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Abstract
The current dispensation of big data analytics requires innovative ways of data capturing and transmission. One of the inno-
vative approaches is the use of a sensor device. However, the challenge with a sensor network is how to balance the energy
load of wireless sensor networks, which can be achieved by selecting sensor nodes with an adequate amount of energy from
a cluster. The clustering technique is one of the approaches to solve this challenge because it optimizes energy in order to
increase the lifetime of the sensor network. In this article, a novel bio-inspired clustering algorithm was proposed for a het-
erogeneous energy environment. The proposed algorithm (referred to as DEEC-KSA) was integrated with a distributed
energy-efficient clustering algorithm to ensure efficient energy optimization and was evaluated through simulation and com-
pared with benchmarked clustering algorithms. During the simulation, the dynamic nature of the proposed DEEC-KSA was
observed using different parameters, which were expressed in percentages as 0.1%, 4.5%, 11.3%, and 34% while the percent-
age of the parameter for comparative algorithms was 10%. The simulation result showed that the performance of DEEC-
KSA is efficient among the comparative clustering algorithms for energy optimization in terms of stability period, network
lifetime, and network throughput. In addition, the proposed DEEC-KSA has the optimal time (in seconds) to send a higher
number of packets to the base station successfully. The advantage of the proposed bio-inspired technique is that it utilizes
random encircling and half-life period to quickly adapt to different rounds of iteration and jumps out of any local optimum
that might not lead to an ideal cluster formation and better network performance.
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Introduction

The Internet of things (IoT) era has enhanced data
sharing among connected objects and people.1 IoT is
an ecosystem that consists of technologies such as radio
frequency identification (RFID), sensors, and smart
devices, which are connected together to form a net-
work for data transmission and reception.2 Basically, a
network facilitates communication among people and
‘‘things’’ and encourages intelligent collaboration. The
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intelligence relates to how quickly decisions are made
on a network to increase the performance and lifetime
of the network. Network lifetime is the probability of a
network to continuously be available irrespective of the
network load.3 Collecting network intelligence on
energy is crucial in edge computing particularly when
many devices with different energy requirements can be
connected at any time, and as the network scales-up, its
lifetime should be maintained.

Generally, an energy management system manages
demand and supply of energy to its users. On the
demand side, balancing energy load connected to
energy management systems often consider user’s beha-
vior and preferences. By definition, a load is an electri-
cal appliance that can be controlled and measured; in
addition, it can be discrete (i.e. on or off) or variable
(i.e. having series of consumptions levels).4 Mostly, the
load is balanced to ensure efficient resource utilization
and to help optimize energy needs in order to avoid
overload or under-load.5 Thus, efficient energy man-
agement of connected devices can be achieved through
load balance.

The energy management model enables data collec-
tion, preprocessing, and analysis for efficient service
delivery.6 There are several tools and methods which
could be deployed to manage and analyze energy.
Generally, energy-related systems that are developed
utilizing the cloud computing environment are designed
to send data to a centralized location (i.e. cloud) for
processing and further analysis. In using cloud comput-
ing, the end-user can monitor and personalize their
energy management needs according to their priority
and comfort.7 Existing energy management systems
include Schneider Electric StruxureWare,8 Honeywell
Attune Advisory Services,9 eSight,10 and Predictive
Energy Optimization.11

Mostly, sensor devices for energy management sys-
tems are limited in terms of computing capability,
memory, and battery power, and it is a challenge to
replenish the battery of sensors.12 In these regards,
methods to preserve energy levels are significant on
wireless sensor networks (WSNs). The main contribu-
tion of this article is to investigate the problem of
energy consumption in the context of IoT devices with
different energy requirements. These IoT devices per-
form activities such as processing data, transmitting
packets, reading sensor values, and actuating a device.
In performing these activities, the device tends to lose
some amount of energy which can limit network per-
formance. In general, different communication devices
have different numbers of packets sent and received, as
well as the length of the packet. In view of this, we
focus on the clustering algorithm for energy optimiza-
tion of sensor nodes on the edge of a WSN. The objec-
tive of this article is to propose a model for energy
optimization on a WSN.

In this article, the proposed model for energy optimi-
zation is based on the intelligent behavior and charac-
teristics of a bird. The clustering technique is an energy-
efficient approach for WSN, in which the cluster head
(CH) selection is optimized by utilizing the proposed
algorithm. The proposed algorithm (Kestrel-based
search algorithm (KSA)) takes inspiration from the
hunting strategy of Kestrel birds, which is applied to
heterogeneous WSN to optimize energy and increase
network performance.

The rest of this article is organized as follows: sec-
ond section details ‘‘Related work/related terminolo-
gies’’. Third section is about ‘‘Proposed model.’’ Fourth
section is about ‘‘Proposed algorithm.’’ Fifth section
details ‘‘Parameter setting for simulation of the net-
work.’’ Sixth section presents ‘‘Simulation results.’’
Seventh section presents conclusions and future work.

Related works/related terminologies

Classical energy models have been used as a guide for the
design of low-level energy consumption devices, which are
used to transmit and receive data.13,14 The energy models
are also referred to as routing protocols, which include
Energy-Aware Clustering Algorithm,15 Hierarchical
Energy-Efficient Routing Protocol,16 and Energy-Efficient
Hierarchical Clustering.17 In this section, we will review
related works on energy optimization for WSNs.

Internet of Agent model for energy management

Conceptually, the Internet of Agent (IoA) model is based
on communication and collaboration among connected
agents. These agents negotiate among themselves to find
an optimal way of working together in order to form a
connected environment of agents. Subsequently, the opti-
mal result is communicated to all other agents to make
their own decision. Specifically, each agent is responsible
to make its own decision, which might lead to a unani-
mous decision. For instance, there are ‘‘agents’’ to facili-
tate communication with other agents in which ‘‘agents’’
can be delegated to facilitate collaboration among agents,
while another ‘‘agents’’ can be delegated to learn from a
different environment and in order to make a unanimous
decision. Based on IoA framework, devices connected,
such as home electrical appliances, negotiate to agree on
an optimal way to exchange information. These agents
can create multi-agent systems for communication and
collaboration and provide an optimal way to effectively
optimize energy in real time.4 Thus, consensual negotia-
tion ensures dynamic scheduling through load shifting to
reduce energy consumption.

