zero modes (equivalent

to the number of the possible centers within the fundamental domain on a torus) remains fixed by the

quantisation condition as it is for a vanishing Wilson line. The same conclusion can be drawn in an

asymmetric gauge for the background, such as A5 =0 and A6 =fx5.
10In orbifolds (no flux) this translation symmetry is broken explicitly by the orbifold fixed points.
11The gauge A5 = −fx6/2, A6 = fx5/2 is not invariant under translations xj→xj + δj (j= 5, 6), but a

gauge transformation ~A→ ~A− f/2~∇(δ5x6 − δ6x5) with ~A= (A5, A6) restores the translation symmetry.
12This is done by writing the “truncated” sum as a difference of two infinite towers/sums, bringing

in eq. (3.3) a difference of Hurwitz zeta functions for each zeta function present there, e.g. for bosons:

ζ[ε, ρ1]→ ζ[ε, ρ1]− ζ[ε, n0 + ρ1] and similar for fermions with ρ1 → ρ2, n0 → n′0. Similar for ζ[ε− 1, ρ1,2].

– 7 –
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This shows that a truncation of the towers to a same finite level would bring in the action a

wavefunction renormalization for the superfield ϕ (due to the term ∝ q2/ε) familiar in softly

broken supersymmetry and also a momentum-independent quadratic divergence13 ∝ α/ε

(due to broken supersymmetry), but no higher dimensional counterterm is present. The

theory is exactly 4-dimensional and renormalizable. Summing instead the whole tower,

as we did, changes these two divergences into a worse “quartic” divergence ∝ q4/(αε)

discussed earlier; this demanded instead a higher dimensional counterterm operator (L)

specific to non-renormalizable theories (n0, n
′
0 being now infinite).

A situation similar to that above is expected for the quantum corrections to the gauge

coupling in this theory, when the 6D Lorentz invariance “promotes” counterterm (4.1) for

the Wilson line to FMN2FMN which also contains Fµν2Fµν . This is similar to 6D orbifolds

without flux where such a higher dimensional counterterm (A
∫
d2θTrWα2Wα+h.c., in

superfield notation) is generated [28–31] and is actually the reason for the so-called “power-

like” running near the compactification scale.

5 Conclusions

Compactifications of effective theories in the presence of magnetic flux are interesting for

model building since they provide supersymmetry breaking and chiral fermions. However,

very few quantum calculations exist in such cases and this motivated our study. We

examined the one-loop offshell correction to the two-point Green function of the Wilson line

self-energy, in 6D N=1 Abelian gauge theories compactified on T2 with magnetic flux (∝ α).

The offshell calculation is important and necessary in order to capture the usual effective

theory expansion in powers of ∂/Λ; (from a 4D view Λ∼1/
√
A∼
√
α, A= torus area).

Since the one-loop momentum integrals are UV divergent, a regularization is needed.

We used the DR scheme which preserves all the symmetries of the initial 6D gauge theory.

The result shows that in the limit of removing the regulator, the two-point Green function

has a pole which dictates the form of the counterterm. This is a higher dimensional

(derivative) operator that was also seen in orbifold compactifications without flux. One

consequence of this counterterm is that a ghost state is present of (mass)2 ∝ α. We

showed that such operator is equivalent to an operator of the same dimension (six) that

is actually polynomial (quartic) in the charged superfields and is obtained by integrating

out (decoupling) the ghost state. This operator is enhanced by a larger compactification

area (when effective theory is applicable) and a reminder that effective theories are non-

renormalizable.

After identifying the counterterm for the one-loop offshell self-energy, one may also

consider the momentum independent mass correction δm2(q2 = 0), which is the curvature

of the corresponding one-loop potential. Unlike in orbifold compactifications (without

flux), this mass correction vanishes at one-loop and the Wilson line corresponds to a flat

direction. The reason for this is a translation symmetry in internal dimensions which is

13This situation is worse than the case of eq.16 in the first paper in [25–27] of ordinary orbifolds (no flux)

where only usual q2/ε poles i.e. wavefunction renormalization existed for a “truncated” tower summation.

– 8 –
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broken however at the quantum level by non-local Wilson loops. It is worth investigating

this issue beyond the one-loop order considered here.

A One-loop integrals

In the text we used the following integrals in Euclidean space

I1 ≡
∫

ddp

(2π)d
pµ

((p+ q)2 +m2
2)(p2 +m2

1)

=
−qµ

(4π)
d
2

∫ 1

0
dxxΓ

[
2− d/2

][
L(x, q2,m1,2)

] d
2
−2

I2 ≡
∫

ddp

(2π)d
1

((p+ q)2 +m2
2)(p2 +m2

1)

=
1

(4π)
d
2

∫ 1

0
dx Γ

[
2− d/2

][
L(x, q2,m1,2)

] d
2
−2

I3 ≡
∫

ddp

(2π)d
pµpν

((p+ q)2 +m2
2)(p2 +m2

1)

=
1

(4π)
d
2

δµν
2

∫ 1

0
dxΓ

[
1− d/2

][
L(x, q2,m1,2)

] d
2
−1

+
1

(4π)
d
2

qµqν

∫ 1

0
dxx2 Γ

[
2− d/2

][
L(x, q2,m1,2)

] d
2
−2

where

L(x, q2,m1,2) ≡ x (1− x) q2 + xm2
2 + (1− x)m2

1 (A.1)

and
∑

µ δµµ = d, (d = 4− 2 ε).
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type-I strings on tori with magnetic background flux, JHEP 10 (2000) 006 [hep-th/0007024]

[INSPIRE].

[4] P. Anastasopoulos, I. Antoniadis, K. Benakli, M.D. Goodsell and A. Vichi, One-loop adjoint

masses for non-supersymmetric intersecting branes, JHEP 08 (2011) 120 [arXiv:1105.0591]

[INSPIRE].
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