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Abstract: Emotion detection is an important research issue in electroencephalogram (EEG).
Signal preprocessing and feature selection are parts of feature engineering, which determines the
performance of emotion detection and reduces the training time of the deep learning models. To select
the efficient features for emotion detection, we propose a maximum marginal approach on EEG
signal preprocessing. The approach selects the least similar segments between two EEG signals as
features that can represent the difference between EEG signals caused by emotions. The method
defines a signal similarity described as the distance between two EEG signals to find the features.
The frequency domain of EEG is calculated by using a wavelet transform that exploits a wavelet to
calculate EEG components in a different frequency. We have conducted experiments by using the
selected feature from real EEG data recorded from 10 college students. The experimental results show
that the proposed approach performs better than other feature selection methods by 17.9% on average
in terms of accuracy. The maximum marginal approach-based models achieve better performance
than the models without feature selection by 21% on average in terms of accuracy.

Keywords: signal preprocessing; signal similarity; emotion detection

1. Introduction

An electroencephalogram (EEG) is a biosignal that reflects brain activity. In the environment of
artificial intelligence, the analysis of EEG is an important research area. It can help medical staff perform
intelligent diagnosis, such as epilepsy and Alzheimer [1–4]. Emotion recognition is an important
research issue in EEG, and emotions can be reflected in EEG [5,6]. For example, the emotions of fear
and tension have different waveforms on the EEG. These waveforms are not obvious but play an
important role in the research area of the brain–computer interface (BCI) and emotion recognition [7–9].
Peoples can observe different emotions based on computers and intelligent machines by utilizing BCI
technologies. It can help people understand emotions on some occasions, such as at social events [10].

Signal preprocessing and feature selection play an important role in emotion detection, which can
remove the noise from the EEG signal and select correlated features with emotions to improve the
performance of deep learning models [11,12]. It also can reduce the training time of deep learning
model. Existing methods for selecting features from EEG signals to detect emotions mainly have
univariate, multivariate, filter, wrapper, and built-in methods. The univariate methods input single
feature to the model and multivariate methods consider grouping the features as inputs to train the
classifications [13,14]. The filter methods evaluate the correlation between features and emotions to
filter some features that are not useful for emotion detection [15,16]. The wrapper methods select
features based on the accuracy of the classification [17]. If the input features increase the accuracy,
the features are selected. The built-in methods are applied in the classifications, such as deep learning
models [18]. They select features by observing the weight of each feature. The features with low
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weights are dropped since they are not useful for emotion detection. These approaches focus on
the difficulty of EEG-based emotion detection, which discovers the correlation between features and
emotions from EEG signals.

To select the valuable features, we propose an approach on EEG signal preprocessing to select
features. The selected features indicate the least similar segments between two classes of EEG signals.
The signal similarity is defined as follows.

Definition 1 (Signal similarity). The signal similarity is described as the distance between two signals di

and dj, which is formulated as D(di, dj) =
√
||di − dj||2. The signal similarity is negatively related with the

distance.

Figure 1 gives the segments of two EEG signals with different emotions on two time intervals.
The similarity between the two signals at the first time interval is smaller than the second time interval.
The segments at the first time interval are selected as the features for detecting emotions.
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Figure 1. Example of the maximum marginal feature.

The proposed method selects the features from the frequency domain of EEG. The frequency
domain is helpful to preprocess and analyze EEG. The EEG signal on time domain is hard to analyze
since it usually combines with noise caused by different behaviors. To research the EEG produced by
specific behavior, we have to remove the noise. The frequency of noise is different from regular brain
waves so that the noise can be detected on the frequency domain.

Wavelet transform is a popular tool for time-frequency analysis [19,20]. It overcomes the
shortcoming of short-time Fourier transformation that the filter window size does not change with
frequency. It utilizes a wavelet to decompose EEG into an approximate component and a detail
component. The approximate component consists of the low frequency band of EEG, and the detail
component consists of a high frequency band. The difference of EEG signals is reflected in the high
frequency band so that the features are selected on the detail component.