Load balance

Load balance is a way to control energy usage and the
rate of usage. Shivapur et al.18 indicated that load
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balancing does not seek equal distribution of network
load but on how to balance the load on a single node
based on the status of the network. The method to
achieve load balance is clustering. In clustering, sensor
nodes are connected to form a cluster,19 where each
cluster has a CH that connects another CH to form a
network of clusters. CHs might have different initial
energy requirements or the same initial energy require-
ment. Mostly, when CHs have the same energy require-
ment, it is referred to as a homogeneous network;
otherwise, it is referred to as a heterogeneous network.

Benchmarked clustering algorithms for the homoge-
neous networks include low-energy adaptive clustering
hierarchy (LEACH),20 power-efficient gathering in sen-
sor information systems (PEGASIS), and hybrid
energy-efficient distributed clustering (HEED).21

However, Qing et al.22 indicate that the complication in
network operation and configuration of connected
devices are some of the challenges to devise an energy-
efficient clustering algorithm for the heterogeneous net-
work.23 In spite of these challenges, some benchmarked
clustering algorithms for heterogeneous networks have
been proposed; these include stable election protocol
(SEP) for two-level heterogeneous networks and for
multi-level heterogeneous networks, distributed energy-
efficient clustering (DEEC).23

There are different versions of LEACH-like algo-
rithms for clustering in both homogeneous and hetero-
geneous sensor network schemes.22 The DEEC model is
based on a two-level heterogeneous network in which
the sensor nodes are assumed to have a normal and
advanced battery level. E_DEEC uses the idea of three
levels of heterogeneous sensor networks. This is differ-
ent from the DEEC model in the sense that the EDEEC
model is based on a three-level heterogeneous WSN
where sensor nodes are thought to have normal,
advanced, and super-battery levels. DDEEC model uti-
lizes the same network structure with other energy mod-
els like EDEEC.24

On one hand, in comparison to benchmarked algo-
rithms for homogeneous networks, the LEACH algo-
rithm can select a cluster and periodically rotate cluster
position, it maintains cluster hierarchy, and it could
perform well in a homogeneous network. However,
performance degrades on a heterogeneous network23

because there is no inter-cluster communication on the
network for each CH to send data directly to a sink/
BS.25 PEGASIS applies hierarchical routing which is
challenged by high power usage, while HEED selects
CHs by using stochastic technique.22

On the other hand, in heterogeneous network, low
energy devices often have different energy makeup,
which should be considered when designing an energy-
efficient model for heterogeneous network.

Comparatively, Uplap and Sharma26 indicate that
the drawback of a homogeneous network is that all

nodes on the network can act as a CH, which can lead
to uniform energy drainage. Contrarily, a heteroge-
neous network increases the lifetime of the WSNs and
often has lower hardware cost.

One of the major technical issues (like low through-
put and less reliability) of routing algorithm is how to
increase the lifetime of network without increasing
energy consumption. This is because, in routing opera-
tion, some nodes may be over requested to relay infor-
mation from other neighbors, causing faster energy
dissipation that could generate coverage holes in its
sensing area. Hence, it is desirable to have node balan-
cing their energy loads in order to maximize the net-
work lifetime.27

Bio-inspired techniques

Bio-inspired techniques have also played a role in clus-
tering. In a sense that it helps to find an optimal way to
build a cluster by taking into consideration the energy
makeup of devices and the distance among clusters with
their respective nodes. In view of this, bio-inspired tech-
niques are applied to clustering models for an efficient
and dynamic energy load balance. Examples of bio-
inspired techniques are genetic algorithms (GA), parti-
cle swarm optimization (PSO),28 ant colony optimiza-
tion (ACO), wolf search algorithm (WSA), and bat
algorithm.

A GA is an evolutionary approach that is based on
the survival of the fittest. This survival depends on the
mechanism of ‘‘natural selection’’ (Darwin, 1868 as
cited by Agbehadji et al.29) where species considered as
weak and cannot adapt to the conditions of the habitat
are eliminated while species considered as strong and
can adapt to the habitat survive. Thus, natural selection
is based on the notion that strong species have a greater
chance to pass their genes to future generations, while
weaker species are eliminated by natural selection.
Sometimes, there are random changes that occur in
genes due to changes within the external environments
of species, which will cause new future species that are
produced to inherit different genetic characteristics. At
the stage of producing new species, individuals are
selected, at random, from the current population within
the habitat to be parents and use them to produce the
children for the next generation, thus successive genera-
tions are able to adapt to the habitat in respect of time.

PSO is a bio-inspired method based on swarm beha-
vior such as fish and bird schools in nature.30 The
swarm behavior is expressed in terms of how particles
adapt and make a decision depending on a change of
position within a space based on the position of other
neighboring particles. The advantage of swarm beha-
vior is that as individual particle makes a decision, it
leads to emergent behavior. This emergent behavior is
based on local interaction among particles in order to
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determine a potential solution with the highest momen-
tum to find an optimal solution.

The ACO is bio-inspired by the foraging behavior of
real ants in their search for the shortest paths to food
sources.31 When a source of food is found, ants deposit
pheromone to mark their path for other ants to tra-
verse. Pheromone is an odorous substance that is used
as a medium of indirect communication between ants.
The quantity of pheromone depends on the distance,
quantity, and quality of food source. However, the
pheromone substance which decays or evaporates with
time prevents ants from converging prematurely;
thereby ants can explore other sources of pheromone
substances within its habitat. In a situation where an
ant is lost, it moves at random in search of a laid pher-
omone, and ants likely will follow the path that rein-
forces the pheromone trails. Thus, ants make
probabilistic decisions on updating their pheromone
trail and local heuristic information to explore larger
search areas.

WSA is a bio-inspired heuristic optimization algo-
rithm that is based on wolf preying behavior.32 The
behavior of wolves includes the ability to hunt indepen-
dently by remembering their own trait (meaning wolves
have memory), ability to only merge with its peer when
the peer is in a better position (meaning there is trust
among wolves to never prey on each other), only
attracts to prey within its visual range, ability to escape
randomly upon appearance of a hunter, and the use of
scent marks as a way of demarcating its territory and
communicating with each other wolf. The multiple
behaviors expressed by wolves enable it to randomly
adapt to its environment when hunting. Thus, a better
position replaces the old position. Each wolf instinc-
tively flocks together in a pack, which indicates a col-
lective behavior and organizes individual searches of an
individual wolf. Therefore, the swarming behavior of
WSA is delegated to each individual wolf, and this
behavior could form multiple leaders swarming from
multiple directions toward a point of convergences
(that is the best solution) rather than as a single flock
searching for an optimum in one direction at a time.
The multiple behaviors of wolves can be used in defin-
ing multiple search criteria toward convergence into a
global solution. The behavior of a wolf is implemented
as an iterative search process that starts with the setting
of an initial parameter, random initialization of popu-
lation, evaluation and updating a current population
using a fitness test, and continuing on with creating
new generations/iterations until the stopping criteria is
met. A variant of WSA is the WSA with Minus Step
Previous (WSA-MP). The WSA-MP allows wolves to
remember a previous best position and avoid the old
positions taken which do not produce the best solution.
The wolf behavior has been applied in several optimiza-
tion problems to find the best optimal solution.

Bat algorithm is a bio-inspired method based on the
behavior of micro-bats in their natural environment.33

The unique behavior that characterizes bats is their
echolocation mechanism. This mechanism helps bats
orient and find prey within their environment. The
search strategy of a bat is controlled by the pulse rate
and loudness of their echolocation mechanism. While
the pulse rate changes to improve the better position
that was previously found, the loudness indicates to
each other bat that the best position is accepted/found.
The bat algorithm search process starts with random
initialization of the population, evaluation of the new
population using a fitness function, and finding the best
population. Unlike the wolf algorithm that uses the
attractiveness of prey to govern its search, the bat algo-
rithm uses the pulse rate and loudness to control the
search for an optimal solution. A variant of bat algo-
rithm is sampling, improved bat algorithm (SIBA). The
bat behavior has been applied in several optimization
problems to find the best optimal solution.

In order to create a dynamic energy load balance,
bio-inspired techniques explore and exploit different
search areas to find an optimal way to form a cluster.
The advantage of a bio-inspired technique is the ability
to jump out of any local optimum that might not lead to
an ideal cluster formation. In respect to this advantage,
several energy clustering models are integrated with bio-
inspired techniques for clustering so as to solve network
energy load balancing problems. Example of such inte-
gration includes Energy-aware Clustering for WSNs
using the PSO Algorithm;34 Cluster-based WSN Routing
using the ABC Algorithm;35 Whale Optimization for
clustering and energy optimization for WSN;36

LEACH—Centralized with Simulated Annealing35 and
LEACH combine with GA in which LEACH optimizes
energy and cluster sensor devices on a networks, whereas
GA finds an optimal probability of a node selected to be
a CH, thereby minimizing the total energy consumption
of a network.37 When dynamic energy load balance tech-
niques are created, it provides an opportunity to control
energy consumption needs. Bui and Jung38 indicates that
load balance models are synchronization-based negotia-
tion models, which negotiates energy demand for IoT
devices connected on the edge of wireless networks.
Moreover, with negotiation models, the operation of
each device is scheduled in real time so as to identify the
load and status of devices either active, finish, wait, on,
or off.38

Chan and Han12 proposed a mechanism to predict
the energy consumption by a sensor node, which then
constructs an energy map of a sensor network. In using
this approach, sensor nodes do not need to transmit
energy information periodically. Instead, it requests
energy information and the model’s parameter. This
approach works well when the sensor’s energy dissipa-
tion rate is relatively stable. However, the performance
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decreases along with an increase in the events’ random-
ness within the network.

Bio-inspired distributed energy-efficient clustering
(B-DEEC) algorithm based on the artificial bee colony
(ABC) algorithm has also been proposed.27 The waggle
dance for multiple interactions and information sharing
was utilized to optimize the CH selection for heteroge-
neous WSNs. In the B-DEEC algorithm, probabilistic
CH selection was optimized by performing neighbor-
hood search and nominating a node as CH with maxi-
mum energy. The B-DEEC increases both network
lifetime and throughput of the network.

Edge computing

Edge computing performs real-time analytics to find
the best way to send data to the cloud environment,
instead of performing analytics directly on the cloud.
Varghese et al.39 indicate that when data analytics is
done on the cloud, due to bottleneck in data transmis-
sion and reception, it creates an increased energy
demand. The increase in energy demand can be mini-
mized by incorporating energy management strategies
so that analytical tasks are performed on the edge of
networks via gateways or base stations (BS) that are
closer to the source of data. Basically, the BS is a loca-
tion for users to access data.

Generally, the advantage of edge computing is the
efficient distributed computing such that when a sensor
node dies or goes off quickly, because of workload in
collecting, aggregating, and sending data to a BS, a dif-
ferent sensor node is selected as CH.25

The edge analytics framework is one of the proposed
frameworks for real-time data collection in WSNs.
Figure 1 depicts the edge analytics architecture for edge
devices (e.g. sensor-enabled) to perform analytics in
real time or in nearby locations (e.g. ceilings).

Figure 1 shows the edge analytics architecture which
consists of three analytics layers, namely device/sensor
layer, edge analytics layer, and analytics in the cloud
layer. First, the edge analytics layer is the layer that
supports Fog computing.

Basically, Fog computing is a computing framework
that liaises between the device/sensor layer and analy-
tics in the cloud layer. Conceptually, Fog computing is
an extension of cloud computing, to ensure real-time or
near real-time data processing, optimization, and so on.
Mostly, in Fog computing, data analytics is delegated
to edge devices/gateway rather than being delegated to
a central cloud server. In this regard, it reduces data
transfer to the cloud computing environment and mini-
mizes data analytics latency. Second, analytics in the
cloud layer supports further data processing and stor-
age particularly through the use of the Internet. Third,
the device/sensor layer houses all data collection devices
such as smart appliances, low powered devices that are
connected to a single location mostly referred to as sink
node or BS. It is significant to note that fog computing
devices may not necessarily be at the edge of a network,
but rather it may reside close to the edge of the net-
work. Contrarily, edge devices reside on the edge of
networks; therefore, it is often the first point of contact
in IoT analytics. In essence, fog computing and edge
computing are both close to the IoT end-devices, but

Figure 1. Edge analytics architecture.
Source: Adapted from Bui and Jung.38
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the edge computing devices are often closer.40 In many
related works, fog computing and edge computing have
been used interchangeably.

Generally, the rise in the utilization of sensor devices
and heterogeneity of sensor devices result in finding
ways to improve the lifetime of WSNs. Furthermore,
when different sensor devices are randomly placed in
different locations to transmit data from one point to
another, some amount of energy is dissipated.36 Bio-
inspired algorithms are important in edge computing as
they provide an optimal way to adjust energy needs in
real time without being stuck in the local optimum.