The main contributions of this study are as follows.

• We propose a maximum marginal approach (MM) on the EEG signal preprocessing for emotion
detection. It defines the similarity of two class signals and selects the feature on the frequency
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domain. The results show that MM performs better than other feature selection methods on
emotion detection.

• We conducted experiments on real EEG data by applying the selected features to bi-direction long
short-term memory model (BiLSTM). The results show that the MM-based models performed
better than the models without signal processing. The MM-based BiLSTM achieved better
performance than others.

The remainder of this paper is organized as follows. In Section 2, studies related to the emotion
detection and feature selection are described. In Section 3, the maximum marginal feature selection
method is detailed. In Section 4, the BiLSTM model is detailed. In Section 5, the experimental results
are presented. Finally, in Section 6, some concluding remarks regarding this study are provided.

2. Related Work

Deep learning is the most popular supervised learning architecture, and some studies are related
to the EEG classification by using deep learning. Ni et al. [21] used a BiLSTM to classify the student’s
brain activity. It gave ten college students courses and classified whether these students feel confused
about the contents of courses. They found that the high frequency component of EEG is most important
for identifying the emotion. Chao et al. [22] proposed that the existing methods for the emotion
recognition based on EEG ignore the spatial information. They constructed a multi-band feature matrix
to record the frequency domain and spatial information of EEG. The capsule networks are used to learn
the feature from the matrix for classifying emotions. Li et al. [18] constructed a neural network that can
capture the spatial and temporal relationships of EEG electrodes. They considered the neuroscience
and mentioned that brain regions play different roles when a human feels a different emotion.

Feature selection is an important method in EEG signal preprocessing, and existing methods are
based on machine learning and statistical-based methods. Sun et al. [23] applied an unsupervised
learning method to extract features from EEG. They mentioned that supervised learning methods
lead to a decrease in the performance of EEG classification. They utilized an echo state network to
construct a recurrent autoencoder for extracting features from EEG. Rahman et al. [24] combined
principal component analysis (PCA) and t-statistics for feature extraction. It utilized PCA to reduce the
dimension of EEG and used t-statistics to select valuable features. According to the experimental results,
the neural network performed the best compared to other models. Alyasseri [25] selected features
from the frequency domain by using a wavelet transform for the identification system. Hong et al. [26]
considered a combination of EEG and functional near-infrared spectroscopy (fNIRS) as features to
identify patients with cognitive and motor impairments. The experimental results show that the
average of fNIRS and the highest frequency band of EEG have a value for diagnosing.

Converting the signal from the time domain to the frequency domain for analysis is a common
EEG signal preprocessing method. Wavelet transform is a general tool for decomposing EEG to
the frequency domain, and many studies applied wavelet transform to analyze the EEG signal.
Bhattacharyya et al. [27] applied wavelet transform to determine amplitudes and frequencies of seizure
patients from an adaptive frequency band in the EEG signal. They utilized the wavelet transform
to calculate the frequency domain of EEG and used a slice window to extract the patterns from
frequency components. These patterns are used to detect the seizure. Gupta et al. [28] utilized
wavelet transform based on the Fourier–Bessel series expansion to get the frequency domain of EEG.
The least-squares support vector machine is used to classify epilepsy. The proposed system can detect
epilepsy automatically. Follis et al. [29] applied maximal overlap wavelet transform to decompose
EEG signal. The Kruskal–Wallis test was used for the difference in the wavelet variances for detecting
seizure and non-seizure. The experimental results show that no pattern can be evidenced for detecting
seizures. Jiao et al. [30] utilized wavelet transform to extract the frequency domain from EEG and
electro-oculogram. The long short-term memory (LSTM) model is utilized to learn these features for
detecting diver sleepiness.
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3. Maximum Marginal Approach

This section describes the maximum marginal approach on EEG signal preprocessing, which is to
select segments where the detail component of EEG signals are least similar. These segments represent
the difference in brain waves caused by emotions so that they are utilized to detect emotions.