WSNs

WSN consists of sensor nodes equipped with the capa-
bility to sense, compute, and communicate with another
sensor node. Routing algorithms are required when
nodes are unable to send data to BSs.23 The operation
of WSN is such that, sensor nodes are grouped into
clusters, where individual sensor node transmits data to
CH in either single hops or multiple hops and then for-
wards the data to a BS or sink. The BS then runs a clus-
tering algorithm and notifies all sensor nodes on a
network of the best gateway for each sensor node to
use.41 In WSNs, data are transmitted in real time and
clustering algorithms continuously update their net-
work status. Each iteration to update the network is
referred to as a round.42 Sensor devices have different
parts that consume energy, namely the microcontroller
processing, radio transmission and receiving, transient
energy, sensor sensing, and sensor logging and actua-
tion. In addition, the location of sensor nodes in a clus-
ter, which leads to having different transmit distance to
a CH, also consumes energy. The energy spent by
neighboring sensor nodes in transmitting and receiving
(that is communication energy) data plays an important
role in WSNs (see Figure 2). In WSN, energy consump-
tion in data transmission often reduces and this affects
the overall performance of a network, stability of net-
work, and efficiency of information transmission.43 In
this regard, the energy-efficient clustering algorithm in
WSN is significant. The description of WSN is depicted
in Figure 2.18

The sink node shown (see Figure 2) represents the
edge device gateway of the edge analytics architecture
(see Figure 1). The communication among sensor
nodes is achieved by using sensor radio, and when dis-
tance increases the energy dissipation for the communi-
cation leads to an increase in the cost.42 In respect of
optimality, an optimal cluster for a number of sensor
nodes is based on distance and energy dissipation per
round. In this regard, an optimal number of clusters is
defined as the number of clusters that reduces energy
dissipation.42

In general, the following are excerpts from the
related works: heterogeneous network might increase
the lifetime of WSN; it is desirable to have node balan-
cing their energy loads in order to maximize the net-
work lifetime; clustering algorithms continuously
update their network status; the location of sensor
nodes in a cluster leads to different transmit distance to
a CH which also consumes energy; bio-inspired algo-
rithms are important because they provide an optimal
way to adjust energy needs in real time without being
stuck in the local optimum.

As technology advances, newly developed sensor-
enabled devices should be able to interact with existing
network infrastructure. Therefore, it is important to
develop new algorithms to support device interaction
without having to utilize more energy in forming clus-
ters and transmitting data. In this article, a novel intel-
ligent energy-efficient model based on the behavior and
characteristics of a bird, called Kestrel, is proposed for
clustering on WSN.

Proposed model

This article proposes a novel clustering scheme exploit-
ing the KSA to optimize energy in heterogeneous envir-
onments. The approach to optimizing energy is based
on the behavior and characteristics of birds/animals
mostly referred to as bio-inspired approach. A bio-
inspired approach is applied because of its distributed
cooperative nature that enables the processing of data
from heterogeneous environments. In a distributed
environment, bio-inspired search strategies can apply
randomization and efficient local and global search to
achieve a new optimal solution.44 The bio-inspired
approach can help form basic rules that aim at some
level of intelligent by providing an optimal way to
adjust energy needs.

Our proposed model focuses on receiving sensors’
location, their energy level (that is when devices in a
cluster do not have the same initial energy)23 and a
number of sensors. The proposed approach uses the
idea of having a BS (that is, end-user), which computes
average energy levels such that sensors with energy
below specified average energy are not eligible to beFigure 2. Structure of a wireless sensor network.
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selected as a CH. A cluster member is then identified as
a CH based on the position, energy consumption, and
data transfer with each cluster member. When CH is
selected, it acts as a local controller to coordinate the
data transmission among each cluster member and
avoids a collision that might occur in sending data from
an active device (e.g. appliance). The BS is located at a
given coordinate, whereas the number and locations of
sensors are optimized.45 Thus, only sensors with an
energy level above the average energy are eligible to be
candidates for a CH position. In order to assign sensors
to a cluster, the BS considers energy level and the dis-
tance between a sensor and selected CHs. The CH plays
a significant role in setting up Time Division Multiple
Access (TDMA) schedule which helps to avoid collision
among sensors and only allows devices to be turned on
when it wants to send data, thus reducing the energy
consumption.35 The application of TDMA mechanism
for energy saving builds a time slot for each device by
dividing the time into the various size of a fixed number
of slots, each slot unit lasts at some time period.

Proposed clustering algorithm based on KSA

The KSA is based on characteristics, namely random
encircling, trail evaporation based on half-life period,
position, and velocity of Kestrels.44 Although the algo-
rithm has been applied to different problem domains
such as missing value estimation,44 association rule
mining,46 and feature selection in classification.29,47 In
this study, we applied the KSA to clustering in the case
of heterogeneous energy requirements. The aim of clus-
tering using the Kestrel is to optimize energy consump-
tion by balancing nodes on the edge computing
network. Basically, Kestrel achieves this optimization
by changing position, velocity, and trail evaporation
and ensures randomness.

The KSA starts by initialing a set of random
Kestrels at the set-up phase of first round/iteration to
determine the energy requirements of heterogeneous
devices and find an optimal parameter. Devices are said
to be heterogeneous because each has a different energy
requirement.

The position of KSA is expressed as follows

xk
i+ 1 = xk

i +boe�gr2

xj � xi

� �
+ f k

i ð1Þ

where xk
i+ 1 is the current best position of a Kestrel that

represents a candidate solution; xk
i is the previous posi-

tion of Kestrel based on random encircling for-
mulation;44boe�gr2

is the attractiveness which indicates
the light reflected from a trail, where the variable bo

represents initial attractiveness, r represents distance
measurements expressed using Minkowski distance,44g
represents a variation of light intensity between [0, 1];
xj represents a Kestrel with a better position; and f k

i is

the frequency of bobbing as expressed by Agbehadji
et al.44 The random encircling formulation is expressed
by

~x(t + 1)= xp
!(t)�~A � ~D ð2Þ

Thus

~A= 2 �~z � r2
!�~z ð3Þ

~D= j~C � xp
! tð Þ �~x tð Þj ð4Þ

~C = 2 � r1
! ð5Þ

where ~A is the coefficient vector, ~D is the encircling
value obtained, xp

!(t) is the position vector of the prey,
and ~x(t + 1) represents the previous position of
Kestrels. Where ~C is the coefficient vector, ~x(t) indi-
cates the position vector of a Kestrel, and r1 and r2 are
the random numbers generated between 0 and 1, and
as Kestrels shift the center of encircling, it maximizes
the chances of locating its prey hence the constant
value of 2. ~z represents a parameter to control the
active mode with ~zhi as the parameter for flight mode
and~zlow as the parameter for perched mode, which line-
arly decreases from 2 (high active mode value) to 0
(low active mode value), respectively, during the itera-
tion process. This is expressed as

~z=~zhi � (~zhi �~zlow)
itr

Max itr
ð6Þ

where itr is the current iteration andMax_itr is the total
number of iterations that are performed during the
search. Other Kestrels that are involved in the search
update their position according to the best position of
the leading Kestrel.

Finally, the velocity of Kestrel is updated by

vk
t+ 1 = vk

t + xk
t ð7Þ

where vk
t + 1 is the current best velocity, vk

t represents the
initial velocity, while xk

t represents the current best posi-
tion of a Kestrel.

Trail evaporation. In meta-heuristic algorithms, ant use
trails both to trace the path to a food source and to
prevent themselves from getting stuck in a single food
source. Thus, ants, using these trails, can search many
food sources in a search space. As ants continue to
search, trails are drawn and pheromones are deposited
on a trail. This pheromone helps ants to communicate
with each other about the location of food sources.
Therefore, other ants continuously follow this path and
also deposit substances for the trail to remain fresh.
Similar to ants, Kestrels use trails in search of food
sources. However, these trails are rather deposited by
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prey which provides an indication to Kestrels on the
availability of food sources. The assumption is that the
substances deposited by prey are similar to pheromone
deposited on ants’ pheromone trail. In addition, when
the source of food depletes, Kestrels no longer follow
this path that leads to the location of prey.
Consequently, the pheromone trail begins to diminish
with time at an exponential rate causing trails to
become old.44,47 This diminishment denotes the
unstable nature of the trail substances which can be
theoretically stated as if there are N unstable nodes
(that is, different energy requirements), then the rate at
which the ‘‘substance’’ decays with time t is expressed
by

dN

dt
= � gN ð8Þ

Thus, the decay rate (g) with time (t) is simplified as

gt = goe�ut ð9Þ

where go represents initial value and t is the time of
decay. The decay constant u which shows how long it
takes for a ‘‘substance’’ to decay is re-expressed as

u=
ln0:5

�t1
2

ð10Þ

where u is the decay constant and t1
2
is the half-life

period. If the value of decay constant is greater than 1,
then the trail is considered as new else the trail is con-
sidered as old, which is expressed by

if u!
u.1, trail is new

0, otherwise

8<
: ð11Þ

where u is the decay constant.
In WSNs, the heterogeneity of devices on the edge

of networks makes it impossible for all nodes to go off
at the same time. Similarly, it could be said that each
node has its own half-life. In this regard, the decay rate

of nodes on the network can be determined by applying
the half-life formulation. Moreover, as nodes are het-
erogeneous, a degree of randomness is introduced
which is accounted for by the decay process.

Heterogeneous network model for energy
optimization

The energy model finds energy dissipated when sensor
node transfers or receives data on the network. In this
article, the DEEC model is adopted and integrated
with the behavior and characteristics of Kestrel for-
mulation. In the transfer of data, some amount of
energy is dissipated, and to optimize this energy, the
radio energy dissipation model37 shown (see Figure 3)
is applied.

In this model, the energy required by the transmit
amplifier ETX (l, d) to transmit an l-bit message over a
distance d between a transmitter ETX (l, d) and receiver
ERX (l) is expressed by

ETX l, dð Þ=
l � Eelec + l � efs � d2 if d ł do

l � Eelec + l � emp � d4 if d ø do

(
ð12Þ

where do is the threshold transmission distance between
the transmitter and receiver which is expressed as
do =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
efs=emp

p
. Eelec is the energy consumption in elec-

tronics for sending or receiving a bit, and efs and emp

represent amplifier parameters for free state and two
ray models, respectively. d2 and d4 refers to short- and
long-distance transmissions, respectively. When an l-bit
packet is received, the energy required by the receiver
ERX (l) is expressed by

ERX lð Þ= l � Eelec ð13Þ

In this section, we described the energy model for a
multi-level heterogeneous network. In the multi-level het-
erogeneous model, the energy of sensor nodes is randomly
distributed in size of M 3 M meters. In this context, the
total initial energy for all sensor node is expressed by

Figure 3. First-order radio model.
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Etotal =
Xn

i= 1

Eo 1+ aið Þ=Eo n+
Xn

i= 1

ai

 ! !
ð14Þ

where Eo represents the initial energy of a node; in this
context, a node has initial energy Eo(1+ ai) which is ai

times more than the lower/initial bound Eo.
When a cluster is formed, each CH dissipates energy

in receiving a signal from nodes and then aggregates
the signals and transmits the aggregate signal to the BS
which is far from nodes. Thus, a cluster-head should
have enough energy to reach a BS. The energy of the
cluster is expressed as

ECH = l � n

k
� Eelec +EDAð Þ+ l � emp � d4

toBS ð15Þ

where ECH represents the energy of a CH, n is the num-
ber of sensor nodes, k is the number of clusters, Eelec is
the transmitter electronics, EDA is the energy for aggre-
gating data, l is the data packet, and emp transmits
amplifier in long-distance d4

toBS to a BS. Similarly, the
energy dissipated by non-CHs En�CH is expressed by

En�CH = l � Eelec + l � efs � d2
toCH ð16Þ

where l is the data packet, Eelec is the transmitter elec-
tronics, and efs represents transmitter amplifier for the
free state in short-distance d2

toCH to CH. The distances,
both short and long distances, are expressed by22

d4
toBS =

Mffiffiffiffiffiffiffiffiffi
2pk
p , d2

toCH = 0:765
M

2
ð17Þ

where M is the size of sensor field, k is the number of
clusters, d2

toCH is a short distance to CH, and d4
toBS is the

long distance to the BS. Thus, total energy Etotal dissi-
pated by a cluster is expressed by

ECluster =ECH

n

k
� 1

� �
En�CH ’ ECH +

n

k
En�CH ð18Þ

Etotal = k � ECluster ð19Þ

where ECluster is the energy dissipated by a cluster
among cluster members, ECH represents the energy of
CH, n is the number of sensor nodes, k is the number
of clusters, and En�CH is the energy dissipated by non-
cluster. In addition, each non-CH sends l-bits message
to the CH in a round; therefore, total energy dissipated
in the network during a round is expressed by

Eround = l � (2 � n � Eelec + n � EDA + k � emp � d4
toBS

+ n � efs � d2
toCH ð20Þ

where Eround represents energy at a round, l is the data
packet, n is the number of sensor nodes, Eelec is the
transmitter electronics, EDA is the energy for aggregat-
ing data, emp is the transmitter amplifier in long-distance
d4

toBS to a BS, efs is the transmitter amplifier for the free

state in short-distance d2
toCH to CH, and k is the number

of clusters. The BS and CH are always located at a dis-
tance, and due to randomization, the distance to send a
data packet is always computed in each round/iteration.
In view of this, the threshold transmission distance do

and d are compared to find the distance to send packets
to BS and CH.