3.1. Detail Components Set Construction

Wavelet transform is a decomposition of EEG based on the frequency. It utilizes a scalable and
shiftable wavelet to decompose the EEG for calculating the frequency components. The narrow
scale indicates that the frequency is high, while the wide scale indicates low frequency. The wavelet
transform is formulated as follows.

WT(a, τ) =
1√
a

∫
f (t)ϕ(

t− τ

a
)dt (1)

where a indicates the scale, τ indicates translation, t is time. In addition, f (t) is EEG and ϕ(t) is the
wavelet signal. Wavelet transform utilizes a wavelet to infinitely approximate the EEG by changing the
scale and translation for calculating the detail and approximate components. The frequency of EEG is
the reciprocal of scalar a, and the corresponding time is represented as the translation τ. Emotions can
cause small changes in EEG, and these changes are observed in the detail component. We construct a
set to include each EEG signal’s detail component. The detail component is defined as follows:

Definition 2 (Detail component). The detail component of EEG signal is computed by using wavelet
transform, which is formulated as d. The set consists of detail component of i ∈ [0, I] EEG signal, which is
formulated as S = {di|i ∈ [0, I]}.

As shown in Figure 2, there are two detail components di and dj of EEG signals with different
emotions, which are extracted by using wavelet transform. The set consisting of these two components
is formulated as S = {d1, d2}.

0 20 40 60 80 100
Time(s)

−50

0

50

100

150

200

Va
lu
e

Signal1

0 20 40 60 80 100
Time(s)

−100

0

100

200

Va
lu
e

Signal2

Figure 2. Example of the detail component set.
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A discrete wavelet transform utilizes a wavelet to decompose the EEG signal for N times.
Figure 3 shows an example of a two-level wavelet transform for decomposing EEG signal, where an

and dn indicate the approximate and detail component at the level n, respectively. The approximate
component and detail component at level 1 can be calculated after the first decomposition of EEG.
The detail component at level 2 can be calculated by applying wavelet transform on the approximate
component at level 1.

Figure 3. Example of two-level wavelet transform.

3.2. Feature Selection

To find out the time interval where the segment of two classes signals are least similar, we calculate
the dot product for the average of two classes signals. We assume that there are two classes of
EEG signals with different emotions and the sets of detail components are formulated as S1 =

{di|i ∈ [0, I]} and S2 = {dj|j ∈ [0, J]}, where i and j indicate number of EEG signals in two sets,
S1 and S2, respectively. The average signals of two classes EEG are calculated as M1 = 1

I ∑I
i=0 di

and M2 = 1
J ∑J

j=0 dj. The similarity between signals M1 and M2 is formulated as D(M1, M2) =√
||M1 −M2||2. The dot product of signals M1 and M2 is calculated to divide the time interval for

EEG signal, which is formulated as O(M1, M2) = M1 ·M2.
Figure 4 shows the dot product of two signals M1 and M2 at each time point t ∈ [0, T] where

the x-axis is time, the y-axis is the dot product between two signals, and the 0-axis is the horizontal
axis with a dot product of 0. The EEG is divided into four time intervals based on the area between
the dot product of signals and the 0-axis. The similarity at each time interval is formulated as
Dt = ∑te

ts
D(M1, M2)t, where ts and te are the start time and end time of the time interval, respectively.

The segments with the least similarity between two signals M1 and M2 are selected as the features.
The selected features indicate the components of the brain waves caused by different emotions.
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Figure 4. The dot product of signals at each time point.

4. BiLSTM Network

BiLSTM is utilized to detect emotions by using the selected features, which constructs a
bi-direction recurrent network by using LSTM units [31]. It can capture the past and future information
to detect emotions by using non-linear functions.

BiLSTM consists of forward LSTM and backward LSTM. The main idea of LSTM is to forget the
information that is not useful for detecting emotion and pass the valuable information to the future
time point.