In respect of clusters, the optimal number of clusters
kopt which replaces k is expressed as

kopt =

ffiffiffi
n
pffiffiffiffiffiffi
2p
p �

ffiffiffiffiffiffiffi
efs

emp

r
� M

d2
toCH

ð21Þ

where n is the number of sensor nodes, emp is the trans-
mitter amplifier, efs represents transmitter amplifier for
the free state in short-distance d2

toCH to CH, and M is
the size of sensor fields.

It is important to select an optimal CH; therefore, a
probability threshold T (si) is applied to determine the
optimal CH in a round. If the probability is less than a
threshold T (si) value, the node is selected as a CH for
that round. T (si) is expressed by

T sið Þ=

pi

1�pi rmod 1
pi

� � ifsi 2 G

0 otherwise

8<
: ð22Þ

where pi is the user set probability for a CH, r repre-
sents the current round, and G is the set of nodes that
have not been selected as CHs in the previous 1=pi

rounds. Thus

pi =
poptn 1+ að ÞEi rð Þ

n+
Pn

i= 1

ai

� �
�E rð Þ

ð23Þ

where popt represents the reference value of the average
probability of pi, n is the number of nodes, Ei(r) is the
residual energy, and �E(r) is the estimated energy that
serves as standard reference energy for each node. This
reference energy indicates that each node has its own
energy in each round to keep the network alive, and
this introduces some heterogeneity on the network.
Moreover, in a heterogeneous network, it is important
to ensure that there is enough energy for data transmis-
sion. In view of this, both initial energy and residual
energy level of nodes are used to select cluster-heads at
each round. Since nodes have different energy require-
ments, the network identifies the best node base on the
average energy �E(r) at a round of the network which is
computed by

�E(r)=
1

n
� Etotal 1� r

R

� �
ð24Þ

where R is the total network lifetime. The assumption
for considering network lifetime is that should all the
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nodes die simultaneously, R is the total of rounds from
the time the network begins to time the node dies.22

Furthermore, network lifetime can be categorized into
two periods such as stable and unstable periods.
Whereas, the stable period refers to the period from the
beginning of a transmission to the period the first node
dies and the unstable period refers to a period from the
death of the first node till the death of the last node on
the network.28 Therefore, the energy consumed by the
network in each round is denoted by Eround , and there-
fore, R is expressed by

R=
Etotal

Eround

ð25Þ

where Etotal is the total energy.

Objective function

In order to select a node with an adequate amount of
energy in a cluster, the objective function ofunc is
expressed as

ofunc=a � f1 + 1� að Þ � f2 ð26Þ

f1 = max
i2½1,K�

X
si2Ck

d sensori,CHkð Þ
Ckj j

 !
ð27Þ

f2 =

PN
i= 1

E(sensori)

E(CHk)
ð28Þ

where a is a user-defined parameter between 0 and 1, N
is the number of sensors, jCk j is the number of sensors
that belong to a cluster Ck , f1 is the maximum average
distance of sensors and their CHs, and f2 is the ratio of
the total initial energy of all sensors with the total cur-
rent energy of CH in a round, where i be the amount of
energy consumed from i to N. If the value of the objec-
tive function is less, the node becomes a cluster-head
for the current round.

In respect of the DEEC, the fitness function is
expressed by equation T (si), similar to Ari.35 It is ideal
to have the same fitness function for each proposed
and comparative algorithm. However, in this study,
divergent fitness functions were applied.

Proposed algorithm

The algorithm to implement the proposed solution is as
follows:

1. Set the model parameters.
2. Initialize energy for all sensor nodes using equa-

tion (14)

3. Initialize population of n Kestrels using equa-
tion (2) and evaluate objective function using
equation (26)

4. Start iteration (loop until termination criteria
is met)

Compute Half-life of trail using equation (9)
Compute position for each Kestrel using
equation (1)
Calculate the energy required by the trans-
mit amplifier ETX (l, d) using equation (12)
and compute the energy required by the
receiver ERX (l) using equation (13)
Compute energy for the sensor node in next
round using equation (14)
Compute probability threshold T (si) to find
the optimal CH in a round using equation
(22)
Evaluate objective function using equation
(26)
If ofunci \ ofuncj then

Move Kestrel i toward j
End if
Update position of Kestrel
Find the optimal energy

5. End loop
6. Display results of optimal energy

The flowchart of the proposed algorithm is shown in
Figure 4:

Parameter setting for simulation of
network

The parameters for KSA are zmin = 0.2 (that is, para-
meter for perched mode) and zmax = 0.8 (that is,
parameter for flight mode).44 Following the network
parameter settings by Jadhav and Shankar,36 the net-
work parameter for the energy model is set. Initially,
the network load is 100 nodes, the transmitter electro-
nics is set as 5 nJ/bit, the initial energy requirement is
between 0.5 and 0.8 J, data aggregation is 5 nJ/bit/mes-
sage, transmitter amplifier in long distance is 0.0013 pJ/
bit/m4, while the transmitter amplifier in short distance
is 10 pJ/bit/m2, data packets size is 4000 and the net-
work coverage in terms of size is 100 m 3 100 m.
Popt represents the optimum probability which is set to
0.1. The network parameter settings are summarized in
Table 1.

The underlying assumption for the proposed model
is that all the nodes can communicate with the BS
directly. The BS, which has a continuous energy sup-
ply, sends a request to all nodes in the sensor network,
requesting them to collect residual energy. We assume
that the sensor network consists of N sensor nodes of
size m by m. The positions of the sensor nodes are
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generated randomly. Each node has a different energy
requirement. The sensor network consumes energy
according to the proposed DEEC-KSA model.

The proposed DEEC-KSA model consists of the fol-
lowing process: determination of clusters using random
encircling, evaluation of the fitness of each encircled
position, and determination of energy consumption.
There are different optimal parameter for KSA,
whereas the comparative algorithms used optimal para-
meter (popt) defined in Table 1. The network perfor-
mance is evaluated based on when the first node and

the last node die, network lifetime, and network
throughput in terms of packets sent to BS.