As shown in Figure 5, each LSTM unit consists of a forget gate, input gate, and output gate.
The information transmission of the LSTM unit is based on the forget gate. It receives the previous
hidden state ht−1 and current information xt to determine whether the information is not useful
for detecting emotions. The input gate utilizes previous cell state Ct−1, previous hidden state ht−1,
and current information xt to obtain the current cell state C. The output gate is used to give the
probability of two emotions by using the current information or previous information. For each LSTM
unit, each gate at time t is calculated as

ft = δg(W f · [ht−1, xt] + b f ) (2)

it = δg(Wi · [ht−1, xt] + bi) (3)

ot = δg(Wo · [ht−1, xt] + bo) (4)

Ct = ftCt−1 + itδc(Wc · [ht−1, xt] + bc) (5)

ht = otδc(Ct) (6)

where δg is sigmoid function, δc is hyperbolic tangent function, C is the cell states, and h is the hidden
states. The forget gate, output gate, and input gate are formulated as f , o, and i. The weight and basis
of each gate are formulated W and b. The input of each function is calculated by using the current
signal value xt and the previous hidden state ht−1. The input of the first LSTM unit only has the
current signal value.
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Figure 5. Architecture of a LSTM unit.

Figure 6 gives an example of EEG-based emotion detection by using BiLSTM, where the input
is the selected segments, xt indicates the value at t, h f

t indicates the hidden state of forward LSTM,
and hb

t indicates the hidden state of backward LSTM. The forward LSTM processes the signal from
the left to right, and it utilizes hidden layers to pass the information. The current hidden state h f

t is
calculated based on the previous hidden state h f

t−1 and the current input xt. The backward LSTM
passes the future information to the history unit and the previous hidden state hb

t−1 is calculated based
on the current hidden state hb

t and the input xt.

Figure 6. Example of EEG-based emotion detection by using BiLSTM.

We formulate the weights of BiLSTM as W = {W f , Wi, Wo, Wc}, the loss function of the BiLSTM
is established based on the cross entropy, which is formulated as L = 1

N ∑N
i=1−[yilog(ŷi) + (1 −

yi)log(1− yi)] where y indicates the real emotion, ŷi indicates the detected emotion, and N indicates
number of EEG signals. The training of the model is to calculate weights W and basis b for minimizing
the loss function L. The gradient descent algorithm is used to update the parameters W and b, which
is formulated as W = W − η ∂L

∂W and b = b− η ∂L
∂b where η indicates the learning rate [32]. The initial
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parameters are given randomly. To update the parameters W and b at each layer, the backward
propagation algorithm is utilized, which is based on the chain rule to calculate the partial derivatives
of compound functions [33].

5. Experimental Results

This section analyzes the experimental results of the maximum marginal approach on EEG signal
preprocessing. The selected features are validated by applying to detect emotions. We extracted the
frequency components of EEG signals by using the ppwt library that is a module of wavelet transform
in python and constructed classifications by using the torch and scikit-learn libraries. The code and
dataset are detailed in our GitHub (https://github.com/ligen0423/EEG-based-emotion-detection.git).

5.1. Dataset

The dataset is collected from the study [34], which contains EEG data recorded from 10 college
students. The EEG dataset records the brainwave while these students watch massive open online
course clips. The EEG data have been labeled depending on whether or not the students are confused
about the video content. The brainwave is collected from MindSet equipment. They prepared 20
videos, and each video was 2 min long. Each student was given ten videos, and the equipment
recorded the brainwave of students. Most of these students were 24 years old, including eight Han
Chinese and eight male students.

5.2. Results and Analysis

The maximum marginal approach is utilized to select the features, we apply the selected features
to the BiLSTM model for detecting emotions. K nearest neighbor (KNN), convolutional neural network
(CNN), LSTM, and neural network (NN) are selected as baselines to validate the proposed approach.
KNN is a machine learning model that detects emotions based on the class of the nearest neighbor.
NN is utilizing non-linear functions to extract the features from the EEG signal for detecting emotions.
It does not consider the time of EEG signals. CNN utilizes convolutional kernels for the local sampling
of input. LSTM is based on the recurrent neural network that utilizes forget gates to drop some
information that is not useful in detecting emotions.

Table 1 shows the comparison results under the discrete wavelet transform on level 1. According
to the results, MM-based BiLSTM achieves the highest performance on the accuracy, precision,
and F1-score. The reason is that BiLSTM model considers the bi-directional temporal information of the
EEG signals. Since the precision and the recall affect each other, the recall of MM-based BiLSTM is lower
than LSTM. Overall, in the results, MM-based classifications perform better than the classifications
without signal preprocessing. This indicates that the proposed maximum marginal approach can
improve the performance of emotion detection.

Table 1. Comparison results under the discrete wavelet transform on level 1.

Models
Accuracy Precision Recall F1-score

Oirignal MM Oirignal MM Oirignal MM Oirignal MM

KNN 0.501 0.540 0.486 0.537 0.256 0.453 0.301 0.456
CNN 0.433 0.680 0.397 0.655 0.425 0.744 0.368 0.656
NN 0.500 0.467 0.467 0.478 0.530 0.795 0.467 0.553

LSTM 0.640 0.770 0.608 0.725 0.822 0.881 0.653 0.748
BiLSTM 0.680 0.860 0.660 0.952 0.763 0.822 0.661 0.835

Figure 7 shows the performance of the discrete wavelet transform by using MM-based BiLSTM,
where the x-axis represents the level, and the y-axis represents the value of each evaluation metrics.
The proposed approach achieves the best performance at level 1 with an accuracy of 0.86. With the
improvement of the level, accuracy, precision, and F1-score show a downward trend. When the level is

https://github.com/ligen0423/EEG-based-emotion-detection.git


Appl. Sci. 2020, 10, 7677 9 of 11

greater than 6, these three evaluation metrics of the method tends to be stable. With the increase in the
level, the small features are difficult to be selected, so the metrics of emotion detection has decreased.
When the level is greater than 6, the recall of the method has decreased.
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Figure 7. The performance of MM-based BiLSTM.

Table 2 shows the comparison results between different feature selection methods. We utilized
the wrapper, built-in, filter, and fisher score to conduct a comparison experiment. For the wrapper
method, we input the EEG signal at each time point to obtain the performance. The features of the
wrapper method are selected with the best performance. The built-in method is to select the features
by obtaining the weights of the BiLSTM model’s weights. The Fisher score is selecting the features by
calculating the variances of two classes of EEG signals. The proposed maximum marginal approach
achieves the best performance on the accuracy, precision, and F1-score. In addition, it achieves a lower
result than wrapper and fisher score on the recall.

Table 2. Comparison results under the BiLSTM model.

Methods Accuracy Precision Recall F1-Score

MM-based 0.880 0.952 0.822 0.835
Wrapper 0.790 0.749 0.880 0.763
Built-in 0.640 0.626 0.724 0.625
Filter 0.730 0.694 0.802 0.697

Fisher score 0.860 0.835 0.906 0.819

6. Conclusions

In this paper, we propose a maximum marginal approach to EEG signal preprocessing for emotion
detection. The approach selects the features that are the least similar segments between EEG signals
from the detail components. In the future, we can apply the proposed approach to select and study
bispectrum features from the EEG signals for diagnosing [35,36]. The proposed approach includes
a time interval division method based on the dot product between two signals. It can be used in
other time-series domains, such as in financial series and meteorological series in future research.
Our experiments verify the performance of different models based on the selected features for emotion
detection. The experimental results show that the proposed approach performs better than other
feature selection methods by 17.9% on average in terms of accuracy. The MM-based models achieve
better performance than the models without feature selection by 21%, on average, in terms of accuracy.
We validate the performance by using the discrete wavelet transform. The results show that the
first-level of wavelet transform achieves the best performance on emotion detection tasks. As the level
increases, the evaluation metrics of accuracy, precision, and F1-score exhibit a downward trend. If the
wavelet transform levels are more than 6, the performance tends to be stable.
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