The first node death (FND) is the number of rounds
in the network until the first node has depleted its
energy and died.48 In WSNs, performance tends to
decline with the nodes’ death. Normally, the network is
in a stable period before the first node dies. The death
of the first node indicates that the network is in an
unstable state; hence, the performance of the network
starts to decline.43 However, the last node dead is the
number of rounds in the network until all nodes in the
network had depleted their energy and died. Therefore,
network stability is categorized into stable and unstable
periods. The stable period is a period from the begin-
ning of a transmission to the period the first node dies,
and an unstable period is a period from the death of
the first node till the death of last node on the network.
Network lifetime is the number of alive nodes on the
network. Network throughput is defined as the number
of data packets successfully received at BS. In other
words, it is expressed as the number of packets sent to
BS minus the number of packets dropped.49,50

Simulation results

In this section, we present the simulation result of the
proposed DEEC-KSA algorithm and compare it with
existing clustering algorithms, namely DEEC, devel-
oped distributed energy-efficient clustering (DDEEC),
an extended version of distributed energy-efficient clus-
tering (E_DEEC) with normal, advance, and super
node classifications.

A clustering algorithm is evaluated in terms of stabi-
lity of network on FND and the number of rounds in
the network until all nodes deplete their energy and died
(last node death (LND)), network lifetime, and network
throughput in terms of packets sent to BS.

Comparison of FND

In WSNs, the network is in a stable period before the
first node dies. When the first node dies, then network

Figure 4. Flowchart on proposed algorithm.

Table 1. Parameter settings.

Parameter Values

Number of nodes 100
Transmitter electronics Eelec 5 nJ/bit
Initial energy Eo 0.5–0.7 J
Data aggregation EDA 5 nJ/bit/message
Transmitter amplifier emp ifd ø do 0.0013 pJ/bit/m4

Transmitter amplifier efs ifd ł do 10 pJ/bit/m2

Data packet size l bit 4000
Network size 100 m 3 100 m
popt 0.1

KSA: Kestrel-based search algorithm.
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performance tends to decline, which results in an
unstable period. The results are presented in Tables 2–5
for heterogeneous initial energy values between 0.5 and
0.8 J. Based on the result presented in Table 2, it shows
the performance of FND for the proposed DEEC-
KSA, DEEC, DDEEC, and E_DEEC as 2004, 937,
1083, and 768, respectively. Similarly, it is observed
that the FND of DEEC, DDEEC, and E_DEEC are
completely different from the proposed DEEC-KSA as
observed in Tables 2–5.

In order to observe the performance of the proposed
DEEC-KSA in selecting an optimal cluster-head, we
chose to use different Popt parameters that are ran-
domly generated, whereas the comparative algorithms
have the same Popt parameter. In terms of percentage
of a parameter, the proposed DEEC-KSA varies from
0.1%, 4.5%, 11.3%, and 34% while the percentage of
the parameter of comparative algorithms maintained at
10%.

In the context of LND, the proposed DEEC-KSA
has the highest (3909), DEEC is second (3902),
DDEEC is third (3096), and E_DEEC is fourth. The

proposed DEEC-KSA has an advantage in delaying
the round of the FND after several rounds of iteration
thereby extending the death of the first node. It also
retains a higher number of active nodes in the final
round of iteration in Tables 2 and 3. However, in
Tables 4 and 5, the number of round on the network is
zero, meaning their energy is depleted and have died in
respect of the proposed DEEC-KSA. Similarly, among
Tables 2–5 for E_DEEC, the number of round on the
network is zero, meaning their energy is depleted.
Again, in Table 5, it is observed that DEEC has one
round on the network. It is possible that as nodes with
different energy tend to send a higher number of pack-
ets to BS, it depletes the energy within different time(s).

Comparison of network lifetime performance

Figure 5 shows the graphical display of alive nodes in
each round of iteration for 0.5 J. Further simulation is
performed using 100 nodes with heterogeneous initial
energy between 0.6 and 0.8 J, and simulation result is
presented in Figures 6 to 8. It is observed in Figure 5

Table 3. Alive nodes during network lifetime for 100 nodes (initial energy of 0.6 J).

Algorithms Popt FND Tenth node dead (tenth_dead) LND Packets to BS Time (s)

DEEC-KSA 0.0455 2291 2534 4470 336740 18.613
DEEC 0.1 1311 1480 4118 79411 53.425
DDEEC 0.1 1264 1505 3813 62795 67.435
E_DEEC 0.1 923 1143 0 238121 38.071

FND: first node death; BS: base stations; DEEC: distributed energy-efficient clustering; DDEEC: developed distributed energy-efficient clustering;

E_DEEC: extended version of distributed energy-efficient clustering; KSA: Kestrel-based search algorithm.

Table 2. Alive nodes during network lifetime for 100 nodes using 0.5 J.

Algorithms Popt FND Tenth node dead (tenth_dead) LND Packets to BS Time (s)

DEEC-KSA 0.001 2004 2093 3909 291,792 22.685
DEEC 0.1 937 1211 3902 66,876 46.708
DDEEC 0.1 1083 1340 3096 53,164 59.243
E_DEEC 0.1 768 1088 0 216,284 33.349

FND: first node death; BS: base stations; DEEC: distributed energy-efficient clustering; DDEEC: developed distributed energy-efficient clustering;

E_DEEC: extended version of distributed energy-efficient clustering; LND: last node death; KSA: Kestrel-based search algorithm.

Table 4. Alive nodes during network lifetime for 100 nodes (initial energy of 0.7 J).

Algorithms Popt FND Tenth node dead (tenth_dead) LND Packets to BS Time (s)

DEEC-KSA 0.11361 2591 2774 0 380,894 19.260
DEEC 0.1 1468 1598 4577 96,109 55.514
DDEEC 0.1 1257 1636 4060 102,285 76.603
E_DEEC 0.1 1141 1459 0 281,118 38.921

FND: first node death; BS: base stations; DEEC: distributed energy-efficient clustering; DDEEC: developed distributed energy-efficient clustering;

E_DEEC: extended version of distributed energy-efficient clustering; KSA: Kestrel-based search algorithm.
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that DEEC-KSA has 100 nodes in the 2000th round,
while EDEEC has 100 nodes close to the 750th round,
DEEC has 100 nodes in the 1000th round, and
DDEEC has 100 nodes in the 1000th round. Although
all the clustering algorithms have 100 nodes in different
rounds, the proposed DEEC-KSA performs better by
retaining 100 nodes up to 2000th round. Nodes in the
comparative algorithms reduce close to 1000th round
of iteration before nodes in DEEC-KSA. In compari-
son to network lifetime performance, it is observed that
DEEC-KSA achieved better performance as compared
with the three other algorithms. This could be attrib-
uted to the ability to adequately perform random encir-
cling and trail evaporation at each round. DDEEC
network lifetime performance is second, DEEC is third,
while E_DEEC is fourth. This indicates that the pro-
posed DEEC-KSA ensures more round of network
communication in all cases of simulation (see Figures 6
and 7) as compared with other algorithms that have
different energy requirements.

Comparison of the network throughput

In WSN, network throughput is fundamental to evalu-
ate the efficiency of algorithms. It refers to a number of
data packets in the network successfully sent at BS. As
cluster member node sends information in the form of
packets to CH, and the CH fuses the information it
sensed and finally sends to BS as packets. During this
period, if the energy of the CH is insufficient to receive,
fuse, or transmit the packets, all the information of the
cluster in the round is not transmitted to the BS, result-
ing in a decrease in network throughput. Simulation is
performed using 100 nodes with heterogeneous initial
energy between 0.5 and 0.8 J, and the simulation result
is presented in Figures 9 to 12. Based on Figure 9, the
number of packets sent successfully to BS using DEEC-
KSA, E_DEEC, DEEC, and DDEEC is, respectively,
2.8 3 105, 2.2 3 105, 0.7 3 105, and 0.52 3 105,
with respect to the number of rounds. The result shows

Table 5. Alive nodes during network lifetime for 100 nodes (initial energy of 0.8 J).

Algorithms Popt FND Tenth node dead (tenth_dead) LND Packets to BS Time (s)

DEEC-KSA 0.33625 2770 3178 0 372,660 19.306
DEEC 0.1 1628 1787 1 118,733 70.378
DDEEC 0.1 1682 2093 0 121,266 85.099
E_DEEC 0.1 1144 1594 0 303,156 37.256

FND: first node death; BS: base stations; DEEC: distributed energy-efficient clustering; DDEEC: developed distributed energy-efficient clustering;

E_DEEC: extended version of distributed energy-efficient clustering; KSA: Kestrel-based search algorithm.

Figure 5. Alive nodes per round for 100 nodes with 0.5 J. Figure 6. Alive nodes per round for 100 nodes (initial energy
of 0.6 J).
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that DEEC-KSA has the highest network throughput
in all cases of simulation results (Figures 10 to 12).

In respect of time, the simulation results in Tables 2–
5 indicate that the proposed DEEC-KSA has the least

time to send successful packets to BS, E_DEEC is sec-
ond, DEEC is third, and DDEEC is fourth in terms of
time to send successful packets. This suggests that the
proposed DEEC-KSA is the efficient clustering

Figure 7. Alive nodes per round for 100 nodes (initial energy
of 0.7 J).

Figure 8. Alive nodes per round for 100 nodes (initial energy
of 0.8 J).

Figure 9. Packets sent to BS per round with 0.5 J.

Figure 10. Packet sent to BS on 100 nodes (initial energy of
0.6 J).
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algorithm since it spent less time to send a higher num-
ber of packets to BS. It is ideal that efficient clustering
algorithms spend less time to send a higher number of

packets thereby reducing the energy consumption in
WSNs.

Based on the simulation result obtained and subse-
quently presented in Tables and Figures, once a node
runs out of its energy, it is considered to be dead and it
can no longer transmit or receive any data. Thus, simu-
lation ends when all the nodes in the network run out of
their energy. High energy efficiency means low energy
consumption and a long stability period. From the
simulation results, it is evident that network lifetime (in
round) increases in DEEC-KSA with different initial
energy between 0.5 and 0.8 J as shown in Figure 13.

Figures 13 to 17 show the Tenth node dead (tenth_
dead) and Popt and time(s) to send successful packets.
It is evident that the proposed DEEC-KSA is the

Figure 11. Packet sent to BS on 100 nodes (initial energy of
0.7 J).

Figure 12. Packet sent to BS on 100 nodes (initial energy of
0.8 J).

Figure 13. Network lifetime showing FND and LND based on
100 nodes.

Figure 14. Network lifetime based on 100 nodes with initial
0.5 J.
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efficient clustering algorithm since it spent less time to
send a higher number of packets to BS, which suggests
a reduction in energy.

Conclusion and future work

This article presented a bio-inspired approach called
DEEC-KSA for optimizing energy in WSNs. The pro-
posed approach considered the heterogeneity of energy
requirements of sensor nodes. The simulation result
showed that the proposed DEEC-KSA performed opti-
mally in comparison with the existing benchmarked
clustering algorithms for heterogeneous networks. In
addition, the proposed DEEC-KSA has the highest net-
work throughput spending limited time, and it has the
best network stability than the comparative algorithms
considered in this article. It is observed that the pro-
posed DEEC-KSA is efficient in terms of stability
period, network lifetime performance, and network
throughput in terms of packets successfully sent to BS
relative. In addition, the proposed DEEC-KSA has an
optimal time to send packets successfully to BS. The
base on the proposed DEEC-KSA intelligently opti-
mizes energy; it can, therefore, be concluded that our
proposed DEEC-KSA provides an energy-efficient
clustering algorithm that ensures a longer stability
period for WSNs. In the future, the proposed algorithm
will be applied to a large number of nodes with different
energy requirements to evaluate its efficiency with other
nature-inspired algorithms. In addition, since it is possi-
ble for nodes with higher energy to be drained resulting
in no active node on the network, future works should
also focus on how to overcome this challenge.
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31. Stützle T and Dorigo M. Ant colony optimization. Cam-

bridge, MA: The MIT Press, 2002.
32. Tang R, Fong S, Yang X-S, et al. Wolf search algorithm

with ephemeral memory. In: Seventh international

Agbehadji et al. 17

http://www.schneider-electric.com/b2b/en/solutions/enterprise-solutions/enterprise-software-suites/index.jsp
http://www.schneider-electric.com/b2b/en/solutions/enterprise-solutions/enterprise-software-suites/index.jsp
http://www.schneider-electric.com/b2b/en/solutions/enterprise-solutions/enterprise-software-suites/index.jsp
https://buildingiq.com/products/predictive-control/
https://buildingiq.com/products/predictive-control/
https://www.esightenergy.com/about/
https://buildingiq.com/products/predictive-controlold/buildingiq-platform/
https://buildingiq.com/products/predictive-controlold/buildingiq-platform/


conference on digital information management (ICDIM),
Macau, China, 22–24 August 2012. New York: IEEE.

33. Yang X-S. A new metaheuristic bat-inspired algorithm.
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